
Chapter 1

Introduction

“Mathematicians stand on each

other’s shoulders”.

-Carl Friedrich Gauss

1.1 Background

Any mathematical model of continuum is given by a system of partial differential

equations (PDEs). In continuum mechanics, the conservation laws of mass, momen-

tum and energy form a common starting point, and each medium is then charac-

terized by its constitutive laws. The conservation laws and constitutive equations

for the field variables, under quite natural assumptions, reduce to field equations,

i.e., partial differential equations, which, in general, are nonlinear and nonhomoge-

neous. For nonlinear problems, neither the methods of their solutions nor the main

characteristics of the motion are as well understood as in the linear theory.
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1.1.1 Nonlinear Waves and Hyperbolic Equations

A wave is any recognizable signal that is transferred from one part of the medium to

another with a recognizable velocity of propagation. Waves occur in most scientific

and engineering disciplines, for example: fluid mechanics, optics, electromagnetism,

solid mechanics, structural mechanics, quantum mechanics, etc. The waves for all

these applications are described by solutions to PDEs.

The most important classification criterion is to distinguish PDEs as linear or non-

linear. Roughly, a homogeneous PDE is linear if the superposition principle for the

solutions of PDEs holds, otherwise it is nonlinear. The division of PDEs into these

two categories is significant. The mathematical methods devised to deal with these

two classes of equations are often entirely different, and the qualitative behavior of

solutions differ substantially.

One underlying cause is the fact that the solution space to a linear, homogeneous

PDE is a vector space, and the linear structure of that space can be used with

advantage in constructing solutions with desired properties that can meet diverse

boundary and initial conditions. Such is not the case for nonlinear equations. It is

easy to find examples where nonlinear PDEs exhibit behavior with no linear coun-

terpart.

One is the breakdown of solutions and the formation of singularities; such as shock

waves. A shock wave is a surface of discontinuity propagating in a gas at which

density and velocity experience abrupt change. One can imagine two types of shock

waves: (positive) compression shocks which propagate into the direction where the

density of the gas is minimum, and (negative) rarefaction waves which propagate

into the direction of maximum density.

A second is the existence of solitions, which are solutions to nonlinear dispersion

equations. These solitary wave solutions maintain their shapes through collisions,
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in much the same was as linear equations do, even though the interactions are not

linear.

In hyperbolic systems, the nonlinearity brings about progressively more and more

deformation in the wave profile. As a result the profile breaks down after a finite

span of time, and the smooth solution ceases to be valid beyond this point due to

the blow up of its derivatives. Further, the solution, admissible for all times, belongs

to a class of discontinuous functions, which brings the notion of weak solutions, but

with a difficulty that the uniqueness of the solution is lost. It is then required to

select a unique and physically meaningful solution by using some admissibility cri-

terion.

Most of the physical problems, arising in gasdynamics, lead to the formulation of a

quasilinear system of first order partial differential equations. These equations are

linear in the first derivative of dependent variables, but the coeffcients may be func-

tions of dependent variables. Let us consider first order partial differential equation

of the form

∂ui
∂t

+
m∑
j=1

aij(x, t, u1, u2, ..., um)
∂uj
∂x

+ bi(x, t, u1, u2, ..., um) = 0 (1.1)

for i = 1, ...,m. This is a system of m equations in m unknowns ui that depend

on space x and a time–like variable t. Here ui are the dependent variables and x,

t are the independent variables. We also make use of subscripts to denote partial

derivatives. System (1.1) can also be written in matrix form as

Ut + AUx +B = 0, (1.2)
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U =



u1

u2

.

.

um


, B =



b1

b2

.

.

bm


, A =



a11 . . a1m

a21 . . a2m

. . . .

. . . .

am1 . . amm


. (1.3)

If the entries aij of the matrix A are all constant and the components bi of the

vector B are also constant then system (1.2) is linear with constant coefficients.

If aij = aij(x, t) and bi = bi(x, t), the system is linear with variable coefficients.

The system is still linear if B depends linearly on U and is called quasi-linear if

the coefficient matrix A is a function of the vector U , that is A=A(U). Note that

quasi-linear systems are in general system of non-linear equations. System (1.2) is

called homogeneous if B = 0. A system (1.2) is said to be hyperbolic at a point

(x, t) if A has m real eigenvalues λ1,λ2,.....,λm and a corresponding set of m linearly

independent eigenvectors K1,K2,.....,Km. The system is said to be strictly hyperbolic

if the eigenvalues λi are all distinct [1].

1.1.2 Ideal and Non-Ideal Gas

An ideal gas is a theoretical gas composed of many randomly moving point particles

that are not subject to interparticle interactions. Under various conditions of tem-

perature and pressure, many real gases behave qualitatively like an ideal gas where

the gas molecules (or atoms for monatomic gas) play the role of the ideal particles.

The ideal gas model tends to fail at lower temperatures or higher pressures, when

intermolecular forces and molecular size becomes important. It also fails for most

heavy gases, such as many refrigerants and for gases with strong intermolecular

forces, notably water vapour. At high pressures, the volume of a real gas is often
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considerably larger than that of an ideal gas. At low temperatures, the pressure

of a real gas is often considerably less than that of an ideal gas. At some point

of low temperature and high pressure, real gases undergo a phase transition, such

as to a liquid or a solid. The model of an ideal gas, however, does not describe

or allow phase transitions. These must be modeled by more complex equations of

state. However, if the temperature of the gas is very high and density is too low

then the hypothesis that the gas is ideal is no longer valid. Then there is no choice

but to relax the assumptions of ideal gas.

The equation of state of an ideal gas is written as:

PV = nRT ,

where n is the number of molecules of the gas, R is the gas constant, T is the abso-

lute temperature, P is the pressure and V is the volume of the gas.

The approximation to the properties of real matter is represented by an equation

given by Dutch Physicist van der Waals. In spite of its simplicity, it comprehends

both the gaseous and the liquid state and brings out, in a most remarkable way, all

the phenomena pertaining to the continuity of these two states.

This equation has the form

P =
RT

V − b
− a

V 2
,

where a and b are two numerically small constants and V is the molal volume. If

we consider a gas with molecules of finite size, mutually exclusive as to their exten-

sion but not interacting in any other way, the difference is that the centers of the

molecules cannot spread out in the whole volume of the gas but only in that part of

it which is not occupied by other molecules and not immediately adjacent to them.

In the first approximation, for the molal volume V there must be substituted the

covolume, V − b, where the constant b is proportional to the sum of the volumes of

all molecules in one mol of the gas.

Therefore, the equation of state becomes,
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P =
RT

V − b
,

i.e. covolume equation of state. However, if the molecules of the gas do interact at a

distance, say, attract one another, then the internal pressure due to this attraction

must be taken into account. This means that, when the density of the gas in a given

vessel is changed by adding more gas or subtracting it, all the internal forces change

in the ratio
1

V 2
. Since the pressure is defined as the force per unit area, this applies

also to the internal pressure and we obtain for it the expression
a

V 2
which is added

to P in Van der Waals’ equation.

Roberts and Wu [2] obtained the similarity solutions and determined the stability

conditions of a spherical shock wave for both ideal and Van der Waals gases. Roberts

and Somogyi [3] analyzed the stability of an imploding spherical shock wave in Van

der Waals gas. Sharma and Pandey [4] studied the evolutionary behaviour of an un-

steady three-dimensional motion of a shock wave of arbitrary strength propagating

through a non-ideal gas.

1.1.3 Dusty Gas

The study of a two-phase flow of gas and dust particles has been of great interest

because of many applications to different engineering problems. Gas flows, which

carry an appreciable amount of solid particles, may exhibit significant relaxation

effects as a result of particles being unable to follow rapid changes of the velocity and

temperature of the gas. When the mass concentration of the particles is comparable

with that of the gas, the flow properties become significantly different from that of

a pure gas. Here, we consider a mixture of a perfect gas and a large number of small

dust particles of uniform spherical shape.

Dusty gas is considered to be mixture of gas and small solid dust particles where

these dust particles attain less than five percent of total volume [5]. At very high
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speed of fluid, these small solid particles behave as a pseudo fluid [6]. We consider

the mixture as the mixture of two fluids: one is gas and the other is the pseudo fluid

of solid particles. The solid particles are spheres of identical mass msp, radius rsp

and specific heat csp. We consider an element of mixture of gas and solid particles

(dusty gas) with total mass M = Mg + Msp and with total volume V = Vg + Vsp,

where subscript g refers to the value for the gas and subscript sp refers to that of

the solid particles. The volume of solid particles in mixture is obtained as:

Vsp = nsp.V.τsp,

where τsp and nsp is the volume of a solid particle and the number of solid dust

particles per unit volume of dusty gas respectively.

The mass of solid particles in the volume V of the mixture is written as:

Msp = nsp.V.msp.

The species density of the solid particles is defined as:

ρsp =
Msp

Vsp
=
msp

τsp
.

Also, The partial density of the pseudo-fluid of solid particles is defined as:

ρsp =
Msp

Vsp
= nsp.msp = Zρsp = nsp.ρsp.τsp,

where Z represents the volume fraction of solid particles in the mixture. Further,

volume fraction of solid particles is given as:

Z =
Vsp
V

= nsp.τsp.

The species density of the gas is defined as:

ρg =
Mg

Vg
.

Similarly, the partial density of a gas is defined as:

ρg =
Mg

V
= (1− Z)ρg.

Let us consider the thermodynamic equilibrium condition such as:

Tsp = Tg = T .

The density of the mixture is obtained as

ρ = Zρsp + (1− Z)ρg = ρsp + ρg.



Chapter 1. Introduction 8

The mass concentration of the pseudo fluid of the solid particles is obtained as:

kp =
ρsp
ρ

=
Zρsp
ρ

.

The pressure of the mixture is written as:

p = psp + pg.

The total pressure of the mixture is p which is obtained from the perfect gas law as:

p = RρgTg.

With the help of above analysis, the pressure of the mixture as a whole is obtained

as:

pm = p = RρgTg = R

(
ρm − Zρsp

1− Z

)
Tg = Rρm

(
1− ksp
1− Z

)
T .

Therefore,

pm =
ρmRmT

1− Z
,

where Rm = (1 − kp)R. Here, R may be considered as an effective gas constant of

the mixture and subscript m refers to the value of the gas constant in the mixture

as a whole.

1.1.4 Radiating Gas

In the present space age, there are many technological developments of interest, for

example hypersonic flight, gas-cooled nuclear reactors, power plants for space ex-

ploration needs, fission and fusion reactions in which the temperature is very high

and the density is rather low. As a result, thermal radiation becomes an important

mode of heat transfer. A complete analysis of such a high-temperature flow field

should be based upon a study of the gasdynamic field and the thermal radiation field

simultaneously. We use the term “Radiative gasdynamics” for such a new branch of

fluid dynamics.

In radiative gasdynamics, the basic equations governing the flow form a system of

coupled integro-differential equations of considerable complexity. The consequence
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of these complexities has been to stimulate a search for approximate formulation

of the equation of radiative transfer which leads merely to a system of nonlinear

differential equations. In radiative gasdynamics, the basic equations governing the

flow form a system of coupled integro-differential equations of considerable com-

plexity. The consequence of these complexities has been to stimulate a search for

approximate formulation of the equation of radiative transfer which leads merely to

a system of nonlinear differential equations.

Thermal radiation may be considered as either a stream of photons or as electromag-

netic waves Pai [7]. Here we shall consider the thermal radiation as electromagnetic

waves.

The heat rays may be specified by a specific intensity Iν which is defined as follows:

Iν = lim
dσ0,dω,dt,dν→0

(
dEν

dσ0 cosθ dω dt dν

)
, (1.4)

where Iν is a function of time t, spatial coordinates, direction θ the angle between

the direction of heat rays and the normal of area dσ0, and the frequency of wave ν.

The amount of radiative energy flowing through the area dσ0, in the frequency range

ν and ν+dν in the direction of heat ray L, which makes an angle θ with the normal

of dσ0 within a solid angle dω in the time interval dt is dEν . One can calculate the

effects of thermal radiation on the flow field, which are specified as follows:

1. The flux qiR of heat energy by thermal radiation defined as

qiR =

∫
4π

∫ ∞
0

Iνn
i dν dω, (1.5)

where ni is the directional cosine of the radiation ray with respect to the i− th

axis. One should add the divergence of this radiation heat flux in the energy
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equation of gasdynamics, i.e.

QR =
qiR
xi
, (1.6)

where the summation convention is used. In general, QR is a differential-

integral expression and the energy equation in radiation gasdynamics is an

integro-differential equation.

2. The radiation energy density ER: The radiation energy density within the

frequency range ν to ν + dν is

Uν =
1

c

∫
4π

Iν dω, (1.7)

where c is the velocity of light. The radiation energy density for the whole

spectrum is then

ER =

∫ ∞
0

Uν dν =
1

c

∫
4π

∫ ∞
0

Iν dν dω. (1.8)

This radiation energy should be added to the total energy of a gas.

3. Radiation stress tensor τ ijR : The ij -th component of the radiation stress tensor

is

τ ijR =
−1

c

∫
4π

∫ ∞
0

Iνn
inj dν dω. (1.9)

The radiation pressure pR may be defined as

pR =(−1/3)(τ 11
R + τ 22

R + τ 33
R )

= (1/3c)

∫
4π

∫ ∞
0

Iν dν dω = (1/3)ER.
(1.10)

It may be noted here that the radiation pressure pR and the radiation energy density

ER are of the same order of magnitude.
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The equation of radiative transfer can be written as [7]:

1

c

∂Iν
∂t

+ ni
∂Iν
∂x1

= ρkν(Jν − Iν), (1.11)

where kν is the absorption coefficient of radiation, and

Jν =
jν
kν
, (1.12)

is the source function of radiation with jν as the emission coefficient of radiation.

When the gas is in local thermodynamic equilibrium, i.e., the emission determined

by the local temperature; equation (1.11) becomes

1

c

∂Iν
∂t

+
∂Iν
∂s

= αν(Bν − Iν), (1.13)

where αν = ρk′ν is the volumetric absorption coefficient with

k′ν = kν [1− exp(−hν/kT )]. (1.14)

Here h and k are respectively the Plank constant and Boltzmann constant, Bν is

the Plank radiation function defined as

Bν = (2hν3/c2)[exp(hν/kT )− 1], (1.15)

and s is the distance along a radiation ray which has the direction ni with respect

to i-th axes.

As the velocity of light c is a very large quantity, the unsteady term
1

c

∂Iν
∂t

in equation

(1.13) is very small and may be neglected. Then the radiation term QR appearing
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in energy equation given by equation (1.6) may be written as

qR =
∂qiR
∂xi

=

∫ ∞
0

∫ 4π

0

ni
∂Iν
∂xi

dΩ dν

=

∫ ∞
0

∫ 4π

0

∂Iν
∂xi

dΩ dν.

(1.16)

In view of the radiative transfer equation, this can be written as

∂qiR
∂xi

= −
∫ ∞

0

αν

∫ 4π

0

(IνdΩ− 4πBν) dν. (1.17)

The two terms on the right hand side of equation (1.17) account for the energy

addition to the gas.

Now, the following important approximation are considered which occur in most of

the physical problems:

1. When the mean free path of radiation is large: In this case the gas radiation

interaction is described as being emission dominated and the inequality Iν �

Bν holds.

This corresponds to an optically thin gas. In this approximation equation

(1.17) reduces to [7, 8]:

∂qiR
∂xi

= 4αPσT
4, (1.18)

where σ is the Stefan-Boltzmann constant, and

αP =
π

σT 4

∫ ∞
0

ανBν dν, (1.19)

is the mean absorption coefficient.

2. When mean free path of radiation is small: In this case Iν differs by only a

small amount from Bν . For this approximation gas is said to be optically thick,
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and the radiation flux vector qiR may be written as

qiR = −(16σT 3/3αR)

(
∂T

∂xi

)
, (1.20)

where αR is the Rosseland mean absorption coefficient defined as

1

αR
=

π

4σT 3

∫ ∞
0

1

αν

dBν

dt
dν. (1.21)

The above approximation is valid only when (i) ER = 3pR = σT 4, (ii) all the shearing

stresses of radiation vanish , and (iii) radiation heat flux is given by equation (1.20)

[9]. The investigation of high-temperature flow fields, such as those in gas-cooled

nuclear reactors, hypersonic flights, fission and fusion reactions, and power plants

for space researches, will be based on the analysis of radiation and gas-dynamical

fields simultaneously.

1.1.5 Magnetogasdynamics

Magnetogasdynamics is also an important example of the hyperbolic system’s theory.

The governing system of magnetogasdynamics is highly non-linear and complicated,

it is necessary to study various simplified models, in which the magnetic field and

velocity field are orthogonal everywhere. Magnetic fields permeating the universe

plays a crucial role in a number of astrophysical situations and probably affect all

astrophysical plasmas. Many interesting astrophysical and aerodynamical problems

involve magnetic fields, and shock waves in those fields have various industrial appli-

cations. Cylindrical shock waves could be originated in the processes where a large

amount of energy is liberated instantly.

Magnetic fields play an important role in energy and momentum transport and can
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rapidly release energy in flares. Many interesting problems involve magnetic fields.

The shock waves in the presence of a magnetic field in conducting perfect gas can be

important for description of shocks in supernova explosion and explosion in the iono-

sphere. Complex filamentary structures in molecular clouds, shapes and the shaping

of planetary nebulae, synchrotron radiation from supernova remnants, magnetized

stellar winds, galactic winds, gamma-ray bursts, dynamo effects in stars, galax-

ies, and galaxy clusters as well as other interesting problems all involve magnetic

fields. The industrial applications are drag reduction in duct flows, design of efficient

coolant blankets in tokamak fusion reactors, control of turbulence of immersed jets

in the steel casting process and advanced propulsion and flow control schemes for

hypersonic vehicles, involving applied external magnetic fields (see Hartmann [10],

Balick and Frank [11]).

The equations governing the motion of unsteady flow of perfectly conducting fluid

in the absence of thermal conduction and viscosity may be written as [12],

∂ρ

∂t
+ div(ρv) = 0, (1.22)

∂u

∂t
+ (v.5)v =

−1

ρ
5 p+ (5×H)×B, (1.23)

∂p

∂t
+ v.5 p+ ρC2.5 v = 0, (1.24)

∂B

∂t
= curl(v ×B), (1.25)

div(B) = 0, (1.26)

where ρ is the fluid density, p the pressure, c the speed of sound, u = (u1, u2, u3) the

velocity vector and B the magnetic induction satisfying the relation B = µH with

µ being the magnetic permeability, assumed to be constant, and H = (H1, H2, H3)

being the magnetic field vector. For a perfect fluid, c =

√
γp

ρ
with a constant ratio
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of the specific heat capacities γ = cp/cv.

Here, we consider the one-dimensional motion with plane waves, which is encoun-

tered very frequently in problems of magnetohydrodynamics. In a planar flow, the

trajectories of the particles form a family of straight lines perpendicular to some

fixed plane. If we choose the x-axis perpendicular to the plane, then the veloc-

ity vector will have only one non-zero component, that is, u = (u(x, t), 0, 0), while

p = p(x, t) and ρ = ρ(x, t). We now envisage a one-dimensional planar motion of

plasma, which is assumed to be an ideal gas with infinite electrical conductivity and

to be permeated by a magnetic field H = (0, H(x, t), 0) orthogonal to the trajecto-

ries of the gas particles.

It is noticed here that Equation (1.25) is identical to the equation for vortex veloc-

ity in the hydrodynamics of a non-viscous fluid that implies that the magnetic field

varies as if the magnetic force lines were rigidly coupled with the matter; on using

Equations (1.22) and (1.26), Equation (1.25) can be written as

d

dt

(
B

ρ

)
=

(
B

ρ
.5
)
u, (1.27)

where the total derivative signifies the rate of change in a given fluid particle as it

moves about. If δL is an element of a ‘fluid line’ which moves with the fluid, then

during a time interval dt, the rate of change of δL and (B/ρ) is given by identical

formulae. Hence, it follows that for a planar flow with a transverse magnetic field,

(B/ρ) is a constant that can be determined from the initial conditions; in other

words, every line of force moves with the fluid particles which lie on it.
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1.1.6 Riemann Problem

The Riemann problem consists of an initial value problem composed of the Euler

equations together with piecewise constant initial data having single contact discon-

tinuity. In the solution of the Riemann problem, all the features such as rarefractions

waves, shock waves occur in the form of characteristics hence it is very convenient

for the readers to understand the Euler equations in the form of conservation laws.

The solution of the Riemann problem consists of three waves with middle one is al-

ways contact discontinuity and other remaining waves are either rarefraction waves

or shock waves.

The Riemann problem for the one-dimensional time-dependent Euler equations is

the Initial Value Problem for the conservation laws

∂V

∂t
+
∂F (V )

∂x
= 0, (1.28)

where, V =


ρ

ρv

E

 , F =


ρv

ρv2 + p

v(E + p)

 .
The initial conditions of the Riemann problem for the system of equations (1.28) is

given by

V (x, 0) = V0(x) =


Vl = (ρl, vl, pl), if x < 0

Vr = (ρr, vr, pr), if x > 0

. (1.29)

Here, Vl and Vr denote the left and right constant state respectively which is sepa-

rated by the jump discontinuity at x = 0.
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1.1.7 Shock wave and Rankine-Hugoniot condition

Gasdynamic shocks form each time a high velocity supersonic flow is stopped by an

obstacle. One of the most important distinction between space shocks and ordinary

shocks in gases is that the medium space shocks form in is a plasma ionized gas.

Another very significant property of these shocks is that the plasma almost always is

embedded in an ambient magnetic field, which is compressed by the shock. There-

fore, these shocks form whenever the plasma flow velocity exceeds the corresponding

signal velocity in the magnetized plasma.

Shocks are ubiquitous phenomena in space. Many different kinds of shocks have been

observed in the solar system. Planetary bow shocks are formed when the solar wind

encounters a planetary magnetosphere, whether natural (as on Earth, Jupiter, and

Saturn, which have their own magnetic field) or induced (as on Mars and Venus).

Cometary shocks are produced by the interaction of the solar wind with charged

particles of cometary origin. Interplanetary shocks appear whenever fast solar wind

overtakes slow wind. Another feature of these shocks that distinguishes them from

gasdynamic shocks is that the mean free path for Coulomb collisions in the system

is much larger than the system size itself.

We consider the integral conservation law

d

dt

∫ b

a

u(x, t)dx = φ(a, t)− φ(b, t), (1.30)

where u is the density and φ is the flux. Equation (1.30) states that the time rate of

change of the total amount of u inside the interval [a b] must equal the rate that u

flows into [a b] minus the rate that u flows out of [a b]. Under suitable smoothness

assumptions (e.g., both u and φ continuously differentiable).

Equation (1.30) implies

ut + φx = 0, (1.31)
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which is the differential form of the conservation law. Recall that φ may depend

on x and t through dependence on u (i.e. φ = φ(u) ), and Equation (1.31) can be

written as

ut + c(u)ux = 0, c(u) = φ′(u). (1.32)

But if u and φ have simple jump discontinuities, we still insist on the validity of the

integral form Equation (1.30).

Now assume that x = s(t) is a smooth curve in space time along which u suffers a

simple discontinuity ; i.e., assume that u is continuously differentiable for x > s(t)

and x < s(t), and that u and its derivatives have finite one-sided limits as x→ s(t)−

and x → s(t)+. Then choosing a < s(t) and b > s(t), Equation (1.30) may be

written as

d

dt

∫ s(t)

a

u(x, t)dx+
d

dt

∫ b

s(t)

u(x, t)dx = φ(a, t)− φ(b, t), (1.33)

Leibniz’ rule for differentiating an integral whose integrand and limits depend on a

parameter (here the parameter is time t) can be applied on the left side of Equation

(1.32), because the integrands are smooth. We therefore obtain

∫ s(t)

a

ut(x, t)dx+

∫ b

s(t)

ut(x, t)dx+ u(s−, t)s′ − u(s+, t)s′ = φ(a, t)− φ(b, t), (1.34)

where u(s−, t) and u(s+, t) are the limits of u(x, t) as x → s(t)− and x → s(t)+

respectively and s′ = ds/dt is the speed of discontinuity x = s(t). In Equation

(1.34) we now take the limit as a → s(t)− and b → s(t)+. The first two terms to

go zero because the integrand is bounded and the interval of integration shrinks to

zero. Therefore, we obtain

− s′[u] + [φ(u)] = 0, (1.35)
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where the brackets [ ] denote the jump of the quantity inside across the discontinuity

(the value on the left minus the value on the right). Equation (1.35) is called the

jump condition. In fluid mechanical problems, conditions across a discontinuity are

known as Rankine-Hugoniot conditions. It relates conditions both ahead of and

behind the discontinuity to the speed of the discontinuity itself. In this context, the

discontinuity in u that propagates along the curve x = s(t) is called a shock wave,

and the curve x = s(t) is called the shock path,or just the shock: s′ is called the

shock speed, and the magnitude of the jump in u is called the shock strength. In the

case of gasdynamics, a discontinuous solution for a system of equations written in

conservation form satisfying the generalized Rankine-Hugoniot conditions is called

a shock [13, 14].

1.2 Motivation

The study of waves can be traced back to antiquity where philosophers, such as

Pythagoras, studied the relation of pitch and length of string in musical instru-

ments. The first analytical solution for a vibrating string was given by Brook Taylor

(1685-1731). After this, advances were made by Daniel Bernoulli (1700-82), Leonard

Euler (1707-83) and Jean d’Alembert (1717-83) who found the first solution to the

linear wave equation. The superposition of solution, reflection and refraction are very

common phenomena for a linear wave. If the governing partial differential equations

are non-linear, the familiar laws of superposition, reflection, refraction and trans-

mission of signals etc. ceases to be valid, but more interesting flow features appear

such as shock wave. The knowledge of nonlinear waves is vital in aerodynamics

for spacecraft propulsion, in medical sciences to disintegrate Kidney stone, in black

hole theory etcetera. Over a hundred years ago, the study of nonlinear waves got
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attention with the pioneering work of Stokes [15], Earnshaw [16], Riemann [17] and

Hadamard [18].

The system of non-linear PDEs is classified into elliptic, parabolic and hyperbolic.

Out of these, the hyperbolic systems of conservation laws are one of the most impor-

tant classes of non-linear PDEs. Euler’s equations are the most common examples

of hyperbolic PDEs. The Euler equations arise from the compressible Navier-Stokes

equations by neglecting the viscosity and heat conduction. The theoretical founda-

tion of gasdynamics is formed by the application of the basic conservation laws of

mechanics and the second law of thermodynamics to a moving volume of a com-

pressible gas.

The most outstanding new phenomenon of the nonlinear theory is the appearance

of shock waves, which are abrupt jumps in pressure, density, and velocity: the blast

waves of explosions and the sonic booms of high speed aircraft. But the whole in-

tricate machinery of nonlinear hyperbolic equations had to be developed for their

prediction, and a full understanding required analysis of the viscous effects and some

aspects of kinetic theory. Whitham [19] brought up two main class of waves; one is

nonlinear waves, such waves can be obtained from the quasilinear hyperbolic par-

tial differential equations (PDE’s), and secondly dispersive waves, these waves can

be described by dispersive relation connecting the frequency and the wave number.

The solution of such PDEs breaks down in a finite length of time which shows the

appearance of discontinuity and smooth solution does not valid beyond this point

due to the blow up of its derivatives. The occurrence of shock generally ceases the

existence and uniqueness of admissible classical solutions for all the time, which

leads the idea of weak solutions.

The analytical study of non-linear hyperbolic conservation law is interesting but

leads to cumbersome task in Mathematics. In various areas of natural science and
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physical science, the analytical solution of the quasilinear hyperbolic system of par-

tial differential equations plays a prominent role for the qualitative characterization

of many physical processes and phenomena. The comprehension of the nonlinearity

is very essential to understand our surroundings. Non-linear models arising in the

real world often face serious mathematical difficulties related to the occurrence of

discontinuities, singularities, the resonance between wave speeds, etc. Since the Law

of Superposition does not hold for the non-linear PDEs, and this may probably be

the reason that even today we do not have a single methodology that can solve

all kinds of non-linear PDEs or the systems of PDEs. Thus, to find an analytical

solution to these non-linear PDEs, we require special techniques.

Fluid/Gas dynamics has been the topic of great interest for the researchers in view

of the systems of hyperbolic conservation laws since the pioneering work of Riemann

(1860). It provides the motivation for many of the basic ideas in the analysis of the

quasi-linear hyperbolic systems of PDEs. The Riemann problem models the one-

dimensional interaction between a pair of uniform states of compressible fluids that

are initially separated by a plane of discontinuity and plays a key role to understand

the phenomena of wave structure for the hyperbolic systems of conservation laws.

More generally, for a system of conservation laws, a Riemann problem is an initial

value problem such that the initial data are scale-invariant (i.e., constant on rays).

The Riemann problem is of great significance as its solution constitutes the basic

building blocks for the construction of a solution to the general initial value prob-

lems. In the solution of the Riemann problem, all the features such as rarefractions

waves, shock waves occur in the form of characteristics hence it is very convenient

for the readers to understand the Euler equations in the form of conservation laws.

The explicit solution to the Riemann problem is of great significance in relativistic

gasdynamics and magnetogasdynamics Godunov [20], Smoller [21] and Chorin [22].

In the consideration of Euler equations, the Riemann problem consists of the shock
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tube problem and for detailed discussion of shock tube problem and other physical

problems in form of conservation laws of gasdynamics, the readers are recommended

to study the book by Courant and Friedrichs [23].

Continuum physics is rich source of hyperbolic problems and can be obtained from

the conservation laws of mass, momentum and energy. Each medium is then char-

acterized by its constitutive laws such as the shallow water equations, Euler’s equa-

tions of gasdynamics, chaplygin gas and nonideal radiating gas, which in general,

are nonlinear. The evolutionary behavior of nonlinear waves, such as shock waves

and acceleration waves, in diverse branches of continuum mechanics has long been

a subject of great interest from both the physical and mathematical points of view

[19, 13, 24]. The practical importance of these waves has increased in last decades

due to their particular applications in blast wave phenomena, supersonic flows, sonic

booms and more recently their application to the motion of satellites and other bod-

ies moving through the interplanetary and interstellar media.

1.3 Review

In this section, the literature review is divided into two parts. The review of litera-

ture on the shock waves in gasdynamics and Riemann problem is given in subsections

(1.3.1) and (1.3.2) respectively.

1.3.1 Literature Review of shock waves in Gasdynamics

Shock waves are mechanical waves of finite amplitudes and arise when matter is

subjected to a rapid compression. Compared to acoustic waves, which are waves
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of very small, almost infinitesimal amplitudes, shock waves can be characterized by

four unusual properties:

• a pressure-dependent, supersonic velocity of propagation;

• the formation of a steep wave front with abrupt change of all thermodynamic

quantities;

• for nonplanar shock waves, a strong decrease of the propagation velocity with

increasing distance from the center of origin;

• nonlinear superposition (reflection and interaction) properties.

The phenomenon of shock waves is mainly associated with aerospace engineering and

in particular with the supersonic flight. The development of this particular branch

of physics began, in 1746 when a mathematician Robins determined velocity of the

bullet by ballistic pendulum and noticed a growth in aerodynamic drag as velocity

tends to the sound speed. However, in the 19th century, the phenomenon of the

shock wave was still a mystery to many researchers. In 1759, without mentioning

the word shock waves, Euler talked about the “size of disturbance” of a sound wave

meaning its amplitude. Nevertheless, his assumption that velocity would diminish

with increasing amplitude was incorrect. In 1808, Poisson was the first researcher

to solve the Euler equation for the one-dimensional unsteady fluid-flow and got the

exact solutions . In 1823, Poisson [25] created a milestone in non-linear wave theory

by constructing isentropic gas law for the sound wave with infinitesimal amplitude.

In 1848, Stokes[15] used the term “surface of discontinuity”. He further extended

the theory of acoustic wave, having a finite amplitude, by considering the problem of

wave steepening. Stokes was not sure about the possibility of discontinuous motion,

in this confusion he used isentropic relation which decides the role of dissipation
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and energy conservation in shock formation, instead of the correct energy equation.

He derived the conservation laws for mass and momentum which are used very fre-

quently in modern days. In 1889, Hugoniot [26] independently derived the correct

jump conditions for the shock waves. The formulated theory of Rankine and Hugo-

niot is, even at present also, the basic model for the propagation of shock waves.

The modern concise definition of the shock wave was first given by a young Hungar-

ian physicist Zempln from the University of Budapest in the year 1905. He proved

that only a compression wave can be a shock wave, and rarefaction waves, i.e., neg-

ative shock waves do not exist, this is the so-called “Zempln’s theory.” He reported

his results in Gttingen at a Felix Klein’s seminar and in France in friendly conversa-

tions with Pierre Duhem and Jacques Hadamard, two experts in the field of shock

waves.

When a body is in a relative motion with respect to the fluid (inside the fluid), the

disturbance (if sufficiently small) produced by the body moves through the fluid

with the speed of sound. These disturbances can be rarefaction waves or compres-

sion waves. The compressions of finite amplitude usually give rise to a discontinuous

growth of pressure leading to a shock wave in the flow field. There is a likewise in-

crease in temperature, density, entropy and other fluid properties. If initially, the

fluid is at rest and the shock wave is moving then, after the passage of the shock,

the fluid will move in the direction of the shock.

Gas compressions, which have finite amplitude, travel faster than the speed of sound,

as in the case of strong explosions. In recent years the formation of shock waves has

received considerable attention in the literature with the shock formation time or

distance being used as important parameters characterising the relative importance

of convective nonlinear steepening and dissipative flattening and setting a limit for

the use of certain approximate theoretical approaches.
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In formulating the general theory of the propagation of weak discontinuities in so-

lutions to quasilinear hyperbolic systems and establishing the time of shock wave

formation several methods are in order, such as the method of wavefront analysis [27],

parameter expansion technique [28], wavefront expansion method [19], asymptotic

method [29], reductive perturbation method [30] and the singular surface method

[31, 32]. These different techniques prove effective according to the number of de-

pendent and independent variables involved, the number and forms of the equations

coupling them and the form of the evolution law that is required. The instant of

formation of shock waves was largely investigated by many authors.

Basics of gasdynamics can be found in Zierep [33] (1978). The general theory of

propagation of shock waves was presented by Boillat [29]. Shifrin [34] studied the

formation of a shock wave for planar flow of a perfect gas. Ardavan-Rhad [35]

studied the propagation of plane shock wave into a non-viscous, non-isentropic and

non-heat conducting medium. Saldatov [36] determined the instant of formation of

a shock wave in a symmetric two-way traffic flow, by using the Riemann method.

Fusco [37], Germain [38], Fusco and Engelbrecht [39] , Sharma et al. [40], Singh et

al. [41] and Nath et al. [42, 43] have utilized the asymptotic technique to study

the non-linear wave propagation in various gaseous media. Flack and Wittig [44]

presented the general solution for the normal shock wave moving in a medium where

all flow properties vary arbitrarily. Macpherson [45] used the molecular-dynamic ap-

proach to study the formation of a shock wave in dense Argon. Chen [46] studied the

propagation of shock waves in elastic non-conductors. The effect of thermodynamic

properties on the propagation of shock waves has been studied by Chen [47]. Chen

and Gurtin [48] and Cole-mann and Gurtin [49] studied the growth and decay of

shock waves with internal state variables. Bowen and Chen [50] studied the same

problem in the ideal mixture with several temperature layers.

Shock waves are characterized by an abrupt, nearly discontinuous change in the
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characteristics of the medium Anderson . Analytical solutions to the wave equa-

tions for steady vertical compression waves in a isothermal hydrostatics atmosphere

with uniform horizontal magnetic field have been presented by Musielak et al. [51].

Cheng-Yue et al.[52] presented one dimensional relativistic shock model for the light

curve of gamma-ray bursts.

The study of shock structure also received prominence in the recent decades. A lot

of work on the shock structure was carried out by Kuznetsov [53], Goldman and

Sirovich [54]. Wave fronts which are concave in the direction of propagation exhibit

different kinds of behaviour depending on the strength of the wave-front. In 1999,

Ruggeri [55] discussed the shock wave structure solutions of a general dissipative

quasi-linear hyperbolic system of balance laws. Generally, wave front propagates

normal to itself and therefore has a tendency to converge. The shocks of weak

strength are called weak shocks. Focusing of weak shock is an important prob-

lem. This problem of focusing of weak shocks was studied by Wanner et al.[56].

Observers of atomic explosion are also known to have seen shock waves of strong

strength, called blast wave. In case of blast waves, the shock becomes very strong

and the pressure ahead is generally neglected in comparison to the pressure behind

the shock wave. This leads to similarity formulation of the problem. The first work

on the converging shock waves was done by Guderley [57] in 1942. Guderley em-

phasized that some physical assumptions lead to the formulation of the selfsimilar

problem and the solution of which depends upon determining the similarity expo-

nent that defines the property of shock wave, like, the space-time path in proximity

to the collapse location.

The study of elementary wave interactions consist of either interaction between two

waves colliding, or one wave overtaking another, or one wave meeting a discontinuity.

Choquet-Bruhat [58] proposed a method to discuss shockless solutions of hyperbolic
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systems which depend upon a single phase function. Germain [38] has given the gen-

eral discussion of single phase progressive waves.Hunter and Keller [59] established

a general nonresonant multi-wave mode theory which has led to several interesting

generalizations by Majda and Rosales [60] and Hunter et al.[61] to include resonantly

interacting multi-wave mode features. Radha et al. [62] have shown that the general

theory of wave interaction problem which originated from the work of Jeffrey [63]

leads to the results obtained by Brun [64] and Boillat and Ruggeri [65]. This theory

of wave interaction has been used to study the interaction of a bore with the weak

discontinuity wave in shallow water [66] and the interaction of discontinuous waves

in a gas with dust particles [67].

In 2009, Arora et al. [68] obtained small amplitude high frequency asymptotic

solution to the basic equations in Eulerian coordinates governing one dimensional

unsteady planar, spherically and cylindrically symmetric flow in a reactive hydro-

dynamic medium.

In 2015, Chadha and Jena [69] discussed the propagation of weak disturbances in a

non-ideal gas with dust particles by using relatively undistorted method.

In 2016, Singh et al. [70] investigated the problem of the propagation of weak shock

waves in an inviscid, electrically conducting fluid under the influence of a magnetic

field. A system of two coupled nonlinear transport equations, governing the strength

of a shock wave and the first-order discontinuity induced behind it, are derived which

admit a solution that agrees with the classical decay laws for a weak shock.

In 2017, Shukla et al. [71] studied the evolution of planar and cylindrically symmet-

ric magneto-acoustic waves in a van der Waals fluid. Also, an asymptotic method

is used to derive an evolution equation that governs the wave amplitude in the far

field.

In 2019, the propagation of a spherical shock wave in a non-ideal gas with or without

gravitational effects is investigated under the action of monochromatic radiation. It



Chapter 1. Introduction 28

is manifested that the gravitational parameter and the radiation parameter have in

general opposite behaviour on the flow variables and the shock strength [72] .

In 2020, G. Nath [73] investigated the non-similarity solution for unsteady isothermal

flow behind the cylindrical shock wave in a rotational axisymmetric perfect gas in

the presence of azimuthal magnetic field. Solutions are obtained for MHD shock in

a rotating medium with the vorticity vector and its components in one-dimensional

flow case.

1.3.2 Literature review of Riemann problem

The study of Riemann problem started with the work “ theory of waves of finite

amplitude” by great mathematician G. F. B. Riemann (1859), which was not limited

to a single progressive wave and suited to calculate the propagation of planar waves

of finite amplitude proceeding in both directions. In 1860, Riemann [17] introduced

the Riemann problem for a system of conservation laws in gas dynamics. Lax [74]

determined the solution of the Riemann problem for the condition when the initial

data of the problem consists of two constant states U1
∗ and U2

∗ , where U1
∗ and U2

∗ are

respectively the vector of conserved variables to the left and right of x = 0 such that

‖U1
∗ − U2

∗‖ is appropriately small and left and right constant states are divided by

jump discontinuity at x = 0. In the consideration of Euler equations, the Riemann

problem consists of the shock tube problem and for detailed discussion of shock tube

problem and other physical problems in form of conservation laws of gasdynamics,

the readers are recommended to study the book by Courant and Friedrichs [75]

Later, Courant and Friedrichs [23] extended the result of Riemann [17] to adiabatic

flows and presented a new kind of elementary wave, i.e., contact discontinuity. Go-

dunov [76] is credited with the first exact Riemann solver for the Euler equations.
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By today’s standards Godunov’s first Riemann solver is cumbersome and computa-

tionally inefficient. Later, Godunov [20] proposed a second exact Riemann solver.

Smoller [21] determined a solution to the Riemann problem for an extended class

of hyperbolic systems with arbitrary constant states. A detailed deliberation on the

explicit solution of the Riemann problem can be obtained in Toro [77], Schleicher

and Pike [78].

The exact solution to the Riemann problem is of great significance. For instance,

it constitutes the basic building block for the construction of solutions to general

initial value problems using the well known random choice method proposed by

Glimm [79]. Exact solutions of the Riemann problem are proposed by Godunov [20]

and Chorin [22]; however Smoller [80] proposed a rather different approach. Smoller

and Temple [81] demonstrated the existence of solutions with shocks for equations

describing a perfect fluid in special relativity; this work was generalized by Chen [82]

for the general isentropic relativistic gases. Toro [83] presented an efficient solver

for computing the exact solution of the Riemann problem for ideal and covolume

gases; for detailed methodologies, the reader is referred to the book by Toro [84].

Gottlieb and Groth [85] presented another Riemann solver for ideal gases. Chorin

[22] proposed the new approach to obtain the exact solution to the Riemann prob-

lem. Another improvement to the Godunov’s first Riemann solver was presented by

Leer [86].

For an illuminating treatment on Riemann problem, we also refer to an article by

Liu [87] and the books of Li-Tsien [88], Dafermos [89], Bressan [90], LeFloch [91] and

LeVeque [91]. The special solution of Euler equations in which one of the Riemann

invariants remain constant throughout the flow field is called a simple wave. In

simple wave solutions, waves break and the solution has to be complemented by the

introduction of shock waves. When the shock strength is small and even moderate,

jumps in entropy and the Riemann invariants are surprisingly small, see Whitham
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[19]; this, indeed, formed the basis for an approximate theory for shocks of weak or

moderate strength developed by Friedrichs [23], where the actual shock conditions

are replaced by the transition through a corresponding simple compression wave.

Thus, for shocks of weak or moderate strength, it is a reasonable approximation to

neglect changes in the entropy and Riemann invariant, as they are of third order

in strength, and the simple wave approximation can be retained and used. As the

theory governing the motion of a compressible fluid, whose electrical conductivity

may be assumed to be infinite, and the theory of conventional gasdynamics are quite

simple, it is possible to use the simple wave approximation for magnetogasdynamic

flows involving shocks, which are not too strong, in a form that includes the solution

for conventional gasdynamics as a special case, and yields the principle characteris-

tics of magnetogasdynamic flows (see, for instance, Gundersen [92, 93]).

Liu and Sun [94] solved the Riemann problem for a class of coupled hyperbolic sys-

tems of conservation laws with delta initial data. Ambika and Radha [95] studied

the uniqueness and existence of elementary wave solution to the Riemann problem

for van der Waals gases. Bressan [90] provided a self-contained introduction to the

mathematical theory of hyperbolic system of conservation laws, with particular em-

phasis on the study of discontinuous solutions, characterized by the appearance of

shock waves. Mentrelli and Ruggeri [96] investigated shock and rarefaction waves

in hyperbolic model of incompressible fluids. Mentrelli et al.[97] studied thoroughly

the problem of the interaction of waves originated from Riemann problems in an

Euler fluid.
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1.4 Problem statement and Thesis Objectives

The main objective of this thesis is achieved by determining the analytical and/or

numerical solutions to some selected non-linear realistic problems governed by the

partial differential equations. The numerical work is carried out using the symbolic

software packages MATLAB and MATHEMATICA. Our objective of investigation

would be to focus on a detailed analytical and numerical study of the following spe-

cific problems, formulated mathematically as IVPs/BVPs, associated with quasilin-

ear hyperbolic system of partial differential equations.

This Ph.D. thesis fulfils the following objectives:

• To derive the analytical solution of the Riemann problem for magnetogasdy-

namic equations governing an inviscid unsteady one-dimensional flow of non-

ideal polytropic gas subjected to the transverse magnetic field with infinite

electrical conductivity.

• Analytical and numerical studies of long time evolution of solution from an

initial data to investigate for never breaking solutions.

• Study of problem of wave interaction in a dusty gas, where many wave modes

coexist and interact resonantly, using asymptotic and numerical methods.

***********


