Chapter 5

A characterization of the category FCS

5.1 Introduction

Manes [24] (see also [25], p. 155) gave a characterization (up to an isomorphism) of the category **TOP** of topological spaces and continuous maps, in a suitable class of categories satisfying certain conditions, with the help of the Sierpinski space which is a Sierpinski object in the category **TOP**. Srivastava [39] defined fuzzy Sierpinski space and proved that it is a Sierpinski object in the category **FTOP** of fuzzy topological spaces (in the sense of Chang [10]) and fuzzy continuous maps and using it, obtained an analogous characterization of the category **FTOP**. Subsequently, Srivastava and Srivastava [38] defined fuzzy Sierpinski space for the class of Lowen's stratified fuzzy topological spaces [22] and obtained a similar characterization for the category **SFTOP** of stratified fuzzy topological spaces and fuzzy continuous maps. Singh and Srivastava [30] obtained a characterization of the category Q-**TOP** of Q-topological spaces and Q-continuous maps, using Q-Sierpinski space introduced in [36].

The contents of this chapter, in the form of a research paper, has been published in 'Soft Comput. **23** (2019) 13001-13005'.

Srivastava et al. [40] had defined a fuzzy closure space and studied the category **FCS** of fuzzy closure spaces and fuzzy closure preserving maps.

In this chapter, we have introduced the Sierpinski fuzzy closure space and shown that it is a Sierpinski object in the category **FCS** of fuzzy closure spaces. Further, we have given a characterization (up to an isomorphism) of the category **FCS**, using the Sierpinski fuzzy closure space, which is similar to the characterization of the category **TOP** given by Manes [24].

5.2 The category FCS

The following definition is from Manes [24] (see also [30]).

Definition 5.2.1. A category C of sets with structures is a concrete category (\mathbf{C}, F) over the category Set, such that

- 1. a class $\mathbf{C}(X)$ of '**C**-structures' is assigned to every set X, which is in oneto-one correspondence with the 'fibre' $\{A \in Ob(\mathbf{C}) \mid F(A) = X\}$ of X; thus each **C**-object A can be identified with a pair (X, s) (and called a 'set with a structure'), where F(A) = X and $s \in \mathbf{C}(X)$,
- 2. given a bijection $f : F(A) \to F(B)$ and $p \in \mathbf{C}(Y)$, there exists a unique $s \in \mathbf{C}(X)$ such that $f : (X, s) \to (Y, p)$ is a **C**-isomorphism.

Definition 5.2.2. [3] An **isomorphism** of the categories **C**, **D** of sets with structure is given by bijections $\Psi_X : \mathbf{C}(X) \to \mathbf{D}(X)$ with the property that for all sin $\mathbf{C}(X)$, p in $\mathbf{C}(Y)$ and maps $f : X \to Y$, we have that $f : (X, s) \to (Y, p)$ is a **C**-morphism if and only if $f : (X, \Psi_X(s)) \to (Y, \Psi_Y(p))$ is a **D**-morphism.

Definition 5.2.3. ([1], [24]) Let $\mathbf{C} = (\mathbf{C}, F)$ be a category of sets with structure.

- 1. A source $\{f_j : (X, s) \to (X_j, s_j) \mid j \in J\}$ in **C** is **initial** if whenever we have a **C**-structured set (Y, p) and $f : Y \to X$ is a function such that $f_j \circ f : (Y, p) \to (X_j, s_j)$ is a **C**-morphism for each j, then $f : (Y, p) \to (X, s)$ is a **C**-morphism.
- 2. Given a *F*-structured source $\{f_j : X \to F(X_j, s_j) \mid j \in J\}$, if there exists *s* in $\mathbf{C}(X)$ such that the source $\{f_j : (X, s) \to (X_j, s_j) \mid j \in J\}$ in **C** is

initial, then $\{f_j : (X, s) \to (X_j, s_j) \mid j \in J\}$ is called an **initial lift** of the *F*-structured source $\{f_j : X \to F(X_j, s_j) \mid j \in J\}$.

We mention here that the unit closed interval [0, 1] will be denoted by I and for any fuzzy set u in X, u' will denote the complement of u.

The following definitions and propositions in this section are from Srivastava et al. [40].

Definition 5.2.4. Let X be a set. A map $c : I^X \to I^X$ is called a **fuzzy closure** operation on X if for all $u, v \in I^X, a \in I$:

- 1. $u \leq c(u)$,
- 2. $u \le v \Rightarrow c(u) \le c(v)$,
- 3. c(u) = c(c(u)),
- 4. $c(f_a) = f_a$, where $f_a : X \to I$ is such that $f_a(x) = a$, for every $x \in X$.

The pair (X, c) is called a **fuzzy closure space** and fuzzy sets $v \in I^X$ such that c(v) = v, are called *c*-closed fuzzy sets in X. Let (X_1, c_1) and (X_2, c_2) be two fuzzy closure spaces and $\gamma : X_1 \to X_2$ be a map. Then $\gamma : (X_1, c_1) \to (X_2, c_2)$ is called fuzzy closure preserving if $\gamma(c_1(v)) \leq c_2(\gamma(v))$ for every $v \in I^{X_1}$.

A family $\mathcal{F} \subseteq I^X$ is called a **Moore family** if it is closed under infima and contains all constant fuzzy sets.

Proposition 5.2.5. Let (X, c) be a fuzzy closure space. Then the family of all *c*-closed fuzzy sets of (X, c) is a Moore family.

Proposition 5.2.6. If $\mathcal{F} \subseteq I^X$ is a Moore family then the mapping $c_{\mathcal{F}} : I^X \to I^X$, defined by $c_{\mathcal{F}}(v) = \inf\{u \in I^X \mid v \leq u \text{ and } u \in \mathcal{F}\}$, is a fuzzy closure operation on X and a fuzzy set $v \in I^X$ is $c_{\mathcal{F}}$ -closed if and only if $v \in \mathcal{F}$.

 $c_{\mathcal{F}}$ will be called as the fuzzy closure operation on X induced by the Moore family \mathcal{F} .

Proposition 5.2.7. Let (X_1, c_1) and (X_2, c_2) be two fuzzy closure spaces and $\gamma : X_1 \to X_2$ be a mapping. Then $\gamma : (X_1, c_1) \to (X_2, c_2)$ is fuzzy closure preserving if and only if $\gamma^{-1}(v)$ is c_1 -closed for every c_2 -closed fuzzy set $v \in I^{X_2}$.

FCS will denote the category of fuzzy closure spaces and fuzzy closure preserving maps. **FCS** is a category of sets with structure, with the functor $U : \mathbf{FCS} \rightarrow$ **Set** given by $U((X_1, c_1) \xrightarrow{f} (X_2, c_2)) = X_1 \xrightarrow{f} X_2$.

5.3 Sierpinski fuzzy closure space

Proposition 5.3.1. Let (X, c) be a fuzzy closure space. Let \mathcal{F} be the family of all *c*-closed fuzzy sets. Then $c = c_{\mathcal{F}}$, where $c_{\mathcal{F}} : I^X \to I^X$ defined by $c_{\mathcal{F}}(v) = \inf\{u \in I^X \mid v \leq u \text{ and } u \in \mathcal{F}\}$, for every $v \in I^X$.

Proof. First we note that from Proposition 5.2.5, \mathcal{F} is a Moore family, and so from Proposition 5.2.6, $c_{\mathcal{F}}$ is a fuzzy closure operation on the set X. Let $v \in I^X$. Then $c_{\mathcal{F}}(v) = \inf\{u \in I^X \mid v \leq u, u \in \mathcal{F}\}$. Now since \mathcal{F} is a Moore family, $c(\inf\{u \in I^X \mid v \leq u, u \in \mathcal{F}\}) = \inf\{u \in I^X \mid v \leq u, u \in \mathcal{F}\}$, i.e., $c(c_{\mathcal{F}}(v)) = c_{\mathcal{F}}(v)$. Now as $v \leq c_{\mathcal{F}}(v)$, this implies that $c(v) \leq c(c_{\mathcal{F}}(v)) = c_{\mathcal{F}}(v)$. So we have $c(v) \leq c_{\mathcal{F}}(v)$. Also since $v \leq c(v)$ and c(v) is c-closed fuzzy set, $c_{\mathcal{F}}(v) \leq c(v)$. Thus $c(v) = c_{\mathcal{F}}(v)$, for every $v \in I^X$ and therefore $c = c_{\mathcal{F}}$.

Let $S \subseteq I^X$. Consider the family $B \cup \{f_a \mid a \in I\} \cup \{v \cap f_a \mid a \in I, v \in B\}$, where $B = \{v \mid v \text{ is an arbitrary intersection of the complements of members of <math>S\}$ and for each $a \in I$, $f_a : X \to I$ is defined as, $f_a(x) = a$, for every $x \in X$. Then this is a Moore family and we denote it by $\langle S \rangle$ and $c_{\langle S \rangle}$ will denote the fuzzy closure operation on X induced by the Moore family $\langle S \rangle$. Note that if $S \subseteq I^X$ is closed under suprema and contains all constant fuzzy sets, then $\langle S \rangle$ is precisely the set consisting of the complements of all fuzzy sets in S.

Proposition 5.3.2. Let (X_1, c_1) and (X_2, c_2) be two fuzzy closure spaces. Let $c_2 = c_{\langle S \rangle}$, where $S \subseteq I^{X_2}$ and $g: X_1 \to X_2$ be a map. Then $g: (X_1, c_1) \to (X_2, c_2)$ is fuzzy closure preserving if and only if $g^{-1}(u')$ is c_1 -closed, for every $u \in S$.

Proof. We first note that $\langle S \rangle = B \cup \{f_a \mid a \in I\} \cup \{v \cap f_a \mid a \in I, v \in B\}$, where $B = \{v \mid v \text{ is an arbitrary intersection of the complements of members of } S\}$. A fuzzy

set $w \in I^{X_2}$ is $c_{\langle S \rangle}$ -closed if and only if $w \in \langle S \rangle$. Clearly if $g : (X_1, c_1) \to (X_2, c_2)$ is fuzzy closure preserving, then $g^{-1}(u')$ is c_1 -closed, for every $u \in S$.

Conversely, suppose that $g^{-1}(u')$ is c_1 -closed, for every $u \in S$. Let $v \in B$ and assume that $v = \cap \{u'_j \mid j \in J\}$, $u_j \in S$, for every $j \in J$. Then $g^{-1}(v) = g^{-1}(\cap u'_j) = \cap g^{-1}(u'_j)$. Now since $g^{-1}(u'_j)$ is c_1 -closed for every $j \in J$ and the set of all c_1 -closed fuzzy sets is closed under infima, $g^{-1}(v) = \cap g^{-1}(u'_j)$ is c_1 -closed fuzzy set. Also since $g^{-1}(f_a)$ is a constant fuzzy set in X_1 , for every $a \in I$ and each constant fuzzy set in X_1 is c_1 -closed, $g^{-1}(f_a)$ is c_1 -closed, for every $a \in I$. Now let $v \in B$ and $a \in I$. Then $g^{-1}(v \cap f_a) = g^{-1}(v) \cap g^{-1}(f_a)$ is c_1 -closed. Hence $g^{-1}(w)$ is c_1 -closed for every $w \in \langle S \rangle$, i.e., $g^{-1}(w)$ is c_1 -closed fuzzy set for every $c_{\langle S \rangle}$ -closed fuzzy set $w \in I^{X_2}$. Therefore by Proposition 5.2.7, $g: (X_1, c_1) \to (X_2, c_2)$ is fuzzy closure preserving.

In ([40], Proposition 2.5), the authors have proved that the category FCS has initial structures. In the following proposition, we give another description of the initial structures.

Proposition 5.3.3. A source $\{f_j : (X, c) \to (X_j, c_j) \mid j \in J\}$ in the category **FCS** is initial if and only if $c = c_{\langle S \rangle}$, where $S = \{f_j^{-1}(u') \mid u \in F_j, j \in J\}$ and F_j is the family of all c_j -closed fuzzy sets.

Proof. Let F be the family of all c-closed fuzzy sets. First suppose that the source $\{f_j : (X,c) \to (X_j,c_j) \mid j \in J\}$ is initial. Now from Proposition 5.3.1, to show that $c = c_{\langle S \rangle}$, it is sufficient to show that $F = \langle S \rangle$. Since each f_j is fuzzy closure preserving, by Proposition 5.2.7, $f_j^{-1}(u) \in F$ for every $u \in F_j$, $j \in J$, i.e., $(f_j^{-1}(u'))' = f_j^{-1}(u) \in F$, for every $u \in F_j$, $j \in J$. Note that $\langle S \rangle = B \cup \{f_a \mid a \in I\} \cup \{v \cap f_a \mid a \in I, v \in B\}$, where $B = \{v \mid v \text{ is an arbitrary intersection of the complements of members of <math>S\}$. Now since $w' \in F$, for every $w \in S$ and F is a Moore family, $\langle S \rangle \subseteq F$. Now by Proposition 5.2.7, the map $f_j \circ id_X : (X, c_{\langle S \rangle}) \to (X_j, c_j) \text{ is fuzzy closure preserving for each <math>j \in J$ and the source $\{f_j : (X, c) \to (X_j, c_j) \mid j \in J\}$ is initial, so $id_X : (X, c_{\langle S \rangle}) \to (X, c)$ is fuzzy closure preserving. Then from Proposition 5.2.7, $id_X^{-1}(w) = w \in \langle S \rangle$, for every $w \in F$, which implies that $F \subseteq \langle S \rangle$. Therefore $F = \langle S \rangle$.

Conversely, assume that $c = c_{\langle S \rangle}$. Let (Y, c_Y) be a fuzzy closure space and $g: Y \to X$ be a map such that $f_j \circ g: (Y, c_Y) \to (X_j, c_j)$ is fuzzy closure preserving

for each j. Then to show that $g: (Y, c_Y) \to (X, c)$ is fuzzy closure preserving. Let $j \in J, u \in F_j$. Note that $(f_j^{-1}(u'))' = f_j^{-1}(u)$. Now $g^{-1}(f_j^{-1}(u)) = (g^{-1} \circ f_j^{-1})(u) = (f_j \circ g)^{-1}(u)$ is c_Y -closed, as $f_j \circ g: (Y, c_Y) \to (X_j, c_j)$ is fuzzy closure preserving. Hence $g^{-1}(w')$ is c_Y -closed, for every $w \in S$. Thus by Proposition 5.3.2, $g: (Y, c_Y) \to (X, c)$ is fuzzy closure preserving. Therefore the source $\{f_j: (X, c) \to (X_j, c_j) \mid j \in J\}$ is initial. \Box

Definition 5.3.4. The fuzzy closure space $(I, c_{\langle \{id_I\} \rangle})$ will be called as the **Sierpinski fuzzy closure space**.

Theorem 5.3.5. $(I, c_{\langle \{id_I\} \rangle})$ is a Sierpinski object in the category **FCS**.

Proof. Let (X, c) be a fuzzy closure space and $S = \{f \mid f : (X, c) \to (I, c_{\langle \{id_I\}})\}$ is fuzzy closure preserving}. Let c_1 be any other fuzzy closure operation on the set X such that $f : (X, c_1) \to (I, c_{\langle \{id_I\}})$ is fuzzy closure preserving, for every $f \in S$. Let F and F_1 be the family of all c-closed and c_1 -closed fuzzy sets respectively. From Proposition 5.3.2, we note that a map $f : (X, c) \to (I, c_{\langle \{id_I\}})$ is fuzzy closure preserving if and only if f' belongs to F. Let $u \in F$. Then $u' : (X, c) \to (I, c_{\langle \{id_I\}}))$ is fuzzy closure preserving. So, $u' \in S$ and hence $u' : (X, c_1) \to (I, c_{\langle \{id_I\}}))$ is fuzzy closure preserving. Then $(u')' = u \in F_1$ and thus $F \subseteq F_1$. If we take $c_1 = c_{\langle S \rangle}$, then $F \subseteq \langle S \rangle$. Also since $f : (X, c) \to (I, c_{\langle \{id_I\}}))$ is fuzzy closure preserving map, for every $f \in S$, $f' \in F$ for every $f \in S$ and since the family of all c-closed fuzzy sets is closed under infima and contains all constant fuzzy sets, $\langle S \rangle \subseteq F$. Hence $F = \langle S \rangle$. Thus $c = c_F = c_{\langle S \rangle}$. Hence using Proposition 5.3.3, S is an initial source in **FCS**. Therefore $(I, c_{\langle \{id_I\}}))$ is a Sierpinski object in the category **FCS**.

5.4 Characterization of FCS

Theorem 5.4.1. Let $\mathbf{C} = (\mathbf{C}, F)$ be a category of sets with structure. Then \mathbf{C} is isomorphic to the category **FCS** if and only if there exists a **C**-structured set (I, r) in **C** with underlying set I = [0, 1], satisfying the following conditions:

- 1. Every F-structured source $\{f_j : X \to F(I, r) \mid j \in J\}$ has an initial lift.
- 2. The map sup : $(I, r)^T \to (I, r)$ is a **C**-morphism, for every set $T \neq \emptyset$. (Here $(I, r)^T = (I^T, r_0)$, where $r_0 \in \mathbf{C}(I^T)$ such that, $\{p_t : (I^T, r_0) \to (I, r) \mid$

 $t \in T$ is the initial lift of the *F*-structured source $\{p_t : I^T \to F(I, r) \mid t \in T\}, p_t : I^T \to F(I, r)$ are projection maps).

3. (I, r) is a Sierpinski object in **C**.

Let (X, s) be a **C**-structured set, we say that $g \in I^X$ is open in (X, s) if $g: (X, s) \to (I, r)$ is a *C*-morphism. A family $\{g_j \mid j \in J\} \subseteq I^X$ with each g_j open in (X, s) is called a subbase of (X, s) if the source $\{g_j: (X, s) \to (I, r) \mid j \in J\}$ in **C** is initial.

- 4. If ζ is a subbase of (X, s) and $g \in I^X$ is open in (X, s), then $g' \in \langle S \rangle$, where $S = \{f^{-1}(u') \mid f \in \zeta, u \in \langle \{id_I\} \rangle\}$
- 5. Given any set X and $s \in C(X)$, the map $f_a : (X, s) \to (I, r)$ is a C-morphism, for every $a \in I$.

Proof. First we show that the category FCS satisfies the conditions (1)-(5).

(1) Every U-structured source $\{f_j : X \to U(I, c_{\langle \{id_I\}\rangle}) \mid j \in J\}$ has the unique initial lift $\{f_j : (X, c_{\langle S \rangle}) \to (I, c_{\langle \{id_I\}\rangle}) \mid j \in J\}$, where $c_{\langle S \rangle}$ is the fuzzy closure operation on the set X such that $\mathcal{S} = \{f_j^{-1}(u') \mid u \in \langle \{id_I\}\rangle, j \in J\}$.

(2) Let $T \not(\neq \emptyset)$ be a set. To show that the map $\sup : (I, c_{\langle \{id_I\} \rangle})^T \to (I, c_{\langle \{id_I\} \rangle})$ is fuzzy closure preserving. Note that $(I, c_{\langle \{id_I\} \rangle})^T = (I^T, c_{\langle \mathcal{F} \rangle})$, where $\mathcal{F} = \{p_t^{-1}(u') \mid u \in \langle \{id_I\} \rangle, t \in T\}$ and p_t are projections $I^T \to I$, for every $t \in T$. Let $f \in I^T$ and consider $\sup(f) = \sup\{f(t) \mid t \in T\} = \sup\{p_t(f) \mid t \in T\} = (\cup\{p_t \mid t \in T\})(f)$. This implies that $\sup = \cup\{p_t \mid t \in T\}$ and so $(\sup)' = \cap\{p'_t \mid t \in T\}$. Now since $(id_I)' \in \langle \{id_I\} \rangle, \ p_t^{-1}(((id_I)')') = p_t^{-1}(id_I) = p_t \in \mathcal{F}$, for every $t \in T$ and so $p'_t \in \langle \mathcal{F} \rangle$, Therefore from Proposition 5.3.2, the map $\sup : (I, c_{\langle \{id_I\} \rangle})^T \to (I, c_{\langle \{id_I\} \rangle})$ is fuzzy closure preserving.

(3) By Theorem 5.3.5, $(I, c_{\langle \{id_I\} \rangle})$ is a Sierpinski object in the category **FCS**.

(4) Let $g \in I^X$ be open in (X, c), i.e., $g : (X, c) \to (I, c_{\langle \{id_I\}\rangle})$ is fuzzy closure preserving. This implies that g' is c-closed. Now since ζ is a subbase of (X, c), the source $\{f : (X, c) \to (I, c_{\langle \{id_I\}\rangle}) \mid f \in \zeta\}$ is initial. Then by Proposition 5.3.3, $c = c_{\langle S \rangle}$, where $S = \{f^{-1}(u') \mid f \in \zeta, u \in \langle \{id_I\}\rangle\}$. Now since g' is c-closed, $g' \in \langle S \rangle$.

(5) Let $a \in I$ and (X, c) be a fuzzy closure space. Then the map $f_a : (X, c) \to (I, c_{\langle \{id_I\}\rangle})$ is fuzzy closure preserving as $f_a^{-1}((id_I)') = (f_a)'$ is a constant fuzzy set in X and hence c-closed.

Let X be a set and S(X) denote the collection of all fuzzy closure operations on X. Now suppose that **C** is isomorphic to **FCS**. Then for each set X there exists a bijection $\Psi_X : C(X) \to S(X)$ with the property that for all s in C(X), p in C(Y) and maps $f : X \to Y$, we have that $f : (X, s) \to (Y, p)$ is a **C**-morphism if and only if $f : (X, \Psi_X(s)) \to (Y, \Psi_Y(p))$ is fuzzy closure preserving. Let $r = \Psi_I^{-1}(c_{\langle \{id_I\} \rangle})$. Then (I, r) is a Sierpinski object in **C** and satisfies the conditions (1)-(5).

Conversely, let $\mathbf{C} = (\mathbf{C}, F)$ be a category of sets with structure and assume that there exist a C-structured set (I, r) in the category C with underlying set I = [0, 1], satisfying the conditions (1)-(5). Now we have to show that C is isomorphic to the category **FCS**. Define a map $\Psi_X : C(X) \to S(X)$ such that $\Psi_X(s) = c_{\mathcal{F}_s}$, where $\mathcal{F}_s = \{h' \mid h : (X,s) \to (I,r) \text{ is a } C \text{-morphism}\}$ and $c_{\mathcal{F}_s} : I^X \to I^X$ is defined as $c_{\mathcal{F}_s}(v) = \inf\{u \in I^X \mid v \leq u \text{ and } u \in \mathcal{F}_s\}$. Then by the condition (5), all the constant fuzzy sets belong to \mathcal{F}_s . Now let $\{h_t : X \to I \mid t \in T\}$ be a family such that $h_t: (X,s) \to (I,r)$ is a C-morphism, for every $t \in T$. Define $\gamma: X \to I^T$ as $\gamma(x)(t) = h_t(x)$. Then $p_t \circ \gamma = h_t$, for every $t \in T$. Now since the source $\{p_t : (I^T, r_0) \to (I, r) \mid t \in T\}$ is initial and $p_t \circ \gamma = h_t : (X, s) \to (I, r)$ is a C-morphism, for every $t \in T, \gamma : (X, s) \to (I^T, r_0)$ is a C-morphism. Now consider $t \in T$)(x). This implies that $\cup \{h_t \mid t \in T\} = \sup \circ \gamma$ and since $\gamma : (X, s) \to T$ (I^T, r_0) and sup : $(I^T, r_0) \to (I, r)$ are C-morphisms, $\cup h_t : (X, s) \to (I, r)$ is a C-morphism. Hence $(\cup \{h_t \mid t \in T\})' = \cap \{h'_t \mid t \in T\} \in \mathcal{F}_s$. Therefore \mathcal{F}_s is a Moore family and hence from Proposition 5.2.6, $c_{\mathcal{F}_s}$ is a fuzzy closure operation on the set X.

Now we show that the map Ψ_X is a bijection. Let $s_1, s_2 \in C(X)$ such that $\Psi_X(s_1) = \Psi_X(s_2)$, i.e., $c_{\mathcal{F}_{s_1}} = c_{\mathcal{F}_{s_2}}$, where $\mathcal{F}_{s_1} = \{h' \mid h : (X, s_1) \to (I, r)$ is a C-morphism} and $\mathcal{F}_{s_2} = \{h' \mid h : (X, s_2) \to (I, r)$ is a C-morphism}. Then since \mathcal{F}_{s_1} and \mathcal{F}_{s_2} are precisely the family of all $c_{\mathcal{F}_{s_1}}$ -closed and $c_{\mathcal{F}_{s_2}}$ -closed fuzzy sets respectively and $c_{\mathcal{F}_{s_1}} = c_{\mathcal{F}_{s_2}}$, $\mathcal{F}_{s_1} = \mathcal{F}_{s_2}$. Suppose $\mathcal{F}_{s_1} = \mathcal{F}_{s_2} = \mathcal{F}$. Now since (I, r) is a Sierpinski object in \mathbf{C} , the source $\mathcal{S} = \{h : (X, s_1) \to (I, r) : h' \in \mathcal{F}\}$ in \mathbf{C} is initial. We note that the map $h \circ id_X : (X, s_2) \to (I, r)$ is a \mathbf{C} -morphism for every $h \in \mathcal{S}$ and the source $\mathcal{S} = \{h : (X, s_1) \to (I, r) : h' \in \mathcal{F}\}$ is initial, so $id_X : (X, s_2) \to (X, s_1)$ is a \mathbf{C} -morphism. Similarly $id_X^{-1} = id_X : (X, s_1) \to (X, s_2)$ is a \mathbf{C} -morphism. We also note that $id_X : (X, s_1) \to (X, s_1)$ is a \mathbf{C} -morphism. Hence by the definition of a category of sets with structure, $s_1 = s_2$.

Now let $c \in S(X)$, i.e., c is a fuzzy closure operation on X and suppose that $\mathcal{F} = \{h_k \mid k \in K\}$ be the family of all c-closed fuzzy sets. Then the F-structured source $\{h'_k : X \to F(I, r) \mid k \in K\}$ will have an initial lift, say $\{h'_k : (X, s) \to (I, r) \mid k \in K\}$. Then clearly all maps $h'_k : (X, s) \to (I, r), k \in K$ are C-morphisms. This implies that $h_k = (h'_k)' \in \mathcal{F}_s$, for every $k \in K$ and so $\mathcal{F} \subseteq \mathcal{F}_s$. Now let $f \in \mathcal{F}_s$, i.e., $f' : (X, s) \to (I, r) \mid k \in K\}$ is a C-morphism. This implies that f' is open in (X, s). Since $\{h'_k : (X, s) \to (I, r) \mid k \in K\}$ is an initial source, $\{h'_k \mid k \in K\}$ is a subbase for (X, s). So $f = (f')' \in \langle S \rangle$, where $\mathcal{S} = \{(h'_k)^{-1}(u') \mid u \in \langle \{id_I\} \rangle, k \in K\}$. Note that $\langle S \rangle = \langle \{h'_k \mid k \in K\} \rangle$. Now since $\{h_k \mid k \in K\}$ is the family of all c-closed fuzzy sets, it is closed under infima and contains all constant fuzzy sets. So the family $\{h'_k \mid k \in K\}$ is closed under suprema and contains all constant fuzzy sets. Hence $\langle S \rangle = \langle \{h'_k \mid k \in K\} \rangle = \{h_k \mid k \in K\}$. Thus $f \in \{h_k \mid k \in K\} = \mathcal{F}$. This implies that $\mathcal{F}_s \subseteq \mathcal{F}$ and hence $\mathcal{F}_s = \mathcal{F}$. So, $c = c_{\mathcal{F}_s} = \Psi_X(s)$. Therefore the map $\Psi_X : C(X) \to S(X)$ is a bijection.

Now it remains to show that a map $f : (X, s) \to (Y, p)$ is a C-morphism if and only if $f : (X, c_{\mathcal{F}_s}) \to (Y, c_{\mathcal{F}_p})$ is fuzzy closure preserving. First suppose that $f : (X, s) \to (Y, p)$ is a C-morphism and let $u \in \mathcal{F}_p$, i.e., $u' : (Y, p) \to (I, r)$ is a C-morphism. Then $u' \circ f : (X, s) \to (I, r)$ will be a C-morphism. Note that $u' \circ f = f^{-1}(u')$. So, $f^{-1}(u') : (X, s) \to (I, r)$ is C-morphism. Thus $f^{-1}(u) =$ $(f^{-1}(u'))' \in \mathcal{F}_s$. Therefore the map $f : (X, c_{\mathcal{F}_s}) \to (Y, c_{\mathcal{F}_p})$ is fuzzy closure preserving. Conversely, let $f : (X, c_{\mathcal{F}_s}) \to (Y, c_{\mathcal{F}_p})$ be fuzzy closure preserving, i.e., for every $u \in \mathcal{F}_p$, $f^{-1}(u) \in \mathcal{F}_s$. This means that for every $u \in \mathcal{F}_p$, $u' \circ f : (X, s) \to$ (I, r) is a C-morphism. Now since $\{u' : (Y, p) \to (I, r) \mid u \in \mathcal{F}_p\}$ is an initial source, $f : (X, s) \to (Y, p)$ is a C-morphism.

5.5 Conclusion

Srivastava et al. [40] introduced and studied the category **FCS** of fuzzy closure spaces and fuzzy closure preserving maps. In this chapter, we have introduced the Sierpinski fuzzy closure space and proved that it is a Sierpinski object in the category **FCS**. Further, we have given a characterization of the category **FCS** with the help of the Sierpinski fuzzy closure space.