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Preface

There are total six chapters in this thesis.The study of the thesis is based on one-dimensional,

two-dimensional and coupled systems of solute transport model in porous media with

space, time fractional derivative as well as variable order derivative.

In Chapter 1, literature review, some basic definitions and properties related to current

thesis work have been discussed. A brief discussion about groundwater contamination and

porous media is presented here. The historical background of fractional calculus theory

and its various applications are added in this introductory chapter of the thesis.

In the Chapter 2, an operational matrix scheme with Laguerre polynomials is applied

to solve a space-time fractional order non-linear Cahn-Hilliard equation, which is used to

calculate chemical potential and free energy for a non-homogeneous mixture. Constructing

operational matrix for fractional order differentiation, the collocation method is applied

to convert Cahn-Hilliard equation into a system of algebraic equations, which have been

solved using Newton method. The prominent features of the chapter is to provide the

stability analysis of the proposed scheme and the pictorial presentations of numerical

solution of the concerned equation for different particular cases and showcasing of the effect

of advection and reaction terms on the nature of solute concentration of the considered

mathematical model for different particular cases.

In the Chapter 3, an efficient operational matrix based on the famous Laguerre polynomi-

als derived in Chapter 2 is applied for the numerical solution of two-dimensional non-linear

time fractional order reaction-diffusion equation. Assuming the surface layers are thermo-

dynamically variant under some specified conditions, many insights and properties are

deduced e.g., nonlocal diffusion equations and mass conservation of the binary species

which are relevant to many engineering and physical problems. The salient features of the

chapter are finding the convergence analysis of the proposed scheme and also the validation

and the exhibitions of effectiveness of the method using the order of convergence through

the error analysis between the numerical solutions applying on the proposed method and

the analytical results for two existing problems. The prominent feature of the present

chapter is the graphical presentations of the effect of reaction term on the behavior of so-

lute profile of the considered two-dimensional mathematical model for different particular

cases.

The effective Laguerre collocation method developed in chapter 2 is used in Chapter 4

to obtain the approximate solution of a system of coupled fractional order non-linear

xi
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reaction-advection-diffusion equations with prescribed initial and boundary conditions. In

the proposed scheme, Laguerre polynomials are used together with operational matrix and

collocation method to obtain approximate solutions of the coupled systems. The solution

profiles of the coupled systems are presented graphically for different particular cases. The

salient features of the present chapter are finding the stability analysis of the proposed

method and also the demonstration of the lower variations of solute concentrations with

respect to the column length in fractional order system as compared to integer order sys-

tem. To show the higher efficiency, reliability and accuracy of the proposed scheme, a

comparison between the numerical results of Burgers’ coupled systems and its existing

analytical result is reported. There are high compatibility and consistency between the

approximate solution and its exact solution to a higher order of accuracy. The exhibi-

tion of error analysis for each case through tables and graphs confirms the super-linearly

convergence rate of the proposed method.

In the Chapter 5, the Homotopy perturbation method is utilized with Laplace transform

and He’s polynomial to analyze and to obtain the approximate numerical solutions of

a class of two-dimensional partial differential equations (PDEs) with Caputo fractional

derivative. A time-fractional order mathematical model in two-dimension is analyzed with

the given initial condition. The solution obtained is beneficial and significant to analyze

the modeling of super-diffusive systems and sub-diffusive system, anomalous diffusion,

transport process in porous media. This iterative technique presents the combination of

homotopy perturbation technique and Laplace transform with He’s polynomials, which can

further be applied to numerous linear/nonlinear two-dimensional fractional order model

to compute the approximate analytical solution. In the present method, the nonlinearity

can be tackled by He’s polynomials. The salient features of the chapter are the picto-

rial presentations of the approximate numerical solution of the two-dimensional fractional

reaction-advection-diffusion equation for different particular cases and showcasing of the

damping effects of reaction terms on the nature of probability density function of the con-

sidered two-dimensional nonlinear mathematical models for various situations. To validate

the high efficiency and capability of the proposed numerical scheme, few test examples are

reported with the computation of the errors between the analytical results and the results

obtained by the numerical scheme for the concerned problem.


