
Chapter 2

Riemann problem for non-ideal

polytropic magnetogasdynamic

flow

“Mathematics is the key and door

to the sciences.”

-Galileo Galilei

2.1 Introduction

The Riemann problem consists of an initial value problem composed of the Euler

equations together with piecewise constant initial data having single contact discon-

tinuity. For the numerical and theoretical point of view, the study of solution to

the Riemann problem is extensively utilized for the system of conservation laws in

real gas flow, shallow water flow, gasdynamics etc. In the solution of the Riemann
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problem, all the features such as rarefactions waves, shock waves occur in the form

of characteristics hence it is very convenient for the readers to understand the Euler

equations in the form of conservation laws. The solution of the Riemann problem

consists of three waves with middle one is always contact discontinuity and other

remaining waves are either rarefaction waves or shock waves. Lax [74] determined

the solution of the Riemann problem for the condition when the initial data of the

problem consists of two constant states U1
∗ and U2

∗ , where U1
∗ and U2

∗ are respectively

the vector of conserved variables to the left and right of x = 0 such that ‖U1
∗ − U2

∗‖

is appropriately small and left and right constant states are divided by jump dis-

continuity at x = 0. In the consideration of Euler equations, the Riemann problem

consists of the shock tube problem and for detailed discussion of shock tube problem

and other physical problems in form of conservation laws of gasdynamics, the readers

are recommended to study the book by Courant and Friedrichs [23]. Hu and Sheng

[98] solved the Riemann problem of conservation laws in magnetogasdynamics. The

explicit solution to the Riemann problem is of great significance in relativistic gasdy-

namics and magnetogasdynamics Godunov [20], Smoller [21] and Chorin [22]. The

Riemann problem in one-dimensional planar flow of ideal gas subjected to transverse

magnetic field have been studied by Shekhar and Sharma [99, 12], Singh and Singh

[100]. Gupta et al. [101] have used a direct approach to solve Riemann problem for

dusty gas flow. Ambika and Radha [95] studied the uniqueness and existence of ele-

mentary wave solution to the Riemann problem for van der Waals gases. Kuila and

Sekhar [102, 103] presented the solution of the Riemann problem for ideal and non-

ideal isentropic magnetogasdynamic flows. Mentrelli and Ruggeri [104] investigated

shock and rarefaction waves in hyperbolic model of incompressible fluids. Yang and

Sun [105] solved the Riemann problem for a class of coupled hyperbolic systems of

conservation laws with delta initial data. Kuila et al. [103] have solved the Riemann

problem for two pressure model of non-ideal isentropic compressible two phase flows.
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Bressan [90] provided a self-contained introduction to the mathematical theory of

hyperbolic system of conservation laws, with particular emphasis on the study of

discontinuous solutions, characterized by the appearance of shock waves. Lihui Guo

[106] solved the Riemann problem with a source term for Chaplygin gas equations

with delta initial data. Pang and Hu [107] studied the Reimann solutions to com-

pressible fluid described by the generalized chaplygin gas. Toro [108] proposed the

Riemann solvers and numerical methods for explicit solution of the Riemann prob-

lem. A detail deliberation on the explicit solution of the Riemann problem can be

obtained in Toro [108], Smoller [21]. Among the several authors such as Godunov

[20], Toro [108] and Quartapelle [109] modified the iterative scheme for the Riemann

problem of classical gasdynamics to demonstrate the flow field.

The important contribution of the present paper is to derive the analytical solution

of the Riemann problem for one-dimensional motion of non-ideal gas subjected to

transverse magnetic field with infinite electrical conductivity. The elementary wave

solution i.e. shock wave, simple wave and contact discontinuities is obtained and

discussed about their properties. Also the effect of parameter of non-idealness in

the presence of magnetic field on the density and velocity profile is analyzed.

2.2 Basic Equations

The equations governing the motion of one-dimensional unsteady planar flow of non-

ideal polytropic gas subject to a transverse magnetic field with infinite electrical

conductivity is written as (Shekhar and Sharma [12]),

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (2.1)
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∂u

∂t
+ u

∂u

∂x
+ ρ−1

(
∂p

∂x
+
B

ν

∂B

∂x

)
= 0, (2.2)

∂E

∂t
+ u

∂E

∂x
− p

ρ2

(
∂ρ

∂t
+ u

∂ρ

∂x

)
= 0, (2.3)

∂B

∂t
+ u

∂B

∂x
+B

∂u

∂x
= 0, (2.4)

where ρ, u and p denote the fluid density , particle velocity and pressure respectively.

x and t represent the spatial coordinate and time respectively. Here, B = νH, with

ν, B and H as the magnetic permeability, magnetic induction and magnetic field

vector respectively. In Eq. (2.3), E represents the internal energy per unit mass of

the mixture expressed as

E =
p(1− bρ)

ρ(γ − 1)
, (2.5)

where b is the van der Waals gas constant and γ =
cp
cv

is the ratio of specific heats

of the gas with cp and cv being respectively the specific heats of the gas at constant

pressure and volume. Also the equation of state for polytropic non-ideal gas is

p = ke
S
cv

(
ρ

(1− bρ)

)γ
, (2.6)

where S is the specific entropy and k is constant. By utilizing Eq.(2.5) in Eq. (2.3)

we get

∂p

∂t
+ u

∂p

∂x
+ d2ρ

∂u

∂x
= 0, (2.7)

where d is the sound velocity which is defined as d =

(
γp

ρ(1− bρ)

)1/2

.

Now system of equations (2.1) to (2.4) are modified as

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (2.8)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

(
∂p

∂x
+
B

ν

∂B

∂x

)
= 0, (2.9)
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∂p

∂t
+ u

∂p

∂x
+ d2ρ

∂u

∂x
= 0, (2.10)

∂B

∂t
+ u

∂B

∂x
+B

∂u

∂x
= 0. (2.11)

The system of equation (2.8) to (2.11) may be represented in the following matrix

form

∂U

∂t
+ A

∂U

∂x
= 0, (2.12)

where

U =



ρ

u

p

B


, A =



u ρ 0 0

0 u 1
ρ

B
νρ

0 ρd2 u 0

0 B 0 u


.

The eigenvalues of the matrix A can be written as

λ1 = u− c, λ2 = u, λ3 = u+ c, λ4 = u. (2.13)

Here, c denotes the magneto-acoustic speed which is defined as

c =
√
d2 + e2, where e =

√
B2

νρ
is the Alfvén speed.

The eigenvectors corresponding to eigenvalues λi, i = 1, 2, 3, 4 of matrix A are

r1 =



ρ
c

1

ρc

0


, r2 =



1

0

0

0


, r3 =



−ρ
c

1

−ρc

0


, r4 =



1

0

−e2

1


. (2.14)
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Since all the eigenvalues of matrix A are real and corresponding eigenvectors are

linearly independent, therefore we infer that the system (2.12) is hyperbolic. Un-

der the assumption B = k1ρ (Shekhar and Sharma [12], Sheng [98] ), which is an

interpretation of the frozen-in law where k1 is positive constant, the Eq. (2.8) is

equivalent to Eq. (2.11). In view of the above assumption the system (2.12) may be

rewritten in the following form

∂U∗

∂t
+ A

∂U∗

∂x
= 0, (2.15)

where

U∗ =


ρ

u

p

 , A∗ =


u ρ 0

e2

ρ
u 1

ρ

0 ρd2 u

 .

Since c > 0, the eigenvalues of matrix A∗ are also distinct and real, eigenvectors

corresponding to distinct eigenvalues are linearly independent which are written as

r(1) =


−ρ
c

1

−ρd2
c

 , r(2)


1

0

−e2

 , r(3) =


ρ
c

1

ρd2

c

 . (2.16)

Therefore the reduced system (2.15) is also strictly hyperbolic.
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2.3 Riemann problem and Riemann invariants

The conservative form of the system (2.15) may be presented as

∂U∗

∂t
+
∂F (U∗)

∂x
= 0, (2.17)

where U∗ = (ρ, ρu, ρ(u2/2 + E) + B2/νρ)tr, F (U∗) = (ρu, p + ρu2 + (B2/2ν), u(p +

ρ(u2/2 + E) +B2/2ν)).

The initial data of the Riemann problem for the system of equations (2.17) is given

by

U∗(x, 0) = U∗0 (x) =


U∗1 , if x < 0

U∗2 , if x > 0

. (2.18)

Here, U∗1 and U∗2 denote the left and right constant state respectively which is sepa-

rated by the jump discontinuity at x = 0. The explicit solution of the Riemann prob-

lem (2.17) and (2.18) contains three waves, which is related with distinct eigenvalues

as shown in Fig. 1. In system (2.15), all the characteristic fields are either genuinely

non-linear or linearly degenerate depending on the quantity ∆λjr
(j), which is non-

zero and zero respectively. Hence, the 1-characteristic field and 3-characteristic field

are genuinely non-linear. In similar manner 2-characteristic field is linearly degener-

ate. Therefore, 1-characteristic field and 3-characteristic field will always be either

shock wave or rarefaction wave and 2-characteristic field will be always contact dis-

continuity.
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Figure 2.1: Solution of the Riemann problem for the one dimensional Euler
equations of gasdynamics in the x-t plane.

We consider the following matrix of order 3× 3 consisting of the the right eigenvec-

tors of matrix A∗


−ρ
c

1
ρ

c

1 0 1

−ρd2

c
−e2 ρd2

c

.

The inverse of the above matrix is written as


1

ψ2
0
−1

d2ψ2

−d(ψ2 − 1)

2ρψ

1

2

−1

2dρψ
d(ψ2 − 1)

2ρψ

1

2

1

2dρψ

,
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where ψ =

(
1 +

e2

d2

)1/2

denotes Alfvén number.

Integration of the above expression yields,

1

ψ2
dρ− 1

d2ψ2
dp,

(
1

ψ
− ψ

)
d

ρ
dρ+du− 1

dρψ
dp,

(
ψ − 1

ψ

)
d

ρ
dρ+du+

1

dρψ
dp. (2.19)

The first term of above expression can be written as,

1

ψ2
dρ− 1

d2ψ2
dp =

(1− bρ)

ψ2
d

(
(ρ/(1− bρ))γ

p

)
,

which represents that the entropy is constant along the particle path through the

smooth solutions. On introducing the entropy condition, the remaining two terms

of Eq. (2.19) give the following relation,

R± = u± 2

(γ − 1)
ψd(1− bρ)1/2. (2.20)

The Riemann invariants (Πj
1 , Π

j
2) with respect to the jth-characteristic field are

written as,

j = 1, Π1
1 = S,Π1

2 = u+
2

(γ − 1)
ψd(1− bρ)1/2, (2.21)

j = 2, Π2
1 = u,Π2

2 = p+
B2

2ν
, (2.22)

j = 3, Π1
1 = S,Π1

2 = u− 2

(γ − 1)
ψd(1− bρ)1/2. (2.23)

2.4 Shock wave

Shock waves are piecewise discontinuous solutions, which satisfy the Lax entropy

condition. Let us assume that shock wave propagates with velocity σ, dependent

on the data existing on the two sides of jump discontinuity. Also the conserved

variables satisfy the R-H relations [109]. For a shock wave two constant states, U∗1
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and U∗2 such that U∗1 represents the left constant state and U∗2 represents the right

constant state separated by either a shock or rarefaction wave or contact disconti-

nuity. Therefore the conserved variables satisfy the following conditions:

1. The R-H jump relation,i.e.

F (U∗2 )− F (U∗1 ) = σ(U∗2 − U∗1 ). (2.24)

Hence, the jump relations for the system (2.17) is given by

σ[ρ] = [ρu], (2.25)

σ[ρu] = [p+ ρu2 + (B2/2ν)], (2.26)

σ[E + (B2/2ν)] = [u(E + p+ (B2/2ν))]. (2.27)

2. The Lax entropy condition [74], which is written as

λ(j−1)(U∗1 ) < σ < λ(j)(U∗1 ), λ(j)(U∗2 ) < λ(j+1)(U∗2 ), j = 1, 3. (2.28)

By introducing new variables v = u − σ, n = ρv and using in the above jump

relation, we obtain

[n] = 0, (2.29)

[p+ nv + (B2/2ν)] = 0, (2.30)

n

[
v2 + e2 +

2

γ(γ − 1)
d2(1− bρ)(γ − bρ)

]
. (2.31)

Using Eq. (2.28) in case of 1- shock wave, we obtain σ < u1− c1 which gives c1 < v1

and u2−c2 < σ < u2 which implies 0 < v2 < c2 < v2+σ. Hence in the case of 1-shock
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wave, we obtain v1 > c1 and 0 < v2 < c2, which implies that u1 > σ and u2 > σ.

Hence the shock velocity is less than the velocity of the gas on both sides of the

shock wave. Therefore, for 1-shock wave the particles move across the shock wave

from left side to right side. In similar manner for 3-shock wave, u1 < σ < u1 +c1 and

u2 + c2 < σ implying that −c1 < v1 < 0 and v2 < −c1 < 0. Hence for 3-shock wave,

we obtain σ > u1 and σ > u2. Thus the velocity of gas on the both sides of the shock

wave is less than the velocity of shock wave. Therefore, the particles move across

a 3-shock wave from right side to left side. It is noticed that for 1-shock wave and

3-shock wave v1 and v2 are non-zero, therefore the quantity n = ρ1v1 = ρ2v2 6= 0.

Thus for 1-shock wave and 3-shock wave we obtain v2
1 > c2

1 and v2
2 < c2

2 respectively.

With the help of Eq. (2.31) we have the following relation,

v2
1 + e2

1 +
2

γ(γ − 1)
d2

1(1− b1)(γ − b1) = v2
2 + e2

2 +
2

γ(γ − 1)
d2

2(1− b2)(γ − b2), (2.32)

where b1 = bρ1 and b2 = bρ2.

Now utilizing the fact v2
1 > c2

1 and v2
2 > c2

2 in the above equation we obtain,

c2
1 + e2

1 +
2

γ(γ − 1)
d2

1(1− b1)(γ − b1) < c2
2 + e2

2 +
2

γ(γ − 1)
d2

2(1− b2)(γ − b2). (2.33)

Putting c =
√
d2 + e2 in Eq. (2.33), we get e2

1 < e2
2 and d2

1 < d2
2 which implies that

c2
1 < c2

2 thus v2
1 > v2

2. This gives c2 > c1 and |v1| > |v2|. Therefore from Eq.(2.29)

we obtain for 1-shock wave ρ1 < ρ2 then p1 < p2 and B1 < B2. In similar manner,

we can verify ρ1 > ρ2, p1 > p2 and B2 < B1 for 3-shock. Hence 1-shock and 3-shock

families are compressive waves.

Now the one parameter family of shock waves are computed explicitly. Hence for

the 1-shock wave, we assume the following constants,

µ =
p2

p1

, ω =
ρ2

ρ1

, α =
γ + 1

γ − 1
. (2.34)
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The above expressions show that µ > 1 and ω > 1.

Using the relation d2 =
γp

ρ(1− bρ)
, we get

[
d2

d1

]2

=
µ

ω

(1− b1)

(1− b2)
. (2.35)

With the help of Eq. (2.29), we obtain

v2

v1

=
ρ1

ρ2

=
1

ω
. (2.36)

By utilizing Eq. (2.34) and Eq. (2.36) in Eq. (2.30) we obtain

(
v1

d1

)2

=
ω

2(1− ω)

[
2(1− µ)(1− b1)

γ
+ (ψ2

1 − 1)− µ(ψ2
2 − 1)(1− b1)

(1− b2)

]
. (2.37)

Here

ψ2
1 = 1 +

e2
1

d2
1

and ψ2
2 = 1 +

e2
2

d2
2

. (2.38)

Also from Eq. (2.31) we have

(
v1

d1

)2

=
ω

(1− ω2)

[
2(1− b1)

γ(γ − 1)
(ω(γ − b1)

]
− ω

(1− ω2)

[
µ(γ − b2))

]
+
ω2(ψ2

1 − 1)

(1− ω2)

− ω

(1− ω2)

[
µ(ψ2

2 − 1)(1− b1)

(1− b2)

]
.

(2.39)

Now equating Eq. (2.37) and Eq. (2.39), we obtain

ω =

Π +

(
1− b1

γ

)(
µα + 1− 2µb2

γ − 1

)
Π +

(
1− b1

γ

)(
µ+ α− 2b1

γ − 1

) , (2.40)

where Π = 1
2
(ψ2

1 − 1) +
µ

2

(
1− b1

)
(1− b2)

(ψ2
2 − 1).

From the above equation, we have ω < α and therefore 1 < ω, hence we obtain the

bounds for ρ2 in terms of ρ1 i.e., ρ1 < ρ2 < αρ1.
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Let ζ =
2b1

(γ − 1)
and δ =

2b2

(γ − 1)
, using in Eq. (2.40) yields the following relation

ω =

Π +

(
1− b1

γ

)
(µ(α− δ) + 1)

Π +

(
1− b1

γ

)
(µ+ α− ζ)

. (2.41)

Now using Eq. (2.41) and the relation v = u− σ in Eq. (2.40), we have

u2 − u1

d1

= ±
(
ω − 1

ω

)√
Dω

(1− ω2)
, (2.42)

where

D =

(
1− b1

γ

)
(δµ− ζω) + (ω − µ)

(
2

(γ − 1)
− ζ
)
−µ(ψ2

2 − 1)(1− b1)

(1− b2)

+ ω(ψ2
1 − 1).

The above equation shows the velocity variation across a shock transition. Here

positive and negative sign denote for 1-shock and 3-shock wave respectively.

Now for more explicit formulation of shock curves, we construct a new parameter ξ

which is determined as (Smoller [21]) where

ξ = − log µ. (2.43)

From the equation Eq. (2.43) it is noticed that e−ξ = µ = p2/p1 > 1, therefore

ξ ≤ 0. By using this parameterization, we have more explicit formulation for shock

curves which is given as

For 1-shock curve:

p2

p1

= e−ξ, (2.44)
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ρ2

ρ1

=
(ψ2

1 − 1)/2 + e−ξ(1− b1)(ψ2
2 − 1)/(2(1− b2)) + (1− b1)(e−ξ(α− δ) + 1)/γ

(ψ2
1 − 1)/2 + e−ξ(1− b1)(ψ2

2 − 1)/(2(1− b2)) + (1− b1)(e−ξ + α− ζ)/γ
,

(2.45)

u2 − u1

d1

=

(
ω∗ − 1

ω∗

)√
D∗ω∗

(1− ω∗2)
, (2.46)

where

ω∗ =

[
(ψ2

1 − 1)/2 + e−ξ(1− b1)(ψ2
2 − 1)/2(1− b2) + (1− b1)(e−ξ(α− δ) + 1)/γ

(ψ2
1 − 1)/2 + e−ξ(1− b1)(ψ2

2 − 1)/2(1− b2) + (1− b1)(e−ξ + α− ζ)/γ

]
,

and

D∗ = [(1− b1)(δe−ξ − ζω∗)/γ + 2(ω∗− e−ξ)/(γ − 1)− ζ(ω∗− e−ξ)− e−ξ(ψ2
2 − 1)(1−

b1)/(1− b2) + ω∗(ψ2
1 − 1)].

Similarly, for 3-shock curve:

p1

p2

= eξ, (2.47)

ρ1

ρ2

=
(ψ2

1 − 1)/2 + eξ(1− b1)(ψ2
2 − 1)/2(1− b2) + (1− b1)(eξ(α− δ) + 1)/γ

(ψ2
1 − 1)/2 + eξ(1− b1)(ψ2

2 − 1)/2(1− b2) + (1− b1)(eξ + α− ζ)/γ
,

(2.48)

u1 − u2

d2

=

(
ω̃ − 1

ω̃

)√
D̃ω̃

(1− ω̃2)
, (2.49)

where

ω̃ =

[
(ψ2

1 − 1)/2 + eξ(1− b1)(ψ2
2 − 1)/2(1− b2) + (1− b1)(eξ(α− δ) + 1)/γ

(ψ2
1 − 1)/2 + eξ(1− b1)(ψ2

2 − 1)/2(1− b2) + (1− b1)(eξ + α− ζ)/γ

]
,

and

D̃ = [(1 − b1)(δeξ − ζω∗)/γ + 2(ω∗ − eξ)/(γ − 1) − ζ(ω∗ − eξ) − eξ(ψ2
2 − 1)(1 −

b1)/(1− b2) + ω∗(ψ2
1 − 1)].
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2.5 Simple wave

In one-dimensional hyperbolic system of partial differential equations a simple wave

is a centered rarefaction wave. In case of simple wave, all the dependent variables

are constant along the characteristics and these characteristics are straight lines. For

rarefaction wave, the constant states U∗1 and U∗2 are joined through a smooth tran-

sition in kth genuinely nonlinear characteristic field and agrees with the conditions

given as:

1. Across the wave, the Riemann invariants are constant [108].

2. The left and right characteristics of wave diverge i.e. λk (U∗1 ) < λk (U∗2 ), k =

1, k = 3.

Now we determine the simple wave curve. Here we determine only 1-simple wave

and for 3-simple wave, the details are similar. Therefore in case of 1-simple wave,

Riemann invariants are constant. Hence we obtain

S2 = S1, (2.50)

and

u2 +
2

(γ − 1)
ψ2d2(1− b2)1/2 = u1 +

2

(γ − 1)
ψ1d2(1− b1)1/2. (2.51)

From Eq. (2.6) we have

p2

p1

=

(
d2(1− b2)

d1(1− b1)

) 2γ

γ − 1
=

(
ρ2(1− b2)

ρ1(1− b1)

)γ
. (2.52)
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Hence from Eq. (2.51), we obtain

u2 − u1

d1

=
2ψ1

(γ − 1)

[
(1− b1)1/2 − ψ2

ψ1

d2

d1

(1− b2)1/2

]
. (2.53)

In case of 1-rarefaction wave, the characteristic speed λ1 = u− c increases therefore

λ
(2)
1 ≥ λ

(1)
1 which yields u2 − u1 ≥ ψ2d2 − ψ1d1.

Hence with the help of Eq. (2.51) we obtain

ψ2d2 − ψ1d1

d1

≤ 2ψ1

(γ − 1)
[(1− b1)1/2 − ψ2

ψ1

d2

d1

(1− b2)1/2].

By utilizing the above expression in Eq.(2.52), we obtain

0 <
p2

p1

≤ 1. (2.54)

Hence from Eq. (2.43), we get

ξ = − log µ. (2.55)

From above equation it is noticed that e−ξ = µ = p2/p1 < 1, therefore ξ ≥ 0. Hence

we can derive more explicit formulation for simple waves. Therefore, Eq. (2.52) and

Eq. (2.53) is rewritten as

For 1-simple wave:

p2

p1

= e−ξ, (2.56)

ρ2

ρ1

=

[
1− b2

1− b1

]
e

−ξ
γ , (2.57)

u2 − u1

d1

=
2ψ1

(γ − 1)
(1− b2)1/2

[
1− ψ2

ψ1

e−ψβ
(1− b1)1/2

(1− b2)1/2

]
. (2.58)

Similarly for 3-simple waves:

p1

p2

= eξ, (2.59)
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ρ1

ρ2

=

[
1− b2

1− b1

]
e
ξ
γ , (2.60)

u1 − u2

d2

=
2ψ1

(γ − 1)
(1− b2)1/2

[
1− ψ2

ψ1

eψβ
(1− b1)1/2

(1− b2)1/2

]
. (2.61)

2.6 Contact discontinuities

Contact discontinuities are the contact surface which move with the gas and divide

two zones of different densities(and temperatures); but the pressure and flow velocity

are the same on both sides. A contact discontinuity may separate not only parts of

the same gas but also two different gases. For contact discontinuities, in the case of

second characteristic field which is linearly degenerate, the constant states U∗1 and

U∗2 are combined through a single jump discontinuity with speed σ2 and satisfying

the following conditions:

1. The R-H jump conditions i.e. F (U∗2 )− F (U∗1 ) = σ2(U∗2 − U∗1 ).

2. The parallel characteristic conditions λ2(U∗2 ) = λ2(U∗1 ) = σ2.

Therefore, in the case of 1-parameter family of contact discontinuities, we have the

following formulation

p2

p1

= 1, (2.62)

ρ2

ρ1

= eξ,−∞ < ξ <∞, (2.63)

u2 − u1 = 0. (2.64)
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Figure 2.2: Density profiles for compressive waves: 1-shock.
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Figure 2.3: Density profiles for compressive waves: 3-shock.
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Figure 2.4: Velocity profiles for compressive waves: 1-shock.

2.7 Result and discussion

The analytical solution of the Riemann problem for non-ideal polytropic gas with

added effect of transverse magnetic field is obtained here. The case when b1 = 0 ,

b2 = 0 corresponds to ideal polytropic gas with magnetic field and results are in close
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Figure 2.5: Velocity profiles for compressive waves: 3-shock.
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Figure 2.6: Velocity profiles for rarefaction waves: 1-shock.
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Figure 2.7: Velocity profiles for rarefaction waves: 3-shock.

agreement with Singh et al. [100]. Further, the case ψ1 = 1.0, ψ2 = 1.0, b1 = 0 ,

b2 = 0 corresponds to ideal gas dynamics case and the results are in close agreement

as reported in Smoller [21]. Computed values are presented in Fig.[2-7] for different

values of parameter of non-idealness and magnetic field strength. MATHEMATICA

11.1 is used for all computations in the chapter. Here the effect of magnetic field
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strength enters into the solution through the parameters ψ1 and ψ2. The solution

curves 1 and 5 in all figures correspond to the ideal gas flow and magnetogasdynamic

flow respectively. The density versus position(ξ) profiles for 1-shock and 3-shock for

compressive wave is presented in Fig.2.2 and Fig.2.3. It is important to note that the

density profile for 1-shock of compressive wave is concave downward and for 3-shock

of compressive wave is concave upward respectively. From Fig.2.2, we infer that the

effect of increasing values of magnetic field strength is to decrease the density. Also

the effect of increasing value of non-ideal gas parameter in the presence of magnetic

field strength, both ψ1 and ψ2, is to further decrease the density for 1-shock wave.

From Fig.2.3, we find that the solution curves have opposite trend in comparison to

the results obtained in Fig.2.2. The velocity versus position(ξ) profile for 1-shock

and 3-shock for compressive waves is shown in Fig.2.4 and Fig.2.5 respectively. It

is noted here that the velocity profile for 1-shock and 3-shock for compressive wave

is concave upward. From Fig.2.4, It is observed that the effect of an increase in

the magnetic field strength parameters ψ1 and ψ2 have reverse effect on the velocity

profiles for 1-shock wave. Also the effect of non-ideal gas parameter is to further

enhance the effect of magnetic field strength on the velocity profiles. Also from

Fig.2.5, we observe that all the results have opposite trend as compared to the

results obtained in Fig.2.4. The velocity versus position(ξ) profiles for 1-shock and

3-shock for rarefaction wave is presented by Fig.2.6 and Fig.2.7 respectively. Here,

we note that the velocity profile for both 1-shock and 3-shock of rarefaction wave is

concave downward. From Fig.2.6 and Fig.2.7, we infer that the effect of magnetic

field strength parameters ψ1 and ψ2 on the velocity profile have reverse effect. Also

the effect of non-ideal gas parameter is to further enhance the effect of magnetic

field strength.
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2.8 Conclusion

In the present chapter, the analytical solution of the Riemann problem for non-ideal

polytropic gas with an added effect of transverse magnetic field is presented. The

density and velocity profiles for compressive waves, 1-shock and 3-shock and velocity

profiles for rarefaction waves, 1-shock and 3-shock is presented. It is observed that

the effect of magnetic field strength is to decrease the density for 1-shock and have

increasing effect for 3-shock . Also the effect of magnetic field strength parameters,

ψ1 and ψ2 have opposite effect on the velocity profiles for both compressive wave and

rarefaction waves, 1-shock and 3-shock, which is in agreement with the earlier results

reported by [100]. Also the effect of presence of the parameters of non-idealness is

to further enhance the effect of magnetic field strength.

***********


