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Introduction

The thesis titled “Study of Dynamics of Fluid in Porous Media” confirms that here the

mathematical models describing the transport of solute concentration in groundwater

through the porous media have been examined. In this scientific work, mainly, drives

have been developed under prescribed initial and boundary conditions to deal with those

mathematical transport models numerically. While the numerical computations the known

and existing drives are taken and those are extended in accordance to the concerned mathe-

matical models for various fluid transport phenomena. Scientists and researchers seek the

attention of the problems of groundwater contamination nowadays. The recent studies

and results works on groundwater contamination problems have motivated the author to

examine the transport models of solute concentration.

1.1 Groundwater Contamination

Groundwater is an important source of freshwater in forming, industries, and drinking

water for humanities. Major part of populations get their drinking water through ground-

water. Big problems occur nowadays for drinking water as it is getting polluted by many

sources from humans and nature. Groundwater pollution (also called groundwater contam-

ination) occurs when pollutants are released to the ground and make their way down into

groundwater. This type of water pollution can also occur naturally due to the presence of

a minor and unwanted constituent, contaminant or impurity in the groundwater, in which

case it is more likely referred to as contamination rather than pollution. Pollution can oc-

cur from on-site sanitation systems, landfills, effluent from waste water treatment plants,

leaking sewers, petrol filling stations or from over applications of fertilizers in agriculture
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[1, 2, 3, 4] (see Fig. 1.1). Pollution (or contamination) can also occur from naturally

occurring contaminants, such as arsenic or fluoride. Using polluted groundwater causes

hazards to public health through poisoning or the spread of diseases.

Different mechanisms have influenced on the transport of pollutants, e.g., diffusion, ad-

sorption, precipitation, decay, in the groundwater. The interaction of groundwater con-

tamination with surface waters is analyzed by use of hydrology transport models.

Figure 1.1: Various sources of groundwater contamination
(Source: The Groundwater Foundation)

The prediction of contaminant transportation in the subsurface is very difficult and com-

plex. The nature of reaction with geologic substances is different for different contaminants.

Percolation through soils is the most common process of contaminant transportation. Dis-

persion and advection are the main processes for the transport of dissolved solutes. Sol-

ubility is a significant characteristic of contaminant for the groundwater contamination

(Fig. 1.2).
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Figure 1.2: Plot of groundwater contamination

1.2 Porous Media

Generally, a porous medium or a porous material is a material containing pores (voids).

The pores are typically filled with a fluid (liquid or gas). But it is not sufficient to describe

the flow through the porous media. One may try to improve the definitions by stipulating

that the pores are interconnected, with at least several continuous paths from one side

of the medium to other. Also the Mass conservation of fluid across the porous medium

involves the basic principle that mass ‘flux in’ minus mass ‘flux out’ equals to the increase

in amount stored by a medium. This means that total mass of the fluid is always conserved.
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Figure 1.3: Pictorial form of some porous media

Membranes, pigments, electrodes, ceramics, catalysts, sensors, etc., are few useful porous

materials used in various industries. Due to wide applications of porous materials in indus-

tries and many types of porous structure, there have been many experiments performed

to analyze the characteristic of porous solid. There are many useful definitions given in

order to characterize porous solid.

True Density: It is the density of solid network present in porous material i.e., density

of porous material except interparticle voids and pores.

Apparent Density: It is the density of porous material including inaccessible and closed

pores.

Bulk Density: It is the density of the porous material which also includes interparticle

voids and pores.

Pore Volume: It is the total volume of pores present in the porous material.

Pore Size (Pore Diameter/Width): It is the distance between two opposite walls of

pore.

Porosity: It is the ratio of pore volume to the apparent volume of the porous material.

Surface Area: It is the total detectable (accessible) of solid surface per unit mass of the

porous material.

The history and development of applications of porous media have already been discussed

and analyzed by many scientists and engineers in their research articles and monographs [5,
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6, 7]. Based on their research, the study of porous media which is basically a macroscopic

continuum mechanical approach was evolved in three main phases. The study of principles

of mechanics, theory of mixtures and concept of volume fraction during the early 19th

century is considered as the first phase of evolution of porous media. Later on the study

of interactions of solid rigid porous materials, gases and liquids between 1910 and 1960,

and the study of theory of immiscible mixtures between 1970 and 1980 are considered as

second and third phases of evolution of porous media.

The authors of [8] have explained that the problem containing fluid flow through a porous

material is mainly depends on the scale consideration. For the macro scale (large scale)

there are a large number of void/pore spaces in the field of vision and in these types of

scale they have used a volume continuum (averaging) approach because the complication

in fluid flow paths and the need to mention the complex spatial resolution of the porous

material reduce the possibility of applications of conventional fluid mechanics approach.

The micro scale (small scale) there are only few small pores visible and to analyze the

fluid flow processes in the fluid filled pores. In this case, they have used conventional fluid

mechanics approach.

1.2.1 Local Thermodynamic Equilibrium in Porous Media

In porous media, the local thermodynamic equilibrium mainly counts the chemical equi-

librium, mechanical equilibrium and thermal equilibrium. These equilibrium system is

defined as follows.

Chemical Equilibrium: In a chemical equilibrium, the potential to exchange the chem-

ical components within a particular phase or across different phases is zero. Particularly,

no exchange of chemical components between different phases or within a particular phase.

Mechanical Equilibrium: In a mechanical equilibrium, there are equal pressure present

on both sides of the phase boundary for multi fluid phase systems. For fluid flow in porous

media there may be pressure jump due to capillarity on the boundaries of fluid phase [9].

Thermal Equilibrium: In a thermal equilibrium, all phases of the system are at same

temperature at any point of the system.
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1.2.2 Darcy’s Law

The basic law governing the flow of fluids through porous media is Darcy’s Law, which was

formulated by the Henry Darcy in 1856 based on his experiment (Fig. 1.4) on vertical water

filtration through sand beds [10]. This law can be expressed by the following expression

as

N ·W = −K · gradH. (1.1)

In this expression, the pressure head is given by gradH,K is the hydraulic conductivity

also known as Darcy permeability, fluid volume fraction is given by N,W is the seepage

velocity, and their product N ·W is called as filter velocity.

Figure 1.4: Darcy’s apparatus.

The problem of diffusion in the theory of mixtures is first discussed by Adolf Fick. In

his first law, he states that the concentration flow of particles (diffusion flux) in a two

component mixtures is directly proportional to the concentration gradient. The mass

conservation equation with the Fick’s first law provides us the following equation known
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as Fick’s second law.
∂C

∂t
= d · div(gradC). (1.2)

Here C is the particle concentration and d is the diffusion coefficient.

The Darcy’s law is derived from the famous Navier-Stokes equation. Darcy in 1856 based

on his experiment states that the flow rate of particles in the medium is directly pro-

portional to the applied pressure difference and it is similar to Ohm’s law, Fourier’s law

and Fick’s law in electric field, heat conduction and diffusion processes, respectively. For

transient processes in which the flux varies from point to-point, the following differential

form of Darcy’s law is used.

Q = −KA
µ

dp

dx
, (1.3)

where Q is volumetric flow rate, p is pressure across medium, A is cross-sectional area of

porous medium, µ is fluid viscosity , K is permeability is a function of material type, L

is the length of sample. Darcy’s law is valid for situation where the porous material is

already saturated with the fluid.

1.3 Mathematical Modeling of Solute Transport

Flow of the fluid through porous medium is an important topic which is encountered

in reservoir engineering, soil mechanics, ground water hydrology etc. The problems of

ground water contamination and declination seek the attention of lots of environmentalists,

mathematicians, soil and agriculture scientists, hydrologists and chemical engineers [11,

12]. The contaminants in aquifers form a contaminant plume which widely spreads because

of water movements and diffusion. The study of movement of contaminant plumes can be

done through a mathematical modeling of solute transport in porous media. Problems on

the contamination of groundwater have been solved by many efficient techniques developed

by scientists and engineers [13, 14, 15].

When the groundwater is mostly adulterate, then the resuscitate is considered to be very

difficult and more expensive. A very careful approach and attention are very much nec-

essary for describing the boundary conditions, problem domain and model parameters for

using the numerical approach of groundwater model of the field problems. Hydrology is

an interdisciplinary part of science and engineering, in which the topic of solute transport

through the groundwater is included.
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In the process of mathematical modeling of many physical complex problems, a lot of

common basic assumptions are used like constant dispersion coefficient, steady seepage

flow velocity and homogeneity of porous material with constant pores. Ebach and White

[16] have studied the problem of longitudinal dispersion with periodically varying input

concentration. In heterogeneous aquifer with non-uniform seepage flow, Hunt [17] has

applied the perturbation method to the problems of lateral and longitudinal dispersions.

To find the solutions of Burgers’ equations in the phenomena of longitudinal dispersion

which occur in miscible phase flow through porous medium, an analytical approach has

been applied by Joshi et al. [18].

The generalized solute transport model in the porous media is the well known reaction-

advection-dispersion equation (RADE) [19, 20]. This equation has the combined effects

of advection, reaction and dispersion process due to which the concentration of the so-

lute is dispersed while transported down along the stream and sometimes it reacts with

the medium through which it moves. From the mass balance principles, the advection-

dispersion equation can be easily derived. The modeling of solute transport is very helpful

for the prediction of solute concentration in rivers, streams, aquifers and lakes, which can

be represented mathematically as

∂u

∂t
= ∇ · (d∇u)−∇(νu) +R, (1.4)

where R denotes the reaction term of the species u, and the symbol ∇ is defined in Rn in

terms of partial derivative operators as ∇ = ( ∂
∂x1

, · · · , ∂
∂xn

).

In the right-hand side of the equation (1.4), the first term describes the dispersion phe-

nomena, the second term represents the advection process and the last term is for the

reaction kinetics. If there is no reaction between the solute and the medium through

which the solute moves, and also there is no kind of radioactive decay then this type of

system is called as conservative system, otherwise it is non-conservative. In the case of

non-conservative system, the last term of the equation (1.4) is encountered. If there is

only diffusion process which is responsible for the movement of the solute concentration,

then the above equation is known as diffusion equation.

To understand the physical behavior of problem of ground water pollution and its future

effect on human beings and environment, many physical problems are models in the form

of mathematical models viz., convection model, diffusion model, reaction-convection dif-

fusion model, convection-diffusion model etc., which analyze the solute flow in aquifer.

PDEs are the fundamental equations which describe kinematic and dynamic relationships

among flow parameters, fluid and medium at an arbitrary point inside a considered flow
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domain. Nonlinear PDEs viz., Fisher equation, Burgers’ equation, Huxley equation play

vital roles to understand the physics of solute transport in porous media. Many researchers

have performed experiments in laboratory concerning one dimensional fluid flow where a

uniform pressure was already applied to the lower boundary of column to determine the

fluid flow rate in uniformly length column filled in a particular porous medium [21].

In recent years, many researchers seek their attention in the field of solute transport in

the artificial or natural porous medium due to declination of the groundwater. One of

the most omnipresent natural phenomena is diffusion process. The ubiquity of diffusion

processes matches to the porous medium. The initial studies and reports of diffusion are

mainly based on diffusion processes in porous medium. Due to wide range of applications

of reactive-diffusive transport of solutes in porous medium, it has been become interesting

area by many of research during last few decades. The PDEs of reaction-diffusion types

have been studied in wider range in mathematical modeling of physical phenomena arises in

porous media. The concentration of solute profile in reaction-diffusion processes in porous

media is modeled by a special type of partial differential equations known as reaction-

diffusion equation.

The reaction-diffusion equation is most general solute transport model as it contains the

joint effects and variations of reaction and diffusion processes. Because of these processes

solute concentrations are transported down with the stream along the flow in porous

medium and get diffused/dispersed. Some times the solute also reacts with the medium

then these systems are called as non-conservative systems other wise conservative systems.

The general reaction-diffusion type PDE mainly contains two terms viz., reaction rate and

diffusion term. The reaction-diffusion equations govern the species’s population density,

evolution of solute concentration w.r.to time at different locations. The diffusion term in

these types of mathematical modelings is given by Laplace operator on solute concentra-

tion w.r.to spatial variables and the reaction term is given by some additive terms which

represent per unit change in solute concentration through some reaction rate. The law

of mass action is being used for the derivation of reaction rate equations in well mixed

systems.

1.3.1 Diffusion

Einstein’s theory of Brownian motion reveals that the mean square displacement (MSD)

of a particle moving randomly is proportional to time, which also can be justified for the

case of a simple integer order linear diffusion equation. But as the research on fractional
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calculus progresses, it is found that the MSD for the anomalous case i.e., for time fractional

diffusion equation, increases slowly with time. For the linear time fractional diffusion

equation ∂αu
∂tα = ∂2u

∂x2
, the MSD is 〈X2(t)〉 ∼ tα, where 0 < α < 1 is the anomalous

diffusion exponent. The equation represents an evolution equation which generates the

fractional Brownian motion, a generalization of Brownian motion. Thus it is seen that for

the diffusion model, if the integer order time derivative is replaced by the fractional order

time derivative, it changes the fundamental concept of evolution of foundation of physics.

The physical meaning of the fractional order time derivative related to the statistics is

the waiting time in accordance with the Montroll-Weiss theory. Hilfer and Anton [22]

have showed that Montroll-Weiss continuous time random walk (CTRW) with a Mittag-

Leffler waiting time density is equivalent to a fractional order master equation. Later,

Hilfer [23] explained that this underlying CTRW of the model is connected to the time

fractional diffusion equation in the asymptotic sense of long time and large distance. Thus

random walk approach is needed to simulate diffusive phenomena of a fractional order

equation. Gorenflo et al. [24] stated that the time fractional order diffusion equation

generates a class of symmetric densities whose moments of order 2m are proportional to

the mα power of time. Thus classes of non-Markovian stochastic processes can be obtained,

which exhibit slow anomalous diffusions. By using fractional order Fokker-Plank equation

approach, Metzler et al. [25] have shown that anomalous diffusion is based upon the

Boltzman statistics. Many researchers have used fractional equations during description

of Levy flights or diverging diffusion. The tool is very powerful in modeling multi scale

problems, characterized by wide time or length scale. The fractional order differential

operator has the characteristic of non-local property, which states that the future state

not only depends upon the present state but also upon all of the history of its previous

states. Due to the greater flexibilities, the fractional order models have gained popularity

to investigate the dynamical system. Also, Contaminant in groundwater moves from more

concentrated place to less concentrated place through the process of diffusion. The process

of diffusion occurs as long as the concentration gradient exists in groundwater regardless

of fluid movement.
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Figure 1.5: Diffusion process

The anomalous diffusion process seeks the attention of many researchers [26, 27, 28].

Anomalous diffusion can be easily seen within complex systems like diffusion process in

porous media. The fluid particles undergo in sub-diffusion process if α < 1. A subclass of

anomalous diffusive system is the fractional sub-diffusion equation (FSDE), which can be

illustrated from the standard parabolic PDE by replacing the first-order time derivative

with a fractional derivative of order α, 0 < α < 1 (Moodie and Tait [29]).

Figure 1.6: Plot of MSD vs. time for different kinds of anomalous diffusion.

In the real world problems, the FSDE has been widely applied in several fields of research

[30, 31, 32]. So finding the solutions of these equations have become increasingly interesting
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and popular. The authors of [33, 34, 35] have provided a typical explanation of the

anomalous diffusion process based on the continuous time random walk. The process of

anomalous diffusion for real complex physical systems can be well explained by fractional

order diffusion models.

1.4 History of Fractional Calculus

The origin of fractional calculus can be traced in the end of 17th century from few let-

ter exchanged between Leibniz and L’Hospital. The questions and ideas raised between

their letters have became an interesting topic for more than three century. Many revered

mathematicians like Neils Abel, J.B.J. Fourier, P.S.M. de Laplace, Leonhard Euler, J.L.

Lagrange, Joseph Liouville, Oliver Heaviside, G.W. Leibniz, etc., have done great works

in this field. The definition of fractional integration was first given by G.F.B. Riemann in

1847.

It is not justified to categorize the fractional calculus theory as a young science. The origin

of fractional calculus is as old as classical calculus itself. During the past few decades it

has become the focus of interest of many disciplines of science and technology which

provides an excellent and efficient tool for modeling and describing various scientific and

complex engineering phenomena such as aerodynamics, polymer rheology, electrodynamics

of complex medium, fluid-dynamic traffic model [36, 37, 38, 39, 40]. In the last few decades

there have been a lot of research on the applications of fractional calculus theory to various

scientific fields ranging from the physics of diffusion and advection phenomena to control

system of finance and economics.

Fractional differentiation has a lot of advantages on the simulation of dynamical systems

and physical phenomena as compared to integer order differentiation, due to its non-

Markovian and non-local behaviors [41, 42]. In many cases it is not possible to model the

known equations in fractional order forms. For this some basic physical postulates are to

be satisfied before giving its shape into fractional order system. Therefore every equation

can not be generalised simply by replacing the integer order derivative by fractional order

derivative.

The fractional calculus theory is a very important tool to analyze many complex realistic

processes. Nowadays a more generalized form of fractional order derivative is a hot topic

for researchers viz., differential equations with variable order arising in different processes

in porous media [43, 44]. The concepts of generalized calculus theory were first introduced
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by Neils Abel and Joseph Liouville. The calculus theory in which the concept of any

arbitrary order differentiation and integration is discussed that can be a generalization of

classical calculus theory. This generalized calculus theory (fractional calculus) has diverse

and widely spread in applied mathematical sciences, engineering, fluid mechanics, elec-

tromagnetic, etc., and increasingly applied to mathematical modeling of several complex

physical phenomena viz., fluid flow, viscoelasticity, dynamical systems, control, groundwa-

ter contamination, transports of molecules via pores, etc. Due to its wide application and

feasibility, fractional calculus seeks the attention of many researchers, scientists, engineers,

and applied mathematicians.

From literature survey, it is seen that the fundamental ideas of the algorithms are corre-

lated to the ideas proposed by authors of [45, 46] and Bhrawy [47], which have been used to

develop the efficient and accurate algorithms for the purpose of solving partial differential

equations [48]. Additionally, for finding the numerical solutions of linear fractional differ-

ential equations (FDEs), Bhrawy et al. [49] have developed an operational matrix with

the popular Laguerre polynomials for the fractional order integration and have revised the

generalized Laguerre polynomials on the semi-infinite intervals. In [50], the authors have

introduced an operational matrix for the fractional order derivative for solving the linear

and non-linear FDEs with given initial conditions.

Diverse application of generalized fractional calculus theory leads us to deal with the

fractional differential and partial differential equations [51]. The analytical solution of

many fractional PDEs is very tough to find. To overcome the lack of exact solution many

researchers have developed various techniques to compute the approximate analytical so-

lution of such types of fractional systems. The authors of [52] have introduced a numerical

scheme based on meshless approach for time fractional PDEs. Zada et al. [53] used Haar

wavelet for finding the solution of FPDEs. Other well-known methods for numerical so-

lution of FPDEs are reproducing kernel discretization method [54], Chebyshev cardinal

functions [55], Laplace transform method [56], residual power series method [57], Hierar-

chical matrix approximations [58], etc. Some of these numerical techniques can also be

used to find the numerical solutions of integro-differential equations and integral equations

[59, 60]. Few operational matrices are developed on polynomials such as Genocchi poly-

nomial [32], Chebyshev polynomial [61], Laguerre polynomial [62], Fibonacci polynomials

[63], etc.
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1.4.1 Fractional Integration and differentiation

In this section, some fundamental notations, definitions and some properties of the frac-

tional order calculus theory have been given, which are necessary for establishing the

results of the present work.

Definition 1. The Riemann-Liouville integration operator J of given fractional order

α ≥ 0 of a function f(t) is defined by [64, 65]

(Jαf)(t) =


1

Γ(α)

∫ t
0 (t− ρ)α−1f(ρ)dρ, if α > 0,

f(t) if α = 0.
(1.5)

In above expression Γ (.) is the well known gamma function.

Some of the properties of Jα are as follows.

(i) JαJτf(t) = Jα+τf(t),

(ii) JαJτf(t) = JτJαf(t),

(iii) Jαtϑ = Γ(ϑ+1)
Γ(ϑ+α+1) t

ϑ+α.

Now, the Riemann-Liouville fractional order derivative of a given order α > 0 is normally

defined by the following expression.

(Dα
l f)(t) = (

d

dt
)m(Jm−αf)(t), (α > 0, m− 1 < α ≤ m). (1.6)

In the above expression m be the integer number. Some of the properties of Dα
l are

(i) Dα
l (D−τl f(t))= Dα−τ

l f(t), α,τ ∈ R+ and α > τ.

(ii) Dα
l t
ϑ = Γ(ϑ+1)

Γ(ϑ−α+1) t
ϑ−α.

As the Riemann-Liouville fractional derivative has some disadvantages, hence, an improved

fractional order differential operator Dα is introduced, which is more reliable in many

applications.

Definition 2. The fractional order derivative operator Dα of the given order α > 0 in

the Caputo sense is given by [64, 65]

(Dαf)(t) =


dmf(t)
dxm , if α = m ∈ N,

1
Γ(m−α)

∫ t
0 (t− ρ)m−α−1f (m)(ρ)dρ, if m− 1 < α < m.

(1.7)
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In the above expression m be the integer number. The Caputo definition of fractional

order derivative has the following properties.

DαC = 0, (1.8)

where C is an arbitrary constant.

Dαtϑ =

0, if ϑ ∈ N ∪ {0}, ϑ < dαe,
Γ(ϑ+1)

Γ(ϑ−α+1) t
ϑ−α, if ϑ ∈ N ∪ {0}, ϑ ≥ dαeorϑ /∈ N, ϑ > bαc,

(1.9)

where dαe be the ceiling function and bαc be the floor function and similar to the ordinary

derivative, Caputo derivative is also linear i.e., for arbitrary constants φ, ϕ, we have

Dα(φp(x) + ϕq(x)) = φDαp(x) + ϕDαq(x). (1.10)

A very useful relationship between the Riemann-Liouville operator and the Caputo oper-

ator is given by the following expressions for m− 1 < α ≤ m,

(DαJαf)(t) = f(t), (1.11)

and

(JαDαf)(t) = −
m−1∑
ρ=0

f (ρ)(0+)
tρ

(ρ)!
+ f(t), m− 1 < α ≤ m, (1.12)

where m be an integer number.


