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PREFACE

A wave of sudden rarefaction, though mathematically possible, is an unstable condi-

tion of motion, any deviation from absolute suddenness tending to make the distur-

bance become more and more gradual. Hence the only wave of sudden disturbance

whose permanency of type is physically possible, is one of sudden compression. A

wave is an oscillation that travels through a medium by transferring energy from

one particle or point to another without causing any permanent displacement of

the medium. It may be any features of the disturbance, such as a maximum or an

abrupt change in some quantity, provided that it can be clearly recognized.

The present thesis, embodies the results of researches carried out by me at the De-

partment of Mathematical Sciences, Indian Institute of Technology(BHU), Varanasi,

during the period December 2016 to December 2021 under the supervision of Prof.

L. P. Singh. In the present work certain aspects of nonlinear wave propagation prob-

lems have been studied in various gasdynamic regimes. The thesis is categorically

divided into seven chapters.

Chapter-1 is introductory which describes the general understanding of the non-

linear wave propagation problems and the historical background. This chapter gives

an idea of when and how a discontinuity appears and propagates. The physical

properties of non-ideal gases, electrically conducting gases and radiating gases are

discussed and briefly reviewed.

Chapter-2 concerns with the study of the Riemann problem for magnetogasdy-

namic equations governing an inviscid unsteady one-dimensional flow of non-ideal

polytropic gas subjected to the transverse magnetic field with infinite electrical con-

ductivity. The mathematical form of the Riemann problem is formulated and the

xvii



generalized Riemann invariants are determined. By using the Lax entropy condition

and R-H conditions, we derive the elementary wave solutions i.e. shock wave, simple

wave and contact discontinuities without any restriction on the magnitude of initial

data states and discussed about their properties. The elementary wave solutions

are obtained in the form of explicit expressions. Further, the density and velocity

distribution in the flow field for the cases of compressive wave and rarefaction wave

is discussed. Here we also compare/contrast the nature of solution in non-ideal

magnetogasdynamic flow and ideal gas flow.

In Chapter-3, the evolutionary behavior of weak shock waves propagating in an

unsteady one-dimensional flow in non-ideal radiating gas is analyzed. The effect of

thermal radiation under optically thin limit is included in the energy equation of the

governing system. The method of asymptotic analysis is used to derive the transport

equation describing the propagation of waves under the high frequency conditions

which is also used to determine the time of first wave breaking conditions. The

equation governing the propagation of acceleration waves is also obtained. Further,

the propagation of disturbance in the shape of saw-tooth profile is discussed. The

effect of parameter of non-idealness under the influence of radiative heat transfer,

on the decay of sawtooth profile is analyzed.

In Chapter-4, the theory of weakly non-linear geometrical acoustics is used to de-

rive the high frequency small amplitude asymptotic solution of the one-dimensional

quasilinear hyperbolic system of partial differential equations characterizing com-

pressible, unsteady flow with generalized geometry in ideal gas flow with dust parti-

cles. The method of multiple time scales is applied to derive the transport equations

for the amplitude of resonantly interacting high-frequency waves in a dusty gas.

These transport equations are used for the qualitative analysis of non-linear wave

interaction process and self-interaction of non-linear waves which exist in the system

under study. Further, the evolutionary behavior of weak shock waves propagating in
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ideal gas flow with dust particles is examined here. The progressive wave nature of

non-resonant waves terminating into the shock wave and its location is also studied.

Further, we analyze the effect of the small solid particles on the propagation of shock

wave.

In Chapter-5, the analytical solution of Riemann problem for a quasilinear hy-

perbolic system of partial differential equations governing the one dimensional and

unsteady flow of van der Waals gas is discussed. By utilizing Rankine-Hugoniot

conditions and Lax entropy condition, we derive classical wave solution of Riemann

problem and analyze their properties. Also, it is observed here that van der Waals

gasdynamics system is more complex in comparison to ideal gasdynamics case. Fur-

ther, the effect of presence of intermolecular forces of attraction between the particles

and variation of covolume of the gas on the density and velocity distribution across

the simple wave, shock wave and contact discontinuities is discussed. Also, we have

shown that our results are in good agreement with already established results for an

ideal gas.

Chapter-6 concerns with the evolutionary behaviour of weakly nonlinear waves

propagating in one-dimensional unsteady flow of perfectly conducting compressible

fluid subjected to a transverse magnetic field with dust particles. The method of

progressive wave approach is utilized to determine the evolution equation character-

izing the propagation of wave which also leads to determine the condition for first

wave breaking at finite time. Further, we analyze the behaviour of acceleration wave

propagating in the medium considered. Also, the propagation of disturbances in the

form of sawtooth wave (half N-wave) is studied. It is observed that the presence

of mass fraction of solid particles and ratio of specific heat of the solid particles to

specific heat of the gas at constant pressure both causes to slow down the decay

process. Also, the effect of axial magnetic field is to increase the growth rate of

sawtooth wave (Half N-wave) as compared to in the absence of axial magnetic field.
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Further, the effect of magnetic field is to slow down the decay process in the presence

of mass fraction of solid particles.

Chapter-7 concerns with the summary and future scope of the work done in the the-

sis. This thesis deals with detailed analytical and numerical solution of the specific

problems, formulated mathematically as IVPs/BVPs, associated with quasilinear

hyperbolic system of partial differential equations. The analytical solution of the

Riemann problem for non-ideal polytropic gas with an added effect of transverse

magnetic field and van der Waals Gasdynamics is obtained. The main features of

weakly non-linear waves propagating in a compressible, inviscid non-ideal radiating

gas and dusty gas flow is studied by using the method of progressive wave analysis.

The small amplitude high frequency asymptotic solution for the system of nonlinear

partial differential equations characterizing one-dimensional compressible unsteady,

planar and non-planar flows in a dusty gas is derived by using the multiple scales

method. Our study is restricted to a one-dimensional system of non-linear partial

differential equations in gasdynamics. However, this analysis can be extended for

two or higher dimensional non-linear partial differential equations in gasdynamics.
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