Contents

Contents	vi
List of Figures	viii
List of Tables	x
Preface	xi

1	Inti	roduction	1
	1.1	Groundwater Contamination	1
	1.2	Porous Media	3
		1.2.1 Local Thermodynamic Equilibrium in Porous Media	5
		1.2.2 Darcy's Law	6
	1.3	Mathematical Modeling of Solute Transport	7
		1.3.1 Diffusion	9
	1.4	History of Fractional Calculus	12
		1.4.1 Fractional Integration and differentiation	14
2	An	operational matrix for solving time-fractional order Cahn-Hilliard	
	equ	ation	16
	2.1	Introduction	16
	2.2	Proposed Cahn-Hilliard model and its chemical behavior	17
	2.3	Laguerre polynomials and its some properties	18
	2.4	Laguerre operational matrix for fractional differentiation	19
	2.5	The proposed method for Laguerre operational matrix of fractional differ-	~~
		entiation	23
	2.6	Convergence analysis of the proposed approximation	24
	2.7	Error analysis of proposed scheme	26
	2.8	Results and discussion	31
	2.9	Conclusions	35
3	Two	o-dimensional nonlinear time fractional reaction-diffusion equation	
	in a por	application to sub-diffusion process of the multicomponent fluid in ous media	36

36

	3.1	Introduction	36
	3.2	The General Conservation Principle	38
		3.2.1 Mass conservation of species	39
	3.3	Kronecker Product and its some properties	40
		3.3.1 Basic Properties of Kronecker Product	40
	3.4	Laguerre operational matrix for fractional order differentiation	41
	3.5	Implementation of Laguerre operational matrix	42
	3.6	Error bound of the approximation	43
	3.7	Numerical simulations and error analysis	44
	3.8	Results and discussion for proposed model	50
	3.9	Conclusions	52
4	Ap	proximate analytical solution of coupled fractional order reaction-	
	adv	ection-diffusion equations	54
	4.1	Introduction	54
	4.2	Laguerre operational matrix for fractional order derivatives	56
	4.3	The method proposed for Laguerre operational matrix of fractional order	
		derivatives	57
	4.4	Convergence analysis of the proposed approximation	58
	4.5	Error analysis and accuracy of the method	60
	4.6	Results and discussion for proposed model	65
	4.7	Conclusions	69
5	Ap	proximate analytical solution of two-dimensional space-time fractiona	1
	diff	usion equation	70
	5.1	Introduction	70
	5.2	Basic Ideas of Laplace Transform	71
	5.3	Homotopy Perturbation Theory and He's Polynomials	71
		5.3.1 Homotopy Perturbation Method	71
		5.3.2 He's Polynomials	73
	5.4	Application On Considered Model	73
	5.5	Numerical Experiments	75
	5.6	Numerical Results and Discussion	80
	5.7	Conclusion	83
6	Ove	erall Conclusion and Future Scope	85

vii

List of Figures

1.1	Various sources of groundwater contamination (Source: The Groundwater	
	Foundation)	2
1.2	Plot of groundwater contamination	3
1.3	Pictorial form of some porous media	4
1.4	Darcy's apparatus.	6
1.5	Diffusion process	11
1.6	Plot of MSD vs. time for different kinds of anomalous diffusion	11
2.1	Plots of the absolute error between the exact and numerical solutions vs. x and t .	27
2.2	Plots of the absolute error between the exact and numerical solutions vs. x and t .	28
2.3	Plots of the absolute error between the exact and numerical solutions vs. x and t	20
2.4	Plots of field variable $u(x,t)$ vs. x at $t = 1$ for $k = 0, v = 0$ and different	29
	values of α	32
2.5	Plots of field variable $u(x,t)$ vs. x at $t = 1$ for $k = -1, v = 0$ and different values of α .	32
2.6	Plots of field variable $u(x,t)$ vs. x at $t = 1$ for $k = 0, v = -1$ and different values of α .	33
2.7	Plots of field variable $u(x,t)$ vs. x at $t = 1$ for $k = -1, v = -1$ and different values of α .	33
2.8	Plots of field variable $u(x,t)$ vs. x at $t = 1$ for $k = -1, v = -1, \gamma = 0.5$ and	9.4
0.0	different values of α .	34
2.9	Plots of field variable $u(x,t)$ vs. x at $t = 1$ for $k = -1, v = -1, \gamma = 0.75$ and different values of α	34
3.1	Fluid continuum in the flowing process	39
3.2	Plot of the absolute error between the exact and numerical solutions vs. y	
	and t at $x = 0.5$	47
3.3	Plot of the absolute error between the exact and numerical solutions vs. x	
	and y at $t = 1$	48
3.4	Plot of the absolute error between the exact and numerical solutions vs. x and t at $y = 0.5$.	50
3.5	Plots of the field variable $u(x, y, t)$ vs. x and y at $t = 0.5$ for $k = -1$ for	
	different values of α	51

3.6	Plots of the field variable $u(x, y, t)$ vs. x and y at $t = 0.5$ for $k = 0$ for different values of α .	51
3.7	Plots of field variable $u(x, y, t)$ vs. x and y at $t = 0.5$ for $\alpha = 0.7$ for different values of k.	52
4.1	Plot of the absolute error between the exact and numerical solutions of $u(x,t)$ vs. x and t for $N = 6$	62
4.2	Plot of the absolute error between the exact and numerical solutions of $v(x,t)$ vs. x and t for $N = 6$	63
4.3	Plots of the solute concentration $u(x,t)$ vs. x for different values of α_1 for $k_1 = k_2 = 1, \alpha_2 = 1$ at $t = 0.5, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots$	66
4.4	Plots of the solute concentration $v(x,t)$ vs. x for different values of α_2 for $k_1 = k_2 = 1, \alpha_1 = 1$ at $t = 0.5, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots$	66
4.5	Plots of the solute concentration $u(x,t)$ vs. x for different values of α_1 for $k_1 = k_2 = -1, \alpha_2 = 1$ at $t = 0.5, \ldots, \ldots, \ldots, \ldots, \ldots$	67
4.6	Plots of the solute concentration $v(x,t)$ vs. x for different values of α_2 for $k_1 = k_2 = -1, \alpha_1 = 1$ at $t = 0.5, \ldots, \ldots, \ldots, \ldots, \ldots$	67
4.7	Plots of the solute concentration $u(x,t)$ vs. x for different values of k_1 for $\alpha_1 = 0.8, \alpha_2 = 1$ at $t = 0.5$.	68
4.8	Plots of the solute concentration $v(x,t)$ vs. x for different values of k_2 for $\alpha_2 = 0.8, \alpha_1 = 1$ at $t = 0.5, \ldots, \ldots, \ldots, \ldots$	68
5.1	Plots of the absolute error between the exact and the numerical solutions vs. x and y , for $\alpha = 1$ and $t = 0.5$.	77
5.2	Plots of the absolute error between the exact and the numerical solutions vs. x and y . for $\alpha = 1$ and $t = 0.5$.	79
5.3	Plots of the field variable $u(x, y, t)$ vs. y and t at $x = 0.5$ for $k = 0, \gamma = -1$ and for different values of α	81
5.4	Plots of the field variable $u(x, y, t)$ vs. y and t at $x = 0.5$ for $k = -1, \gamma = -1$ and for different values of α .	81
5.5	Plots of the field variable $u(x, y, t)$ vs. y and t at $x = 0.5$ for $k = 1, \gamma = -1$ and for different values of α	82
5.6	Plots of the field variable $u(x, y, t)$ vs. y and t at $x = 0.5$ for $k = 1, \gamma = 1$ and for different values of α	82
5.7	Plots of the field variable $u(x, y, t)$ vs. y and t at $x = 0.5$ for $k = 0, \gamma = 1$ and for different values of α .	83