Chapter 4

On coreflective hulls in Str-Q-TOP

4.1 Introduction

Solovyov [36] introduced stratified Q-topological spaces. Singh and Srivastava [31] introduced the Q-topological space $(Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\} \rangle)$ which is a Sierpinski object in the category **Str**-Q-**TOP** of stratified Q-topological spaces.

Singh and Srivastava [32] obtained the epireflective hull of $(Q, \langle \{id_Q\}\rangle)$ in the category Q-TOP of Q-topological spaces. Along with reflective subcategories, coreflective subcategories have also received much attention and have been studied extensively by many authors (cf., e.g., Herrlich and Strecker [17] and [18]). Singh [34] determined the coreflective hull of the L-Sierpinski space in the category L-TOP of L-topological spaces. Hoffmann [19] determined the coreflective hulls of the category of discrete topological spaces and the category of indiscrete topological spaces in the category TOP of topological spaces. Singh and Srivastava [35] determined the coreflective hull of the category of stratified indiscrete fuzzy topological spaces in the category Str-FTOP of stratified fuzzy topological spaces.

In this chapter, we determine the coreflective hull of $(Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\} \rangle)$ in the category **Str**-Q-**TOP**. We also determine the coreflective hulls of the categories **Str**-Dis-Q-**TOP** of discrete Q-topological spaces and **Str**-Ind-Q-**TOP** of stratified indiscrete Q-topological spaces in the category **Str**-Q-**TOP**.

4.2 The category Str-Q-TOP

First we recall the following definition of a stratified Q-topological space from chapter 1 of the thesis.

Definition 4.2.1. [36] A *Q*-topological space (X, τ) is said to be stratified if $q \in \tau$, for every $q \in Q$, where $q: X \to Q$ is defined as q(x) = q, for every $x \in X$.

Str-*Q*-**TOP** will denote the category of stratified *Q*-topological spaces and *Q*-continuous maps. **Str**-*Q*-**TOP** is a construct via the obvious forgetful functor V: **Str**-*Q*-**TOP** \rightarrow **Set**.

The following Proposition 4.2.2 can be easily verified:

Proposition 4.2.2. Let $\{h_k : Z \to V(Z_k, \eta_k) \mid k \in K\}$ be a V-structured source (where Z is a set and (Z_k, η_k) is a stratified Q-topological space for each k). Then $\{h_k : (Z, \eta) \to (Z_k, \eta_k) \mid k \in K\}$, where $\eta = \langle \{\alpha_k \circ h_k \mid \alpha_k \in \eta_k, k \in K\} \rangle$, is the initial lift of the source $\{h_k : Z \to V(Z_k, \eta_k) \mid k \in K\}$ in **Str**-Q-**TOP**.

Remark 4.2.3. By Proposition 4.2.2, it follows that **Str**-*Q*-**TOP** is a topological category over **Set**.

In view of the Remark 4.2.3 and Proposition 1.2.33, we have the following result:

Proposition 4.2.4. In the category **Str**-*Q*-**TOP**, quotient morphisms are precisely extremal epimorphisms.

Proposition 4.2.5. Let (X, τ) and (Y, σ) be stratified *Q*-topological spaces and let $f: (X, \tau) \to (Y, \sigma)$ be a *Q*-continuous map. Then,

- 1. $f : (X, \tau) \to (Y, \sigma)$ is final in **Str**-Q-**TOP** if and only if $\sigma = \{v \in Q^Y \mid v \circ f \in \tau\},\$
- 2. $f: (X, \tau) \to (Y, \sigma)$ is a quotient morphism in **Str**-Q-**TOP** if and only if it is final in **Str**-Q-**TOP** and f is onto.

Singh and Srivastava [31] introduced the Q-topological space $(Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\}\rangle)$. It can be easily verified that $(Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\}\rangle)$ is a Sierpinski object in the category **Str**-Q-**TOP**.

Definition 4.2.6. [17] Let C be a category and let $f : A \to C$ be a morphism in C. Then f is said to have

- 1. an (extremal) **epi-mono factorization** provided that for some (extremal) epimorphism $g : A \to B$ in **C** and some monomorphism $h : B \to C$ in **C**, $f = h \circ g$,
- 2. a **unique extremal epi-mono factorization** provided that it has an extremal epi-mono factorization $f = h \circ g$ and if $f = h_1 \circ g_1$ is an extremal epi-mono factorization, then there exists an isomorphism $k : B \to B_1$ in **C**, such that the diagram

commutes.

Definition 4.2.7. [17] A category C is said to have

- 1. the (extremal) **epi-mono factorization property** provided that each of its morphisms has an (extremal) epi-mono factorization,
- 2. the **unique extremal epi-mono factorization property** provided that each of its morphisms has a unique extremal epi-mono factorization,
- 3. the strong unique extremal epi-mono factorization property provided that it has the unique extremal epi-mono factorization property and, in **C**, the composition of extremal epimorphisms is an extremal epimorphism.

Proposition 4.2.8. The category **Str**-*Q*-**TOP** have the strong unique extremal epi-mono factorization property.

Proof. Let (X, τ) and (Y, σ) be stratified Q-topological spaces and let $f: (X, \tau) \to (Y, \sigma)$ be a Q-continuous map. Let $f(X) = \{f(x) \mid x \in X\}$. Then $f = m \circ e$, where $m: f(X) \to Y$ is defined as m(f(x)) = f(x) and $e: X \to f(X)$ is defined as e(x) = f(x). Next let $\eta = \{v \in Q^{f(X)} \mid v \circ e \in \tau\}$. We note here that since (X, τ) is a stratified Q-topological space, $(f(X), \eta)$ is a stratified Qtopological space and also by Propositions 4.2.4 and 4.2.5, $e: (X, \tau) \to (f(X), \eta)$ is an extremal epimorphism in **Str**-*Q*-**TOP**. It can also be easily verified that $m: (f(X), \eta) \to (Y, \sigma)$ is a monomorphism in **Str**-*Q*-**TOP**. Next let $(X, \tau) \stackrel{e_1}{\longrightarrow} (C_1, \tau_{C_1}) \stackrel{m_1}{\longrightarrow} (Y, \sigma)$ and $(X, \tau) \stackrel{e_2}{\longrightarrow} (C_2, \tau_{C_2}) \stackrel{m_2}{\longrightarrow} (Y, \sigma)$ be extremal epi-mono factorizations of f in **Str**-*Q*-**TOP**. Then by Propositions 4.2.4 and 4.2.5, $e_1: X \to C_1$ is onto and so $C_1 = e_1(X) = \{e_1(x) \mid x \in X\}$. Define $d: C_1 \to C_2$ as $d(e_1(x)) = e_2(x)$. Now we will first prove that the map d is well-defined. Let $e_1(x_1) = e_1(x_2)$, then $(m_1 \circ e_1)(x_1) = (m_1 \circ e_1)(x_2) = (m_2 \circ e_2)(x_2) = m_2(e_2(x_2))$. Also $(m_1 \circ e_1)(x_1) = (m_2 \circ e_2)(x_1) = m_2(e_2(x_2))$ and since $m_2: (C_2, \tau_{C_2}) \to (Y, \sigma)$ is a monomorphism in **Str**-*Q*-**TOP**, m_2 is one-one and so $e_2(x_1) = e_2(x_2)$. Hence the map d is well-defined. Also it can be easily proved that the diagram

commutes. Now we will prove that the map $d: (C_1, \tau_{C_1}) \to (C_2, \tau_{C_2})$ is an isomorphism in Str-Q-TOP. Let $\alpha \in \tau_{C_2}$, then $\alpha \circ d \circ e_1 = \alpha \circ e_2 \in \tau$ as $e_2: (X,\tau) \to (C_2,\tau_{C_2})$ is Q-continuous. Now since $e_1: (X,\tau) \to (C_1,\tau_{C_1})$ is an extremal epimorphism in Str-Q-TOP and $\alpha \circ d \circ e_1 \in \tau$, by Propositions 4.2.4 and 4.2.5, it follows that $\alpha \circ d \in \tau_{C_1}$. Hence $d: (C_1, \tau_{C_1}) \to (C_2, \tau_{C_2})$ is Q-continuous. Next let $v \in Q^{C_2}$ such that $v \circ d \in \tau_{C_1}$. Then since $e_1 : (X, \tau) \to (C_1, \tau_{C_1})$ is Q-continuous, $v \circ d \circ e_1 \in \tau$. This implies that $v \circ e_2 \in \tau$. Now since $e_2: (X, \tau) \to (C_2, \tau_{C_2})$ is an extremal epimorphism in **Str**-Q-**TOP** and $v \circ e_2 \in \tau$, by Propositions 4.2.4 and 4.2.5, it follows that $v \in \tau_{C_2}$. Thus by Proposition 4.2.5, $d: (C_1, \tau_{C_1}) \rightarrow (C_2, \tau_{C_2})$ is a final morphism in Str-Q-TOP. Now we will show that d is bijective. Let $d(e_1(x_1)) = d(e_1(x_2))$. This implies that $m_1(e_1(x_1)) = m_1(e_1(x_2))$ and since $m_1: (C_1, \tau_{C_1}) \to (B, \tau_B)$ is a monomorphism in Str-Q-TOP, m_1 is one-one and so $e_1(x_1) = e_1(x_2)$ and hence d is one-one. Now let $c_2 \in C_2$. Since by Propositions 4.2.4 and 4.2.5, e_2 is onto, there exists $x \in X$ such that $e_2(x) = c_2$ and then $d(e_1(x)) = c_2$ and so d is onto. Thus $d: (C_1, \tau_{C_1}) \to (C_2, \tau_{C_2})$ is a final morphism in **Str**-Q-**TOP** and d is bijective and so by Proposition 1.2.23, $d: (C_1, \tau_{C_1}) \to (C_2, \tau_{C_2})$ is an isomorphism in Str-Q-**TOP**. Now by Proposition 1.2.22 and Proposition 4.2.4, composition of extremal

epimorphisms in **Str**-*Q*-**TOP** is an extremal epimorphism in **Str**-*Q*-**TOP**. Therefore **Str**-*Q*-**TOP** have the strong unique extremal epi-mono factorization property.

Definition 4.2.9. [36] Let (Z, η) be a stratified Q-topological space and let $M \subseteq Z$. Then $\eta_M = \{\alpha|_M | \alpha \in \eta\}$, where $\alpha|_M \colon M \to Q$ is defined as $\alpha|_M(m) = \alpha(m)$, for every $m \in M$, is a stratified Q-topology on M, called as the subspace Q-topology on M and (M, η_M) is called a subspace of (Z, η) .

Definition 4.2.10. [32] Let (Z, η) be a stratified Q-topological space, X be a set and $g: Z \to X$ be an onto map. Then $\tau = \{\alpha \in Q^X \mid \alpha \circ g \in \eta\}$ is a stratified Q-topology on X, called as the quotient Q-topology on X with respect to (Z, η) and g. The Q-continuous map $g: (Z, \eta) \to (X, \tau)$ is called a quotient map and (X, τ) is called as the quotient Q-topological space of (Z, η) with respect to the quotient map g.

Remark 4.2.11. We mention here that quotient morphisms (in category theoretic sense) in **Str**-*Q*-**TOP** are precisely quotient maps.

([31]) Let Z be a set. Q^Z is clearly the largest Q-topology on Z and called as the discrete Q-topology on Z and the stratified Q-topological space (Z, Q^Z) is called a discrete Q-topological space. The Q-topology $\eta = \{\underline{q} \mid q \in Q\}$ is called as the stratified indiscrete Q-topology on Z and (Z, η) is called a stratified indiscrete Q-topological space. We mention here that discrete and indiscrete objects in the category **Str**-Q-**TOP** are respectively the discrete and stratified indiscrete Q-topological space.

Str-Dis-*Q*-**TOP** will denote the full subcategory of **Str**-*Q*-**TOP** consisting of discrete *Q*-topological spaces and **Str-Ind**-*Q*-**TOP** will denote the full subcategory of **Str**-*Q*-**TOP** consisting of stratified indiscrete *Q*-topological spaces.

4.3 Coreflective Hull of $(Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\} \rangle)$ in Str-Q-TOP

From now onwards, in this chapter subcategories are always assumed to be full and isomorphism-closed. **Definition 4.3.1.** [1] Let **W** be a subcategory of a category **C** and let *B* be a **C**-object. A **W**-coreflection (or **W**-coreflection arrow) for *B* is a **C**-morphism $f: A \to B$ from a **W**-object *A* to *B* with the following universal property:

for any **C**-morphism $g : \hat{A} \to B$ from some **W**-object \hat{A} to B, there exists a unique **W**-morphism $\hat{g} : \hat{A} \to A$ such that the triangle

$$\begin{array}{ccc}
A & \stackrel{f}{\longrightarrow} & B \\
\hat{g} & & & \\
\hat{g} & & & \\
\hat{A} & & & \\
\end{array} \tag{4.3.1}$$

commutes.

Definition 4.3.2. Let \mathbf{C} be a category and let E be a class of \mathbf{C} -morphisms.

- [1] A subcategory W of C is called *E*-coreflective subcategory of C if for each C-object *B*, there exists a W-coreflection arrow in *E*. In particular, we use the terms coreflective (resp. epicoreflective, mono-coreflective) in case *E* is the class of all morphisms (resp. epimorphisms, monomorphisms) of C.
- [17] Let A be a class of C-objects. The smallest E-coreflective subcategory of C containing A is called the E-coreflective hull of A in the category C. In particular, we use the terms coreflective hull (resp. epicoreflective hull, mono-coreflective hull) in case E is the class of all morphisms (resp. epimorphisms, monomorphisms) of C.

Theorem 4.3.3. [17] Let \mathbf{C} be a well-powered category which has coproducts and the extremal epi-mono factorization property. Then the mono-coreflective hull in \mathbf{C} of a class \mathcal{A} of \mathbf{C} objects exists. Furthermore, if \mathbf{C} has the strong unique extremal epi-mono factorization property, then the objects of this monocoreflective hull of \mathcal{A} are exactly all the extremal quotients of coproducts of objects in \mathcal{A} .

Theorem 4.3.4. [17] Let \mathbf{C} be a well-powered category which has coproducts and the extremal epi-mono factorization property. Let \mathbf{W} be a subcategory of \mathbf{C} . Then \mathbf{W} is a monocoreflective subcategory of \mathbf{C} if and only if \mathbf{W} is closed under the formation of coproducts and extremal quotient objects. **Proposition 4.3.5.** [17] Let \mathbf{C} be a category and \mathbf{W} be an epicoreflective subcategory of \mathbf{C} . Then \mathbf{W} is a monocoreflective subcategory of \mathbf{C} .

Remark 4.3.6. The empty set \emptyset has a unique stratified Q-topological structure $\{\emptyset\}$ which is simultaneously discrete and indiscrete. The stratified Q-topological space $(\emptyset, \{\emptyset\})$ will be denoted by \mathbb{I} and it can be easily verified that \mathbb{I} is the initial object in the category **Str**-Q-**TOP**. We also mention here that $\{\mathbb{I}\}$ is a coreflective subcategory of **Str**-Q-**TOP**. Now if \mathbf{W} is any coreflective subcategory of **Str**-Q-**TOP**, then there exists a \mathbf{W} -coreflection $c_W : (X_W, \tau_W) \to \mathbb{I}$ for \mathbb{I} , but then (X_W, τ_W) must be equal to \mathbb{I} and hence $\mathbb{I} \in \mathbf{W}$. Thus every coreflective subcategory of **Str**-Q-**TOP** contains \mathbb{I} and $\{\mathbb{I}\}$ is the smallest coreflective subcategory of **Str**-Q-**TOP**.

The following Proposition 4.3.7 is concerned with the extension of Proposition 3.4 in [35], for the category **Str**-*Q*-**TOP**.

Proposition 4.3.7. Let **W** be a coreflective subcategory of **Str**-*Q*-**TOP**. Then **W** is a monocoreflective subcategory of **Str**-*Q*-**TOP**.

Proof. If $\mathbf{W} = \{\mathbb{I}\}$, then it can be easily proved that it is a monocoreflective subcategory of Str-Q-TOP. Now suppose that $\mathbf{W} \neq \{\mathbb{I}\}$. We will first prove that W is an epicoreflective subcategory of Str-Q-TOP. Let (X, τ) be a stratified Qtopological space with non-empty underlying set and let $c_W: (X_W, \tau_W) \to (X, \tau)$ be its W-coreflection. Let (Y, σ) be a stratified Q-topological space and let h, g: $(X,\tau) \to (Y,\sigma)$ be distinct Q-continuous maps. Then there exists $x \in X$ such that $h(x) \neq g(x)$. Consider the inclusion map $i_x : (\{x\}, \tau_d) \to (X, \tau)$, where τ_d is the discrete Q-topology on $\{x\}$. Clearly, $i_x : (\{x\}, \tau_d) \to (X, \tau)$ is Q-continuous and $h \circ i_x \neq g \circ i_x$. Now since $\mathbf{W} \neq \{\mathbb{I}\}, \mathbf{W}$ contains a non-empty stratified Q-topological space, say (Z,η) . Let $f:(Z,\eta)\to(\{x\},\tau_d)$ be the constant map, which is clearly Q-continuous. Also $h \circ i_x \circ f \neq g \circ i_x \circ f$. Now since $c_W : (X_W, \tau_W) \to (X, \tau)$ is a coreflection, there exists a unique Q-continuous map $l: (Z, \eta) \to (X_W, \tau_W)$ such that $c_W \circ l = i_x \circ f$. Then, $h \circ c_W \circ l = h \circ i_x \circ f \neq g \circ i_x \circ f = g \circ c_W \circ l$. This implies that $h \circ c_W \neq g \circ c_W$. Thus $c_W : (X_W, \tau_W) \to (X, \tau)$ is an epimorphism and so **W** is an epicoreflective subcategory of **Str**-Q-**TOP**. Therefore by Proposition 4.3.5, W is a monocoreflective subcategory of Str-Q-TOP.

In view of Proposition 4.2.2, **Str**-*Q*-**TOP** is a topological category over **Set** and since **Set** is a well-powered category and has coproducts, **Str**-*Q*-**TOP** is a

well-powered category and has coproducts (cf. Theorem 21.16, Corollary 21.17 in [1]). We mention here that by Proposition 4.2.4 and Remark 4.2.11, extremal epimorphisms in **Str**-*Q*-**TOP** are precisely quotient maps and for a given stratified *Q*-topological space (Z, η) , the extremal quotients of (Z, η) in **Str**-*Q*-**TOP** are precisely the quotient *Q*-topological spaces of (Z, η) . Also by Proposition 4.2.8, **Str**-*Q*-**TOP** has strong unique extremal epi-mono factorization property. Thus from Theorem 4.3.3 and Proposition 4.3.7, we have the following result:

Theorem 4.3.8. Let (Z, η) be a stratified Q-topological space. Then the coreflective hull of (Z, η) exists in **Str**-Q-**TOP**. Moreover, its objects are precisely the quotient Q-topological spaces of coproducts of copies of (Z, η) .

By Theorem 4.3.4 and Proposition 4.3.7, we have the following result:

Theorem 4.3.9. Let \mathbf{W} be a subcategory of \mathbf{Str} -Q- \mathbf{TOP} . Then \mathbf{W} is a coreflective subcategory of \mathbf{Str} -Q- \mathbf{TOP} if and only if it is closed under the formation of coproducts and quotient Q-topological spaces.

Let (Z, η) be a stratified Q-topological space and $\{k\}$ be a fixed singleton set. Consider the set $Z \times \{k\}$. Let $\eta_k^* = \{\alpha^* \mid \alpha \in \eta\}$, where $\alpha^* : Z \times \{k\} \to Q$ is defined as $\alpha^*(z, k) = \alpha(z)$. Then η_k^* is a stratified Q-topology on $Z \times \{k\}$.

Let $\{(Z_k, \eta_k) \mid k \in K\}$ be a non-empty family of stratified Q-topological spaces. Let $Z = \bigcup_{k \in K} Z_k \times \{k\}$ and $\eta^+ = \{v \in Q^Z \mid v|_{Z_k \times \{k\}} \in \eta_k^*, \forall k \in K\}$. Then η^+ is a stratified Q-topology on Z and $\{in_k : (Z_k, \eta_k) \to (Z, \eta^+) \mid k \in K\}$ is a coproduct of $\{(Z_k, \eta_k) \mid k \in K\}$ in **Str**-Q-**TOP**, where $in_k : Z_k \to Z$ is defined by $in_k(z_k) = (z_k, k)$, for every $z_k \in Z_k$.

Lemma 4.3.10. Let $g : Z \to Y$ be a map. Let $\beta : Y \to Q$ be a map and $\alpha \in \langle \{\beta\} \cup \{q \mid q \in Q\} \rangle$, then $\alpha \circ g \in \langle \{\beta \circ g\} \cup \{q \mid q \in Q\} \rangle$.

 $\begin{array}{l} \textit{Proof. Consider the map } g: (Z, \langle \{\beta \circ g\} \cup \{\underline{q} \mid q \in Q\} \rangle) \to (Y, \langle \{\beta\} \cup \{\underline{q} \mid q \in Q\} \rangle).\\ \text{By Proposition 1.2.40, this map is } Q\text{-continuous. Therefore if } \alpha \in \langle \{\beta\} \cup \{\underline{q} \mid q \in Q\} \rangle,\\ \text{then } \alpha \circ g \in \langle \{\beta \circ g\} \cup \{\underline{q} \mid q \in Q\} \rangle. \end{array}$

For a given stratified Q-topological space (Z, η) , $CH((Z, \eta))$ will denote the coreflective hull of (Z, η) in the category **Str**-Q-**TOP**.

Lemma 4.3.11. Let (Z, η) and (Y, σ) be stratified Q-topological spaces and let $(Y, \sigma) \in CH((Z, \eta))$. Then either (Y, σ) is \mathbb{I} or there exists a non-empty index set K such that (Y, σ) is a quotient Q-topological space of the coproduct $(\bigcup_{k \in K} Z_k \times \{k\}, \eta^+)$ of $\{(Z_k, \eta_k) \mid k \in K\}$ in Str-Q-TOP, where for each $k \in K$, (Z_k, η_k) is (Z, η) .

Proof. By Theorem 4.3.8, there exists an index set K, a stratified Q-topological space (W, θ) which is a coproduct of K copies of (Z, η) and a quotient map f: $(W, \theta) \to (Y, \sigma)$. If $K = \emptyset$, then since coproduct of empty family of stratified Q-topological spaces in **Str**-Q-**TOP** is I and quotient Q-topological space of I is I, (Y, σ) is I. Now suppose that $K \neq \emptyset$ and consider the family $\{(Z_k, \eta_k) \mid k \in K\}$ of stratified Q-topological spaces, where each (Z_k, η_k) is (Z, η) . Then since $(\bigcup_{k \in K} Z_k \times \{k\}, \eta^+)$ is also a coproduct of K copies of (Z, η) in **Str**-Q-**TOP**, there exists an isomorphism $g: (\bigcup_{k \in K} Z_k \times \{k\}, \eta^+) \to (W, \theta)$. Next, since an isomorphism in **Str**-Q-**TOP** is a quotient map and composition of quotient maps is a quotient map, $f \circ g: (\bigcup_{k \in K} Z_k \times \{k\}, \eta^+) \to (Y, \sigma)$ is a quotient map. Hence (Y, σ) is a quotient Q-topological space of $(\bigcup_{k \in K} Z_k \times \{k\}, \eta^+)$.

The following Theorem 4.3.12 is concerned with the extension of Proposition 6.1 in [35], for the category **Str**-*Q*-**TOP**.

Theorem 4.3.12. Let (Z, η) and (Y, σ) be stratified Q-topological spaces. Then $(Y, \sigma) \in CH((Z, \eta))$ if and only if either (Y, σ) is \mathbb{I} or there exists a non-empty family $\{(Y_k, \sigma_k) \mid k \in K\}$ of subspaces of (Y, σ) such that

- 1. $Y = \bigcup_{k \in K} Y_k$
- 2. For each $v \in Q^Y$, $v \in \sigma$ if and only if $v|_{Y_k} \in \sigma_k$, for every $k \in K$.
- 3. (Y_k, σ_k) is a quotient Q-topological space of (Z, η) , for every $k \in K$.

Proof. Let $(Y, \sigma) \in \operatorname{CH}((Z, \eta))$. Then by Lemma 4.3.11, either (Y, σ) is \mathbb{I} or there exists a non-empty index set K such that (Y, σ) is a quotient Q-topological space of the coproduct $(\bigcup_{k \in K} Z_k \times \{k\}, \eta^+)$ of $\{(Z_k, \eta_k) \mid k \in K\}$ in **Str**-Q-**TOP**, where for each $k \in K$, (Z_k, η_k) is (Z, η) . Let $f : (\bigcup_{k \in K} Z_k \times \{k\}, \eta^+) \to (Y, \sigma)$ be a quotient map. Next, let $Y_k = f(Z_k \times \{k\})$ and let σ_k be the subspace Qtopology on Y_k . Then as f is onto, $Y = \bigcup_{k \in K} Y_k$. Next, let $v \in \sigma$. Then, $v|_{Y_k} \in \sigma_k$, for every $k \in K$, as σ_k is the subspace Q-topology on Y_k , for every $k \in K$. Now let $v \in Q^Y$ such that $v|_{Y_k} \in \sigma_k$, for every $k \in K$. Consider the map $f|_{Z_k \times \{k\}} \colon (Z_k \times \{k\}, \eta_k^*) \to (Y_k, \sigma_k)$. This map is Q-continuous as $u|_{Y_k} \circ f|_{Z_k \times \{k\}} =$ $(u \circ f)|_{Z_k \times \{k\}} \in \eta_k^*$, for every $u \in \sigma$. Then, since for every $k \in K$, $v|_{Y_k} \in \sigma_k$, $(v \circ f)|_{Z_k \times \{k\}} = v|_{Y_k} \circ f|_{Z_k \times \{k\}} \in \eta_k^*$, for every $k \in K$. This implies that $v \circ f \in \eta^+$ and since $f: (\bigcup_{k \in K} Z_k \times \{k\}, \eta^+) \to (Y, \sigma)$ is a quotient map, $v \in \sigma$. Next, we have to prove that (Y_k, σ_k) is a quotient Q-topological space of (Z, η) , for every $k \in K$. Fix $k_0 \in K$. First we will show that $f|_{Z_{k_0} \times \{k_0\}} : (Z_{k_0} \times \{k_0\}, \eta_{k_0}^*) \to (Y_{k_0}, \sigma_{k_0})$ is a quotient map. Clearly it is onto and Q-continuous. Now let $\alpha \in Q^{Y_{k_0}}$ such that $\alpha \circ f|_{Z_{k_0} \times \{k_0\}} \in \eta_{k_0}^*$. Let $v \in Q^Y$ be a map such that $v|_{Y_k} \in \sigma_k$, for every $k \neq k_0 \in K$ and $v|_{Y_{k_0}} = \alpha$. Then $(v \circ f)|_{Z_k \times \{k\}} = v|_{Y_k} \circ f|_{Z_k \times \{k\}} \in \eta_k^*$, for every $k \neq k_0 \in K$ as $f|_{Z_k \times \{k\}} \colon (Z_k \times \{k\}, \eta_k^*) \to (Y_k, \sigma_k)$ is Q-continuous, for every $k(\neq k_0) \in K$. Now $(v \circ f)|_{Z_{k_0} \times \{k_0\}} = v|_{Y_{k_0}} \circ f|_{Z_{k_0} \times \{k_0\}} = \alpha \circ f|_{Z_{k_0} \times \{k_0\}} \in \eta_{k_0}^*$. Thus $(v \circ f)|_{Z_k \times \{k\}} \in \eta_k^*$, for every $k \in K$. This implies that $v \circ f \in \eta^+$. Hence $v \in \sigma$ and so $v|_{Y_{k_0}} = \alpha \in \sigma_{k_0}$. So $f|_{Z_{k_0} \times \{k_0\}} \colon (Z_{k_0} \times \{k_0\}, \eta_{k_0}^*) \to (Y_{k_0}, \sigma_{k_0})$ is a quotient map. Next, consider the map $l_{k_0}: Z_{k_0} \to Z_{k_0} \times \{k_0\}$ defined as $l_{k_0}(z_{k_0}) = (z_{k_0}, k_0)$, for every $z_{k_0} \in Z_{k_0}$. We will show that $l_{k_0} : (Z_{k_0}, \eta_{k_0}) \to (Z_{k_0} \times \{k_0\}, \eta_{k_0}^*)$ is a quotient map. Clearly this map is onto. Now let $\alpha^* \in \eta_{k_0}^*$. Then, $\alpha^* \circ l_{k_0} = \alpha \in \eta_{k_0}$. Next, let $\beta^* \in Q^{Z_{k_0} \times \{k_0\}}$ such that $\beta^* \circ l_{k_0} \in \eta_{k_0}$. Then, $\beta^* = (\beta^* \circ l_{k_0})^* \in \eta^*_{k_0}$. Hence $l_{k_0}: (Z_{k_0}, \eta_{k_0}) \to (Z_{k_0} \times \{k_0\}, \eta_{k_0}^*)$ is a quotient map. Since composition of quotient maps is a quotient map, $f|_{Z_{k_0}\times\{k_0\}}\circ l_{k_0}: (Z_{k_0},\eta_{k_0})\to (Y_{k_0},\sigma_{k_0})$ is a quotient map and so (Y_{k_0}, σ_{k_0}) is a quotient Q-topological space of (Z_{k_0}, η_{k_0}) . Thus (Y_k, σ_k) is a quotient Q-topological space of (Z_k, η_k) , for every $k \in K$, i.e. (Y_k, σ_k) is a quotient Q-topological space of (Z, η) , for every $k \in K$.

Conversely, if (Y, σ) is \mathbb{I} , then by Remark 4.3.6, $(Y, \sigma) \in \operatorname{CH}((Z, \eta))$. Now assume that there exists a non-empty family $\{(Y_k, \sigma_k) \mid k \in K\}$ of subspaces of (Y, σ) satisfying (1), (2) and (3). Then by (3), there exists a quotient map $f_k : (Z_k, \eta_k) \to (Y_k, \sigma_k)$, for every $k \in K$ (where for each $k \in K$, (Z_k, η_k) is (Z, η)). Define a map $f : \bigcup_{k \in K} Z_k \times \{k\} \to Y$ as $f(z, k) = f_k(z)$, for every $(z, k) \in \bigcup_{k \in K} Z_k \times \{k\}$. Then clearly f is onto. We will show that $f : (\bigcup_{k \in K} Z_k \times$ $\{k\}, \eta^+) \to (Y, \sigma)$ is a quotient map. Let $v \in \sigma$. Then $v|_{Y_k} \in \sigma_k$ and since $f_k : (Z_k, \eta_k) \to (Y_k, \sigma_k)$ is Q-continuous, $v|_{Y_k} \circ f_k \in \eta_k$. So, $(v|_{Y_k} \circ f_k)^* \in \eta_k^*$ and since $(v|_{Y_k} \circ f_k)^* = v|_{Y_k} \circ f|_{Z_k \times \{k\}} = (v \circ f)|_{Z_k \times \{k\}}, (v \circ f)|_{Z_k \times \{k\}} \in \eta_k^*$. Hence $(v \circ f)|_{Z_k \times \{k\}} \in$ η_k^* , for every $k \in K$. This implies that $v \circ f \in \eta^+$. Next, let $v \in Q^Y$ such that $v \circ f \in \eta^+$, i.e., $(v \circ f)|_{Z_k \times \{k\}} \in \eta_k^*$, for every $k \in K$. This implies that $(v|_{Y_k} \circ f_k)^* \in \eta_k^*$, for every $k \in K$. Thus $v|_{Y_k} \circ f_k \in \eta_k$, for every $k \in K$. Thus $v|_{Y_k} \in \sigma_k$, for every $k \in K$ as $f_k : (Z_k, \eta_k) \to (Y_k, \sigma_k)$ is a quotient map, for every $k \in K$. Then by (2), $v \in \sigma$. Therefore $f : (\bigcup_{k \in J} Z_k \times \{k\}, \eta^+) \to (Y, \sigma)$ is a quotient map and by Theorem 4.3.8, $(Y, \sigma) \in CH((Z, \eta))$.

Proposition 4.3.13. Let a stratified Q-topological space (Z, η) be a quotient Q-topological space of $(Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\}\rangle)$ via a quotient map $g : (Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\}\rangle) \rightarrow (Z, \eta)$. Then $|Z| \leq |Q|$ and $\eta = \langle \{g^{-1}\} \cup \{\underline{q} \mid q \in Q\}\rangle$, if g is bijective.

Further, if (Z, η) is a stratified Q-topological space such that |Z| = |Q| and $\eta = \langle \{\beta\} \cup \{\underline{q} \mid q \in Q\} \rangle$, where $\beta : Z \to Q$ is a bijection, then (Z, η) is a quotient Q-topological space of $(Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\} \rangle)$ via the quotient map $\beta^{-1} : (Q, \langle \{id_Q\} \cup \{q \mid q \in Q\} \rangle) \to (Z, \eta).$

Proof. Let a stratified Q-topological space (Z, η) be a quotient Q-topological space of $(Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\}\rangle)$ with respect to a quotient map $g: (Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\}\rangle) \rightarrow (Z, \eta)$. Then as g is onto, $|Z| \leq |Q|$. Now suppose that g is bijective. Let $\alpha \in \eta$, then $\alpha \circ g \in \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\}\rangle$. Then by Lemma 4.3.10, $\alpha \circ g \circ g^{-1} \in \langle \{id_Q \circ g^{-1}\} \cup \{\underline{q} \mid q \in Q\}\rangle$, i.e. $\alpha \in \langle \{g^{-1}\} \cup \{\underline{q} \mid q \in Q\}\rangle$. Hence $\eta \subseteq \langle \{g^{-1}\} \cup \{\underline{q} \mid q \in Q\}\rangle$. Now since the map $g: (Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\}\rangle) \rightarrow (Z, \langle \{g^{-1}\} \cup \{\underline{q} \mid q \in Q\}\rangle)$ is Q-continuous, $\alpha \circ g \in \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\}\rangle$, for every $\alpha \in \langle \{g^{-1}\} \cup \{\underline{q} \mid q \in Q\}\rangle$. Then since $g: (Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\}\rangle) \rightarrow (Z, \eta)$ is a quotient map, $\alpha \in \eta$, for every $\alpha \in \langle \{g^{-1}\} \cup \{\underline{q} \mid q \in Q\}\rangle$. This implies that $\langle \{g^{-1}\} \cup \{\underline{q} \mid q \in Q\}\rangle \subseteq \eta$. Therefore $\eta = \langle \{g^{-1}\} \cup \{\underline{q} \mid q \in Q\}\rangle$.

Now let (Z, η) be a stratified Q-topological space such that |Z| = |Q| and $\eta = \langle \{\beta\} \cup \{\underline{q} \mid q \in Q\} \rangle$, where $\beta : Z \to Q$ is a bijection. We have to prove that $\beta^{-1} : (Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\} \rangle) \to (Z, \eta)$ is a quotient map. Clearly it is Q-continuous. Now let $\alpha \in Q^Z$ such that $\alpha \circ \beta^{-1} \in \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\} \rangle$. Then by Lemma 4.3.10, $\alpha \circ \beta^{-1} \circ \beta \in \langle \{\beta\} \cup \{\underline{q} \mid q \in Q\} \rangle$, i.e., $\alpha \in \langle \{\beta\} \cup \{\underline{q} \mid q \in Q\} \rangle = \eta$. Therefore $\beta^{-1} : (Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\} \rangle) \to (Z, \eta)$ is a quotient map. \Box

Now by Theorem 4.3.12 and Proposition 4.3.13, we have the following result:

Theorem 4.3.14. Let (Z, η) be a stratified Q-topological space. Then $(Z, \eta) \in$ CH $((Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\}\rangle))$ if and only if either (Z, η) is \mathbb{I} or there exists a non-empty family $\{(Z_k, \eta_k) \mid k \in K\}$ of subspaces of (Z, η) satisfying the following conditions:

- 1. $Z = \bigcup_{k \in K} Z_k$ such that for each $k \in K$, there exists a quotient map g_k : $(Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\} \rangle) \to (Z_k, \eta_k)$. Furthermore, if g_k is bijective, then $\eta_k = \langle \{g_k^{-1}\} \cup \{q \mid q \in Q\} \rangle$.
- 2. For each $v \in Q^Z$, $v \in \eta$ if and only if $v|_{Z_k} \in \eta_k$, for every $k \in K$.

4.4 Coreflective hull of Str-Dis-Q-TOP and Str-Ind-Q-TOP in the category Str-Q-TOP

Proposition 4.4.1. Let (Z, η) be a discrete *Q*-topological space with $|Z| \ge 1$. Then $CH((Z, \eta)) =$ **Str-Dis**-*Q*-**TOP**.

Proof. First suppose that (Y, σ) belongs to $CH((Z, \eta))$. If (Y, σ) is I, then clearly $(Y, \sigma) \in$ Str-Dis-Q-TOP. Now suppose that (Y, σ) is a stratified Q-topological space with non-empty underlying set. Then by Theorem 4.3.12, there exists a non-empty family $\{(Y_k, \sigma_k) \mid k \in K\}$ of subspaces of (Y, σ) , where each (Y_k, σ_k) is quotient Q-topological space of (Z, η) , such that $Y = \bigcup_{k \in K} Y_k$ and for each $v \in Q^Y, v \in \sigma$ if and only if $v|_{Y_k} \in \sigma_k$, for every $k \in K$. Now since (Z, η) is a discrete Q-topological space and each (Y_k, σ_k) is quotient Q-topological space of (Z,η) , each (Y_k,σ_k) is a discrete Q-topological space. Now let $v \in Q^Y$, then $v|_{Y_k} \in \sigma_k$, for every $k \in K$ (since σ_k is discrete). Thus $v \in \sigma$. Therefore (Y, σ) is a discrete Q-topological space and so $CH((Z, \eta)) \subseteq Str-Dis-Q-TOP$. Next let (Y, σ) be a discrete Q-topological space. Let $Y = \{y_k \mid k \in K\}$. Consider the family $\{(\{y_k\}, \sigma_k) \mid k \in K\}$ of stratified Q-topological spaces, where σ_k is the discrete Q-topology on $\{y_k\}$, for every $k \in K$. Clearly each $(\{y_k\}, \sigma_k)$ is a subspace of (Y,σ) and $Y = \bigcup_{k \in K} Y_k$, where $Y_k = \{y_k\}$. Also for each $v \in Q^Y$, $v \in \sigma$ if and only if $v|_{Y_k} \in \sigma_k$, for every $k \in K$ and each (Y_k, σ_k) is a quotient Q-topological space of (Z,η) . Thus by Theorem 4.3.12, (Y,σ) belongs to $CH((Z,\eta))$ and so **Str-Dis**-*Q*-**TOP** \subseteq CH((*Z*, η)). Therefore CH((*Z*, η)) = **Str-Dis**-*Q*-**TOP**.

By Proposition 4.4.1, it is clear that **Str-Dis**-*Q*-**TOP** is a coreflective subcategory of **Str**-*Q*-**TOP**. Thus we have the following result:

Theorem 4.4.2. The coreflective hull of **Str-Dis**-*Q*-**TOP** in the category **Str**-*Q*-**TOP** is **Str-Dis**-*Q*-**TOP**.

Str-IG-*Q***-TOP** will denote the full subcategory of **Str**-*Q***-TOP** consisting of coproducts of stratified indiscrete *Q*-topological spaces.

Lemma 4.4.3. Str-IG-Q-TOP is an isomorphism closed subcategory of Str-Q-TOP.

Proof. Let $(Y, \sigma) \in$ **Str-IG**-Q-**TOP** and let $\{u_k : (Y_k, \sigma_k) \to (Y, \sigma) \mid k \in K\}$ be a coproduct in **Str**-Q-**TOP**, where each (Y_k, σ_k) is a stratified indiscrete Qtopological space. Next let $h : (Y, \sigma) \to (Z, \eta)$ be an isomorphism in **Str**-Q-**TOP**. Then it is easy to prove that $\{h \circ u_k : (Y_k, \sigma_k) \to (Z, \eta) \mid k \in K\}$ is a coproduct in **Str**-Q-**TOP** and so $(Z, \eta) \in$ **Str**-**IG**-Q-**TOP**. Therefore **Str**-**IG**-Q-**TOP** is an isomorphism closed subcategory of **Str**-Q-**TOP**.

Lemma 4.4.4. Let $\{(Z_k, \eta_k) \mid k \in K\}$ be a non-empty family of stratified indiscrete Q-topological spaces and let (Z, η) be a stratified Q-topological space such that $Z = \bigcup_{k \in K} Z_k$ and for every $\alpha \in Q^Z, \alpha \in \eta$ if and only if $\alpha|_{Z_k} \in \eta_k$, for every $k \in K$. Then $(Z, \eta) \in$ **Str-IG**-Q-**TOP**.

Proof. If Z_k 's, $k \in K$ are mutually disjoint then it can be easily proved that $\{l_k : (Z_k, \eta_k) \to (Z, \eta) \mid k \in K\}$, where $l_k : Z_k \to Z$ is the inclusion map, is a coproduct in **Str**-Q-**TOP** and hence $(Z, \eta) \in$ **Str**-**IG**-Q-**TOP**. Now if some Z_k 's, $k \in K$ are not mutually disjoint, then we will first prove that there exists at least one maximal sized subset J of K, $|J| \ge 2$, such that for every $\alpha \in \eta$, there exist $q_{\alpha} \in Q$ and $\alpha|_{Z_i} = q_{\alpha}$, for every $j \in J$. Since Z_k 's, $k \in K$ are not mutually disjoint, there exist $k_1, k_2(k_1 \neq k_2) \in K$ such that $Z_{k_1} \cap Z_{k_2} \neq \emptyset$. Let $\alpha \in \eta$. Then $\alpha|_{Z_{k_1}} \in \eta_{k_1}$ and $\alpha|_{Z_{k_2}} \in \eta_{k_2}$. Now since (Z_{k_1}, η_{k_1}) and (Z_{k_2}, η_{k_2}) both are stratified indiscrete Q-topological spaces, $\alpha|_{Z_{k_1}}$ and $\alpha|_{Z_{k_2}}$ both are constant maps and since $Z_{k_1} \cap Z_{k_2} \neq \emptyset, \ \alpha|_{Z_{k_1}} = \alpha|_{Z_{k_2}}$. So, there exists $q_\alpha \in Q$ such that $\alpha|_{Z_{k_1}} = \alpha|_{Z_{k_2}} = \underline{q_\alpha}$. Thus for every $\alpha \in \eta$, there exist $q_{\alpha} \in Q$ such that $\alpha|_{Z_{k_1}} = \alpha|_{Z_{k_2}} = \underline{q_{\alpha}}$. Now let $J = \{k \in K \mid \alpha \mid_{Z_k} = \underline{q_\alpha} \text{ for every } \alpha \in \eta\}.$ Then $|J| \ge 2$ since $k_1, k_2 \in J$ and clearly J is maximal sized subset of K such that for every $\alpha \in \eta$, $\alpha|_{Z_i} = q_\alpha$, for every $j \in J$. Let $\{J_i \mid i \in I\}$ be the set of all such maximal sized subsets of K and let $K_0 = K \setminus (\bigcup_{i \in I} J_i)$ and for each J_i , let $Z_{J_i} = \bigcup_{j_i \in J_i} Z_{j_i}$. Let η_{J_i} be the stratified indiscrete Q-topology on Z_{J_i} . Now let $T = K_0 \cup I$ and let $\{(Y_t, \sigma_t) \mid t \in T\}$ be the family of Q-topological spaces such that for $t \in K_0$, (Y_t, σ_t) is (Z_t, η_t) and for $t \in I, (Y_t, \sigma_t)$ is (Z_{J_t}, η_{J_t}) . Then it is easy to prove that $\{(Y_t, \sigma_t) \mid t \in T\}$ is a

family of stratified indiscrete Q-topological spaces such that Z is disjoint union of Y_t 's, $t \in T$ and for $\alpha \in Q^Z$, $\alpha \in \eta$ if and only if $\alpha|_{Y_t} \in \sigma_t$, for every $t \in T$. Then $\{l_t : (Y_t, \sigma_t) \to (Z, \eta) \mid t \in T\}$, where $l_t : Y_t \to Z$ is the inclusion map, is a coproduct in **Str**-Q-**TOP** and hence $(Z, \eta) \in$ **Str**-**IG**-Q-**TOP**.

Proposition 4.4.5. The category **Str-IG**-*Q*-**TOP** is a coreflective subcategory of **Str**-*Q*-**TOP**.

Proof. By Theorem 4.3.9, to show that **Str-IG-***Q***-TOP** is a coreflective subcategory of **Str**-Q-**TOP**, it is sufficient to show that it is closed under the formation of coproducts and quotient Q-topological spaces. We first note that the coproduct of empty family of stratified Q-topological spaces in Str-Q-TOP is \mathbb{I} and $\mathbb{I} \in$ **Str-IG-***Q***-TOP**. Now Let $\{(Y_k, \sigma_k) \mid k \in K\} \subseteq$ **Str-IG-***Q***-TOP**, $K \neq \emptyset$ and let $\{m_k: (Y_k, \sigma_k) \to (Y, \sigma) \mid k \in K\}$ be a coproduct of $\{(Y_k, \sigma_k) \mid k \in K\}$ in Str-Q-**TOP.** For each $k \in K$, let $\{u_k^j : (Y_k^j, \sigma_k^j) \to (Y_k, \sigma_k) \mid j \in J_k\}$ be a coproduct in the category Str-Q-TOP, where (Y_k^j, σ_k^j) is a stratified indiscrete Q-topological space, for every $j \in J_k$. Let $\{w_k^j : (Y_k^j, \sigma_k^j) \to (Z, \eta) \mid j \in J_k, k \in K\}$ be a coproduct of $\{(Y_k^j, \sigma_k^j) \mid j \in J_k, k \in K\}$ in **Str**-Q-**TOP**. Then by the definition of coproduct, for each $k \in K$, there exists a Q-continuous map $g_k : (Y_k, \sigma_k) \to (Z, \eta)$ such that $w_k^j = g_k \circ u_k^j$. Now we will prove that $\{g_k : (Y_k, \sigma_k) \to (Z, \eta) \mid k \in K\}$ is a coproduct in **Str**-Q-**TOP**. Let (X, τ) be a stratified Q-topological space and let $h_k : (Y_k, \sigma_k) \to (X, \tau)$ be Q-continuous maps. Now since $\{w_k^j : (Y_k^j, \sigma_k^j) \to (X, \tau)\}$ $(Z,\eta) \mid j \in J_k, k \in K$ is a coproduct in **Str**-Q-**TOP**, there exists a unique Qcontinuous map $f: (Z,\eta) \to (X,\tau)$ such that $f \circ w_k^j = h_k \circ u_k^j$. This implies that $(f \circ g_k) \circ u_k^j = h_k \circ u_k^j$, for every $j \in J_k, k \in K$ (since $w_k^j = g_k \circ u_k^j$). Then since for each $k \in K$, $\{u_k^j : (Y_k^j, \sigma_k^j) \to (Y_k, \sigma_k) \mid j \in J_k\}$ is a coproduct in **Str**-Q-**TOP**, $f \circ g_k = h_k$, for every $k \in K$. Further, we can easily prove that the map $f:(Z,\eta)\to (X,\tau)$ is the unique Q-continuous map such that $f\circ g_k=h_k$, for every $k \in K$. Hence $\{g_k : (Y_k, \sigma_k) \to (Z, \eta) \mid k \in K\}$ is a coproduct in **Str**-Q-**TOP**. Now since $\{m_k : (Y_k, \sigma_k) \to (Y, \sigma) \mid k \in K\}$ and $\{g_k : (Y_k, \sigma_k) \to (Z, \eta) \mid k \in K\}$ both are coproducts in **Str**-Q-**TOP**, there exists an isomorphism $h: (Z, \eta) \to (Y, \sigma)$. Now since the category **Str-IG**-Q-**TOP** is an isomorphism closed subcategory of **Str**-Q-**TOP** and $(Z, \eta) \in$ **Str**-**IG**-Q-**TOP**, $(Y, \sigma) \in$ **Str**-**IG**-Q-**TOP**. Next, we will show that **Str-IG**-Q-**TOP** is closed under the quotient Q-topological spaces. Let $(Y, \sigma) \in$ **Str-IG**-Q-**TOP** and let $f : (Y, \sigma) \to (Z, \eta)$ be a quotient map. We have to show that $(Z,\eta) \in$ **Str-IG**-Q-**TOP**. If (Y,σ) is I, then since quotient

Q-topological space of I is I, (Z, η) is I and in this case (Z, η) belongs to **Str-IG**-Q-TOP. Now suppose that $(Y, \sigma) \neq \mathbb{I}$ and let $\{u_k : (Y_k, \sigma_k) \to (Y, \sigma) \mid k \in K\}$ be a coproduct in Str-Q-TOP, where $K \neq \emptyset$ and each (Y_k, σ_k) is an stratified indiscrete Q-topological space. Now since $\{in_k: (Y_k, \sigma_k) \to (\bigcup_{k \in K} Y_k \times \{k\}, \sigma^+) \mid k \in K\}$ is also a coproduct of $\{(Y_k, \sigma_k) \mid k \in K\}$ in **Str***Q***-TOP**, there exists an isomorphism $g: (\bigcup_{k \in K} Y_k \times \{k\}, \sigma^+) \to (Y, \sigma)$. Let $h = f \circ g$. Thus we have a quotient map $h: (\bigcup_{k \in K} Y_k \times \{k\}, \sigma^+) \to (Z, \eta).$ Let $Z_k = h(Y_k \times \{k\})$ and let η_k be the stratified indiscrete Q-topology on Z_k , for every $k \in K$. Then since h is onto, $Z = \bigcup_{k \in K} Z_k$. Now, let $\alpha \in \eta$, then $\alpha \circ h \in \sigma^+$. This implies that $(\alpha \circ h)|_{Y_k \times \{k\}} \in \sigma_k^*$, for every $k \in K$, i.e. $(\alpha \circ h)|_{Y_k \times \{k\}}$ is a constant map, for every $k \in K$. Thus $\alpha|_{Z_k}$ is a constant map, for every $k \in K$ and hence $\alpha|_{Z_k} \in \eta_k$, for every $k \in K$. Next, let $\alpha \in Q^Z$ such that $\alpha|_{Z_k} \in \eta_k$, for every $k \in K$. Then it is easy to prove that $\alpha \circ h \in \sigma^+$ and hence $\alpha \in \eta$. Thus we have a non-empty family $\{(Z_k, \eta_k) \mid k \in K\}$ of stratified indiscrete Q-topological spaces such that $Z = \bigcup_{k \in K} Z_k$ and for $\alpha \in Q^Z, \alpha \in \eta$ if and only if $\alpha|_{Z_k} \in \eta_k$, for every $k \in K$. Then by Lemma 4.4.4, $(Z, \eta) \in$ **Str-IG**-Q-**TOP**. Hence **Str-IG**-*Q***-TOP** is a coreflective subcategory of **Str**-*Q*-**TOP**.

Theorem 4.4.6. The coreflective hull of **Str-Ind**-*Q*-**TOP** in the category **Str**-*Q*-**TOP** is **Str-IG**-*Q*-**TOP**.

Proof. By Proposition 4.4.5, **Str-IG**-*Q*-**TOP** is a coreflective subcategory of **Str**-*Q*-**TOP** containing **Str-Ind**-*Q*-**TOP**. Hence the coreflective hull of **Str-Ind**-*Q*-**TOP** in **Str**-*Q*-**TOP** is a subcategory of **Str**-**IG**-*Q*-**TOP**. Now since the coreflective hull of **Str-Ind**-*Q*-**TOP** in **Str**-*Q*-**TOP** is a coreflective subcategory of **Str**-*Q*-**TOP**, by Theorem 4.3.9, it contains coproducts of indiscrete *Q*-topological spaces. Hence **Str**-**IG**-*Q*-**TOP** is a subcategory of the coreflective hull of **Str**-**Ind**-*Q*-**TOP** in **Str**-*Q*-**TOP**. Therefore **Str**-**IG**-*Q*-**TOP** is the coreflective hull of **Str**-**Ind**-*Q*-**TOP** in **Str**-*Q*-**TOP**.

4.5 Conclusion

In this chapter, we have determined the coreflective hull of $(Q, \langle \{id_Q\} \cup \{\underline{q} \mid q \in Q\}\rangle)$ in the category **Str**-Q-**TOP** of stratified Q-topological spaces. We have also determined the coreflective hulls of the categories **Str**-Dis-Q-**TOP** of discrete

Q-topological spaces and **Str-Ind**-*Q*-**TOP** of stratified indiscrete *Q*-topological spaces in the category **Str**-*Q*-**TOP**.