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Conclusion and Future Scope

In 2008, Solovyov [36] introduced the notion of Q-topological spaces and stud-
ied the resulting category Q-TOP of Q-topological spaces. Solovyov also in-
troduced the Q-Sierpinski space, T0-Q-topological space, stratified Q-topological
space, sober Q-topological space etc. and studied many properties related to these
notions, including those of categorical nature.

The study ofQ-topological spaces was continued further by Singh and Srivastava
[30–33] and Noor et al. [27] etc.

In a large part of this thesis, we have continued the study ofQ-topological spaces.
In particular, we have studied exponential Q-topological spaces, injective objects
and existence of injective hulls in the comma category Q-TOP/(Y, σ), some core-
flective hulls in the category Str-Q-TOP of stratified Q-topological spaces. In a
somewhat different direction, we have also given in this thesis, a characterization
of the category FCS of fuzzy closure spaces, as considered in Srivastava et al. [40],
in terms of the Sierpinski fuzzy closure space.

Based on the nature of work done in this thesis, we are mentioning here some
problems for future research.

Problem 1: We recall that a Q-bitopological space is a triple (X, τ1, τ2), where
X is a set and τ1, τ2 are Q-topologies on X and a map f : (X, τ1, τ2)→ (Y, σ1, σ2)

between two Q-bitopological spaces is called Q-bicontinuous if f : (X, τi)→ (Y, σi)

is Q-continuous for i = 1, 2 (cf. [27]). Noor et al. [27] determined two Sierpinski
objects in the category Q-BTOP of Q-bitopological spaces. So it would be in-
teresting to see whether we can characterize exponential objects in the category
Q-BTOP also, in an analogous manner (as done in Theorem 2.4.10)?

Problem 2: Cagliari and Mantovani [7] gave a characterization of injective objects
in the comma category TOP0/B, where TOP0 is the category of T0-topological
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spaces. They characterized injective objects (with respect to the class of embed-
dings) in TOP0/B as precisely being the retracts of the partial products of the
two-point Sierpinski space S. Solovyov [36], while introducing the category Q-
TOP, also introduced T0-Q-topological space and the Q-Sierpinski space. So it is
natural to explore whether we can characterize injective objects in the comma cat-
egory Q-TOP0/(Y, σ) as precisely being the retracts of the partial products of the
Q-Sierpinski space (where Q-TOP0 is the category of T0-Q-topological spaces)?

Problem 3: Solovyov [36] introduced stratified Q-topological spaces. Singh and
Srivastava [31] introduced the stratified Q-topological space (Q, 〈{idQ} ∪ {q | q ∈
Q}〉), which is a Sierpinski object in the category Str-Q-TOP of stratified Q-
topological spaces. In Theorem 4.3.14, we have obtained the coreflective hull of
(Q, 〈{idQ} ∪ {q | q ∈ Q}〉) in the category Str-Q-TOP of stratified Q-topological
spaces. Solovyov also [36] introduced the Q-Sierpinski space and Singh and Sri-
vastava [30] proved that it is a Sierpinski object in the category Q-TOP of Q-
topological spaces. So it would be interesting to determine the coreflective hull of
the Q-Sierpinski space in the category Q-TOP of Q-topological spaces.

Problem 4: Denniston et al. [12] studied the category AfSys(L) of L-affine
systems (where L is a fixed member of a fixed variety of algebrasA) and introduced
the Sierpinski (L-)affine system. They proved that the Sierpinski (L-)affine system
is a Sierpinski object in the category AfSys(L). A natural question is: can we
obtain a characterization of the category AfSys(L) among a suitable class of
categories using the Sierpinski (L-)affine system (as done in Theorem 5.4.1)?

Problem 5: Another question is: can we obtain a characterization of exponential
objects in the categoryAfSys(L) of of L-affine systems (where L is a fixed member
of a fixed variety of algebras A) introduced by Denniston et al. [12], similar to
the one for exponential objects in the category of Q-topological spaces (as done in
Theorem 2.4.10)?


