Chapter 3

On injective objects and existence of injective hulls in Q-TOP/ (Y, σ)

3.1 Introduction

Cagliari and Mantovani [7] gave a characterization of injective objects (with respect to the class of embeddings in the category **TOP** of topological spaces) in the comma category **TOP**/*B*. In [9], we can find a result related to the existence of an injective hull of an object in the comma category **TOP**₀/*B* ($B \in$ **TOP**₀ and **TOP**₀ is the category of T_0 -topological spaces).

It is well known that the category \mathbf{TOP}_0 is a reflective subcategory of the category \mathbf{TOP} . In [8] (see also [42]), Cagliari and Mantovani considered the reflector $\pi : \mathbf{TOP} \to \mathbf{TOP}_0$ and they mentioned that for any topological space Y, by virtue of the reflector π , corresponding to each object (X, f) of the comma category \mathbf{TOP}/Y we have the object (X_0, f_0) , where $X_0 = \pi(X)$ and $f_0 = \pi(f)$, of the category \mathbf{TOP}_0/Y_0 , which is called as the T_0 -reflection of (X, f). Cagliari and Mantovani [8] gave a characterization of injective objects (with respect to the class of embeddings in \mathbf{TOP}) in the comma category \mathbf{TOP}/Y with the help of their T_0 -reflection. Cagliari and Mantovani [8] also proved that the existence of an injective hull of (X, f) in the comma category \mathbf{TOP}/Y is equivalent to the existence of an injective hull of its T_0 -reflection (X_0, f_0) in the comma category \mathbf{TOP}/Y_0 (and in the comma category \mathbf{TOP}_0/Y_0).

As mentioned in the first chapter of the thesis, Solovyov [36] introduced the notion of Q-topological spaces and Q-continuous maps and studied the category Q-TOP of Q-topological spaces (where Q is a fixed member of a fixed variety of Ω -algebras). Solovyov 36 also introduced the concept of stratified Q-topological spaces and T_0 -Q-topological spaces. Singh and Srivastava [32] proved that the category Q-**TOP**₀ of T_0 -Q-topological spaces is a reflective subcategory of Q-**TOP.** In [32], for a given Q-topological space (X, τ) , Singh and Srivastava defined an equivalence relation ~ on X as, for every $x_1, x_2 \in X, x_1 \sim x_2$ if $\alpha(x_1) = \alpha(x_2)$, for every $\alpha \in \tau$. By taking $\tilde{X} = X/\sim$, the set of equivalence classes, and $\tilde{\tau}$ to be the corresponding quotient Q-topology on \tilde{X} induced by the quotient map $q_X: X \to \tilde{X}, q_X(x) = [x]$ (where [x] is the equivalence class of x), and τ , they proved that $q_X: (X,\tau) \to (\tilde{X},\tilde{\tau})$ is a Q-**TOP**₀-reflection for (X,τ) and as a result of this Q-TOP₀ is a reflective subcategory of Q-TOP (cf. Theorem 4.1 in [32]). Consequently, we have the reflector (cf. Proposition 4.22 and Definition 4.23 in [1]) $R: Q\text{-TOP} \to Q\text{-TOP}_0$ give by $R((X,\tau)) = (\tilde{X},\tilde{\tau})$ and if $f: (X,\tau) \to \tilde{X}$ (Y,σ) is a Q-continuous map, then $R(f) = \tilde{f}$, where $\tilde{f} : (\tilde{X},\tilde{\tau}) \to (\tilde{Y},\tilde{\sigma})$ is the unique Q-continuous map such that $q_Y \circ f = \tilde{f} \circ q_X$. Thus for a given Qtopological space (Y, σ) , corresponding to each object $((X, \tau), f)$ of the comma category Q-**TOP**/ (Y, σ) , we have the object $((\tilde{X}, \tilde{\tau}), \tilde{f})$ of the comma category Q-**TOP**₀/($\tilde{Y}, \tilde{\sigma}$), which is called as the T_0 -reflection of $((X, \tau), f)$.

Motivated by Cagliari and Mantovani [8], in this chapter, we have obtained a characterization of injective objects (with respect to the class of embeddings in Q-**TOP**) in the comma category Q-**TOP**/ (Y, σ) , when (Y, σ) is a stratified Qtopological space, with the help of their T_0 -reflection. Further, we have proved that for any Q-topological space (Y, σ) , the existence of an injective hull of $((X, \tau), f)$ in the comma category Q-**TOP**/ (Y, σ) is equivalent to the existence of an injective hull of its T_0 -reflection $((\tilde{X}, \tilde{\tau}), \tilde{f})$ in the comma category Q-**TOP**/ $(\tilde{Y}, \tilde{\sigma})$ (and in the comma category Q-**TOP**₀/ $(\tilde{Y}, \tilde{\sigma})$).

3.2 Comma category, injective objects and injective hulls

Definition 3.2.1. [1] Let C be a category and B be an object of C. Then objects of the **comma category** C/B are pairs (X, f), where X is a C-object

and $f : X \to B$ is a **C**-morphism. Given any two objects (X, f) and (Y, g) of \mathbf{C}/B , a \mathbf{C}/B -morphism $h : (X, f) \to (Y, g)$ is a **C**-morphism $h : X \to Y$ such that $g \circ h = f$.

Let \mathcal{H} be a class of morphisms in a category **C**.

Definition 3.2.2. [8] An object I is \mathcal{H} -injective if for all $h : X \to Y$ in \mathcal{H} and a morphism $f : X \to I$, there exists a morphism $g : Y \to I$ such that $g \circ h = f$.

Definition 3.2.3. [8] A morphism $h : X \to I$ in \mathcal{H} is \mathcal{H} -essential if for every morphism $k : I \to Y$, the composite $k \circ h : X \to Y$ lies in \mathcal{H} only if $k : I \to Y$ does; if, in addition, I is \mathcal{H} -injective, then $h : X \to I$ is an \mathcal{H} -injective hull of X.

Definition 3.2.4. [8] An object (X, f) of the comma category \mathbf{C}/B is said to be \mathcal{H} -injective if for any commutative diagram in \mathbf{C}

$$\begin{array}{cccc} U & \stackrel{u}{\longrightarrow} X \\ h \\ \downarrow & & \downarrow_{f} \\ V & \stackrel{u}{\longrightarrow} B \end{array} \tag{3.2.1}$$

with $h: U \to V$ in \mathcal{H} , there exists a morphism $s: V \to X$ for which the following diagram commutes:

Definition 3.2.5. [8] A C/B-morphism $j : (Y,g) \to (X,f)$ with $j : Y \to X$ in \mathcal{H} is said to be \mathcal{H} -essential if for any C/B-morphism $k : (X,f) \to (Z,h)$ such that $k \circ j : Y \to Z$ is in \mathcal{H} , necessarily $k : X \to Z$ is in \mathcal{H} follows; if in addition (X, f) is \mathcal{H} -injective, then $j : (Y,g) \to (X,f)$ is said to be an \mathcal{H} -injective hull of (Y,g) in C/B.

From now onwards, injective, essential, injective hull in Q-TOP (Q-TOP₀) and in any comma category Q-TOP/(Y, σ) (Q-TOP₀/(Z, η)) will denote respectively \mathcal{H} -injective, \mathcal{H} -essential and \mathcal{H} -injective hull for \mathcal{H} the class of embeddings in Q-TOP (Q-TOP₀).

3.3 T_0 -reflection

Let (X, τ) be a Q-topological space. Singh and Srivastava [32] defined a relation \sim on X as, for every $x_1, x_2 \in X, x_1 \sim x_2$ if $\alpha(x_1) = \alpha(x_2)$, for every $\alpha \in \tau$. Then it can be easily proved that \sim is an equivalence relation on X. Let $\tilde{X} = X/\sim$, the set of equivalence classes, and let $q_X : X \to \tilde{X}$ be defined as, $q_X(x) = [x]$, for every $x \in X$, where [x] is the equivalence class of x. Let $\tilde{\tau} = \{\beta \in Q^{\tilde{X}} \mid \beta \circ q_X \in \tau\}$. Then $(\tilde{X}, \tilde{\tau})$ is a T_0 -Q-topological space. It can also be easily verified that for a given T_0 -Q-topological space (Z, η) and a Q-continuous map $f : (X, \tau) \to (Z, \eta)$, there exists a unique Q-continuous map $f' : (\tilde{X}, \tilde{\tau}) \to (Z, \eta)$ such that $f' \circ q_X = f$. Hence $q_X : (X, \tau) \to (\tilde{X}, \tilde{\tau})$ is a Q-**TOP**₀-reflection for (X, τ) and as a result of this Q-**TOP**₀ is a reflective subcategory of Q-**TOP** (cf. Theorem 4.1 in [32]). Consequently, we have the reflector (cf. Proposition 4.22 and Definition 4.23 in [1]) R : Q-**TOP** $\to Q$ -**TOP**₀ give by $R((X, \tau)) = (\tilde{X}, \tilde{\tau}) \to (\tilde{Y}, \tilde{\sigma})$ is the unique Q-continuous map, then $R(f) = \tilde{f}$, where $\tilde{f} : (\tilde{X}, \tilde{\tau}) \to (\tilde{Y}, \tilde{\sigma})$ is the unique Q-continuous map such that the following diagram commutes:

$$\begin{array}{ccc} (X,\tau) & \stackrel{f}{\longrightarrow} (Y,\sigma) \\ q_X & & \downarrow q_Y \\ (\tilde{X},\tilde{\tau}) & \stackrel{f}{\longrightarrow} (\tilde{Y},\tilde{\sigma}) \end{array}$$

$$(3.3.1)$$

Thus corresponding to each object $((X, \tau), f)$ of the category Q-**TOP**/ (Y, σ) , we have the object $((\tilde{X}, \tilde{\tau}), \tilde{f})$ of the category Q-**TOP**₀/ $(\tilde{Y}, \tilde{\sigma})$. $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is called the T_0 -reflection of $((X, \tau), f)$.

We mention here that if (X, τ) is a T_0 -Q-topological space, then $q_X : (X, \tau) \to (\tilde{X}, \tilde{\tau})$ is an isomorphism in Q-**TOP**.

Proposition 3.3.1. Let (X, τ) be a *Q*-topological space. Then $q_X : (X, \tau) \to (\tilde{X}, \tilde{\tau})$ is initial and final in *Q*-**TOP**.

Proof. By the definition of $\tilde{\tau}$, it follows that $q_X : (X, \tau) \to (\tilde{X}, \tilde{\tau})$ is final. Now let $\alpha \in \tau$. Define $\beta : \tilde{X} \to Q$ as $\beta([x]) = \alpha(x)$. Then it can be easily proved that β is well defined and $\beta \circ q_X = \alpha$. Thus $\beta \circ q_X \in \tau$ and this implies that $\beta \in \tilde{\tau}$. Thus $\alpha = \beta \circ q_X$, where $\beta \in \tilde{\tau}$. Therefore $q_X : (X, \tau) \to (\tilde{X}, \tilde{\tau})$ is initial in Q-TOP. \Box

Proposition 3.3.2. Let (X, τ) and (Y, σ) be Q-topological spaces. A Q-continuous map $f : (X, \tau) \to (Y, \sigma)$ is an embedding in Q-**TOP** if and only if f is one-one and $\tilde{f} : (\tilde{X}, \tilde{\tau}) \to (\tilde{Y}, \tilde{\sigma})$ is an embedding in Q-**TOP**.

Proof. Suppose first that the map $f : (X, \tau) \to (Y, \sigma)$ is an embedding in Q-**TOP**. Then f is one-one and $f : (X, \tau) \to (Y, \sigma)$ is initial in Q-**TOP**. Now we have to prove that $\tilde{f} : (\tilde{X}, \tilde{\tau}) \to (\tilde{Y}, \tilde{\sigma})$ is an embedding in Q-**TOP**. Let $\tilde{f}([x_1]) = \tilde{f}([x_2]) \Rightarrow (\tilde{f} \circ q_X)(x_1) = (\tilde{f} \circ q_X)(x_2) \Rightarrow (q_Y \circ f)(x_1) = (q_Y \circ f)(x_2) \Rightarrow$ $[f(x_1)] = [f(x_2)] \Rightarrow u(f(x_1)) = u(f(x_2)),$ for every $u \in \sigma \Rightarrow (u \circ f)(x_1) =$ $(u \circ f)(x_2),$ for every $u \in \sigma \Rightarrow [x_1] = [x_2]$ (as $f : (X, \tau) \to (Y, \sigma)$ is initial, so $\tau = \{u \circ f \mid u \in \sigma\}) \Rightarrow \tilde{f}$ is one-one. Now let $\beta \in \tilde{\tau}$, then $\beta \circ q_X \in \tau$ and so $\beta \circ q_X = u \circ f$, for some $u \in \sigma$. Also $u = v \circ q_Y$, for some $v \in \tilde{\sigma}$. Thus $\beta \circ q_X =$ $u \circ f = v \circ q_Y \circ f = v \circ (q_Y \circ f) = v \circ (\tilde{f} \circ q_X) = (v \circ \tilde{f}) \circ q_X \Rightarrow \beta = v \circ \tilde{f}$ (as q_X is onto). Hence $\tilde{f} : (\tilde{X}, \tilde{\tau}) \to (\tilde{Y}, \tilde{\sigma})$ is initial in Q-**TOP**. Therefore $\tilde{f} : (\tilde{X}, \tilde{\tau}) \to (\tilde{Y}, \tilde{\sigma})$ is an embedding in Q-**TOP**.

Conversely, suppose that f is one-one and $\tilde{f}: (\tilde{X}, \tilde{\tau}) \to (\tilde{Y}, \tilde{\sigma})$ is an embedding in Q-TOP. We have to show that $f: (X, \tau) \to (Y, \sigma)$ is an embedding in Q-TOP. Since f is one-one, it is sufficient to show that $f: (X, \tau) \to (Y, \sigma)$ is initial. Let $\alpha \in \tau$, then $\alpha = \beta \circ q_X$, for some $\beta \in \tilde{\tau}$. Then since $\tilde{f}: (\tilde{X}, \tilde{\tau}) \to (\tilde{Y}, \tilde{\sigma})$ is initial and $\beta \in \tilde{\tau}, \beta = v \circ \tilde{f}$, for some $v \in \tilde{\sigma}$. So $\alpha = \beta \circ q_X = v \circ \tilde{f} \circ q_X = v \circ (\tilde{f} \circ q_X) =$ $v \circ (q_Y \circ f) = (v \circ q_Y) \circ f = u \circ f$, where $u = v \circ q_Y \in \sigma$. Thus $\alpha = u \circ f$, where $u \in \sigma$. Hence $f: (X, \tau) \to (Y, \sigma)$ is initial in Q-TOP. Therefore $f: (X, \tau) \to (Y, \sigma)$ is an embedding in Q-TOP.

In view of Proposition 1.2.23, we have the following result:

Proposition 3.3.3. Let (X, τ) and (Y, σ) be *Q*-topological spaces and let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an initial map in *Q*-**TOP** such that f is bijective. Then $f: (X, \tau) \rightarrow (Y, \sigma)$ is an isomorphism in *Q*-**TOP**.

Proposition 3.3.4. ([1], Proposition 11.18) In any category, monomorphisms, regular monomorphisms and retractions are pullback stable.

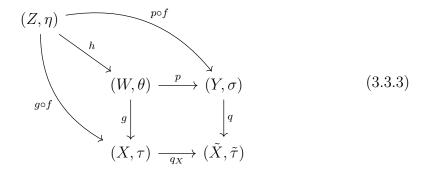
Remark 3.3.5. We know that Q-**TOP** is a topological category over **Set** (cf. Theorem 1.2.42) and since the category **Set** is complete, Q-**TOP** is complete (cf. Definition 12.2 and Corollary 21.17 in [1]). Hence by Theorem 12.4 in [1], it follows that Q-**TOP** has pullbacks.

Proposition 3.3.6. Let (X, τ) and (Y, σ) be *Q*-topological spaces and let q: $(Y, \sigma) \to (\tilde{X}, \tilde{\tau})$ be a *Q*-continuous map. Let $p: (W, \theta) \to (Y, \sigma)$ be a pullback of $q_X: (X, \tau) \to (\tilde{X}, \tilde{\tau})$ along $q: (Y, \sigma) \to (\tilde{X}, \tilde{\tau})$ in the category *Q*-**TOP**

$$\begin{array}{ccc} (W,\theta) & \stackrel{p}{\longrightarrow} (Y,\sigma) \\ g \downarrow & & \downarrow^{q} \\ (X,\tau) & \stackrel{q_{X}}{\longrightarrow} (\tilde{X},\tilde{\tau}) \end{array}$$
 (3.3.2)

Then $\tilde{p}: (\tilde{W}, \tilde{\theta}) \to (\tilde{Y}, \tilde{\sigma})$ is an isomorphism in Q-TOP.

Proof. First we will prove that the map $p: (W, \theta) \to (Y, \sigma)$ is initial in Q-TOP. Let (Z, η) be a Q-topological space and let $f: Z \to W$ be a map such that $p \circ f: (Z, \eta) \to (Y, \sigma)$ is Q-continuous. Then, $q_X \circ (g \circ f) = q \circ (p \circ f)$. So $q_X \circ (g \circ f): (Z, \eta) \to (\tilde{X}, \tilde{\tau})$ is Q-continuous, but since $q_X: (X, \tau) \to (\tilde{X}, \tilde{\tau})$ is initial in Q-TOP, $g \circ f: (Z, \eta) \to (X, \tau)$ is Q-continuous. Now since the diagram 3.3.2 is a pullback, there exists a unique Q-continuous map $h: (Z, \eta) \to (W, \theta)$ such that the following diagram commutes:



Now if $h \neq f$, then if we consider the diagram 3.3.3 in the category **Set**, then in **Set** we have two maps $f, h : Z \to W$ for which the diagram 3.3.3 commutes, but this will be a contradiction because the diagram 3.3.2, if considered in the category **Set**, is a pullback square in **Set** also. Thus h = f and hence $f : (Z, \eta) \to (W, \theta)$ is *Q*-continuous. Therefore $p : (W, \theta) \to (Y, \sigma)$ is initial in *Q*-**TOP**. Now consider the following commutative diagram in *Q*-**TOP**:

$$\begin{array}{ccc} (W,\theta) & \stackrel{p}{\longrightarrow} (Y,\sigma) \\ q_W & & & \downarrow q_Y \\ (\tilde{W},\tilde{\theta}) & \stackrel{p}{\longrightarrow} (\tilde{Y},\tilde{\sigma}) \end{array}$$

$$(3.3.4)$$

Since $p: (W, \theta) \to (Y, \sigma)$ is initial in Q-**TOP**, as in the proof of Proposition 3.3.2, we can prove that $\tilde{p}: (\tilde{W}, \tilde{\theta}) \to (\tilde{Y}, \tilde{\sigma})$ is initial in Q-**TOP**. Now since q_X is onto, i.e. q_X is a retraction in **Set** and since the diagram 3.3.2, if considered in the category **Set**, is a pullback square in **Set** also, by Proposition 3.3.4, pis a retraction in **Set**, i.e. p is onto. Since $q_Y \circ p = \tilde{p} \circ q_W$ and both p and q_Y are onto, $\tilde{p} \circ q_W$ is onto. This implies that \tilde{p} is onto. Next, we will prove that \tilde{p} is one-one. Let $\tilde{p}([w_1]) = \tilde{p}([w_2]) \Rightarrow (\tilde{p} \circ q_W)(w_1) = (\tilde{p} \circ q_W)(w_2) \Rightarrow$ $(q_Y \circ p)(w_1) = (q_Y \circ p)(w_2) \Rightarrow [p(w_1)] = [p(w_2)] \Rightarrow u(p(w_1)) = u(p(w_2))$, for every $u \in \sigma \Rightarrow (u \circ p)(w_1) = (u \circ p)(w_2)$, for every $u \in \sigma \Rightarrow [w_1] = [w_2]$ (since $\theta = \{u \circ p \mid u \in \sigma\}$ as $p: (W, \theta) \to (Y, \sigma)$ is initial in Q-**TOP**. This implies that \tilde{p} is one-one. Thus $\tilde{p}: (\tilde{W}, \tilde{\theta}) \to (\tilde{Y}, \tilde{\sigma})$ is an isomorphism in Q-**TOP**.

3.4 A characterization of injective objects in Q-TOP/ (Y, σ)

Proposition 3.4.1. [2] Let *B* be a set. Then injective objects (with respect to the class of injective maps in the category **Set**) in the comma category **Set**/*B* are precisely surjective maps over *B*.

Proposition 3.4.2. Let (X, τ) and (Y, σ) be *Q*-topological spaces and let f: $(X, \tau) \to (Y, \sigma)$ be an initial map in *Q*-**TOP** such that f is onto, then $((X, \tau), f)$ is injective in *Q*-**TOP**/ (Y, σ) .

Proof. Let following be a commutative square in *Q*-**TOP**:

$$\begin{array}{cccc} (W,\theta) & \stackrel{l}{\longrightarrow} (X,\tau) \\ \downarrow & & \downarrow f \\ (Z,\eta) & \stackrel{g}{\longrightarrow} (Y,\sigma) \end{array} \end{array}$$
(3.4.1)

where $h: (W, \theta) \to (Z, \eta)$ is an embedding in Q-**TOP**. Now since f is onto, by Proposition 3.4.1, (X, f) is injective in the comma category **Set**/Y. So there exists a function $k: Z \to X$ such that $k \circ h = l$ and $f \circ k = g$. Now let $\alpha \in \tau$, then $\alpha = \beta \circ f$, for some $\beta \in \sigma$ as $f: (X, \tau) \to (Y, \sigma)$ is initial in Q-**TOP**. Then $\alpha \circ k = \beta \circ f \circ k = \beta \circ (f \circ k) = \beta \circ g \in \eta$ as $g: (Z, \eta) \to (Y, \sigma)$ is Q-continuous. Thus $k: (Z, \eta) \to (X, \tau)$ is Q-continuous. Hence we have a Q-continuous map $k: (Z, \eta) \to (X, \tau)$ such that $k \circ h = l$ and $f \circ k = g$. Therefore $((X, \tau), f)$ is injective in Q-**TOP**/ (Y, σ) .

Corollary 3.4.3. Let (X, τ) be a Q-topological space, then $((X, \tau), q_X)$ is injective in Q-TOP $/(\tilde{X}, \tilde{\tau})$.

Proof. It immediately follows from Proposition 3.3.1 and Proposition 3.4.2.

Proposition 3.4.4. Let $((X, \tau), f)$ be injective in Q-**TOP**/ (Y, σ) and $((Y, \sigma), g)$ be injective in Q-**TOP**/ (Z, η) . Then $((X, \tau), g \circ f)$ is injective in Q-**TOP**/ (Z, η) .

Proof. Let following be a commutative diagram in Q-TOP:

$$\begin{array}{cccc} (A, \tau_A) & \stackrel{l}{\longrightarrow} (X, \tau) \\ & & \downarrow^f \\ & & \downarrow^f \\ & & (Y, \sigma) \\ & & \downarrow^g \\ (B, \tau_B) & \stackrel{h}{\longrightarrow} (Z, \eta) \end{array}$$
 (3.4.2)

where $k: (A, \tau_A) \to (B, \tau_B)$ is an embedding in Q-TOP.

Now since $((Y, \sigma), g)$ is injective in Q-**TOP** $/(Z, \eta)$, there exists a Q-continuous map $s : (B, \tau_B) \to (Y, \sigma)$ such that the following diagram commutes:

$$\begin{array}{ccc} (A, \tau_A) & \xrightarrow{f \circ l} & (Y, \sigma) \\ & & & \downarrow & & \downarrow g \\ (B, \tau_B) & \xrightarrow{h} & (Z, \eta) \end{array}$$
 (3.4.3)

Next since $((X, \tau), f)$ is injective in Q-**TOP**/ (Y, σ) , there exists a Q-continuous map $s' : (B, \tau_B) \to (X, \tau)$ such that the following diagram commutes:

Then $s' \circ k = l$ and $g \circ f \circ s' = g \circ (f \circ s') = g \circ s = h$. Therefore $((X, \tau), g \circ f)$ is injective in Q-**TOP**/ (Z, η) .

The following Lemma 3.4.5 can be easily verified:

Lemma 3.4.5. Let (X, τ) and (Y, σ) be T_0 -Q-topological spaces and let f: $(X, \tau) \to (Y, \sigma)$ be a Q-continuous map. Then f: $(X, \tau) \to (Y, \sigma)$ is an embedding in Q-TOP if and only if it is an embedding in Q-TOP₀.

Proposition 3.4.6. Let (X, τ) and (Y, σ) be T_0 -Q-topological spaces and let $f : (X, \tau) \to (Y, \sigma)$ be a Q-continuous map. Then $((X, \tau), f)$ is injective in Q-**TOP**/ (Y, σ) if and only if it is injective in Q-**TOP**₀/ (Y, σ) .

Proof. Suppose first that $((X, \tau), f)$ is injective in Q-**TOP**/ (Y, σ) . Let following be a commutative diagram in Q-**TOP**₀:

$$\begin{array}{ccc} (A, \tau_A) & \stackrel{l}{\longrightarrow} & (X, \tau) \\ & & \downarrow f \\ (B, \tau_B) & \stackrel{k}{\longrightarrow} & (Y, \sigma) \end{array}$$
 (3.4.5)

where $h: (A, \tau_A) \to (B, \tau_B)$ is an embedding in Q-TOP₀.

Then by Lemma 3.4.5, $h: (A, \tau_A) \to (B, \tau_B)$ is an embedding in Q-TOP and then since $((X, \tau), f)$ is injective in Q-TOP/ (Y, σ) , there exists a Q-continuous map $s: (B, \tau_B) \to (X, \tau)$ such that $s \circ h = l$ and $f \circ s = k$. Therefore $((X, \tau), f)$ is injective in Q-TOP₀/ (Y, σ) .

Conversely, assume that $((X, \tau), f)$ is injective in Q-**TOP**₀/ (Y, σ) . Let following be a commutative diagram in Q-**TOP**:

$$\begin{array}{cccc} (W,\theta) & \stackrel{g}{\longrightarrow} (X,\tau) \\ & & & \downarrow_{f} \\ (Z,\eta) & \stackrel{g}{\longrightarrow} (Y,\sigma) \end{array} \end{array}$$
 (3.4.6)

where $h: (W, \theta) \to (Z, \eta)$ is an embedding in Q-**TOP**. We note that since (X, τ) and (Y, σ) are T_0 -Q-topological spaces, $q_X : (X, \tau) \to (\tilde{X}, \tilde{\tau})$ and $q_Y : (Y, \sigma) \to (\tilde{Y}, \tilde{\sigma})$ are isomorphisms in Q-**TOP**. Now we will first prove that $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is injective in Q-**TOP**_0/($\tilde{Y}, \tilde{\sigma}$). Let following be a commutative diagram in Q-**TOP**_0:

where $m: (M, \tau_M) \to (N, \tau_N)$ is an embedding in Q-**TOP**₀. Now since $((X, \tau), f)$ is injective in Q-**TOP**₂ $/(X, \sigma)$, there exists a Q-

Now since $((X, \tau), f)$ is injective in Q-**TOP**₀/ (Y, σ) , there exists a Q-continuous map $s : (M, \tau_M) \to (X, \tau)$ such that the following diagram commutes:

$$(N, \tau_N) \xrightarrow{l} (\tilde{X}, \tilde{\tau}) \xrightarrow{q_X^{-1}} (X, \tau)$$

$$\underset{(M, \tau_M)}{\xrightarrow{n}} (\tilde{Y}, \tilde{\sigma}) \xrightarrow{q_Y^{-1}} (Y, \sigma) \qquad (3.4.8)$$

Thus we have a Q-continuous map $q_X \circ s : (M, \tau_M) \to (\tilde{X}, \tilde{\tau})$ and it can be easily verified that the following is a commutative diagram in Q-**TOP**₀:

$$(N, \tau_N) \xrightarrow{l} (\tilde{X}, \tilde{\tau})$$

$$\underset{m}{\longrightarrow} \overset{q_X \circ s}{\longrightarrow} \overset{\tilde{f}}{\downarrow}_{\tilde{f}} \qquad (3.4.9)$$

$$(M, \tau_M) \xrightarrow{n} (\tilde{Y}, \tilde{\sigma})$$

Thus $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is injective in Q-**TOP**₀/ $(\tilde{Y}, \tilde{\sigma})$. Now since $h : (W, \theta) \to (Z, \eta)$ is an embedding in Q-**TOP**, by Proposition 3.3.2, $\tilde{h} : (\tilde{W}, \tilde{\theta}) \to (\tilde{Z}, \tilde{\eta})$ is an embedding in Q-**TOP** and then by Lemma 3.4.5, $\tilde{h} : (\tilde{W}, \tilde{\theta}) \to (\tilde{Z}, \tilde{\eta})$ is an embedding in Q-**TOP**₀. Then since $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is injective in Q-**TOP**₀/ $(\tilde{Y}, \tilde{\sigma})$, there exists a Q-continuous map $s' : (\tilde{Z}, \tilde{\eta}) \to (\tilde{X}, \tilde{\tau})$ such that the following diagram commutes:

$$\begin{array}{cccc} (\tilde{W}, \tilde{\theta}) & \stackrel{g}{\longrightarrow} (\tilde{X}, \tilde{\tau}) \\ & & & & \\ & & & & \\ & \tilde{h} & \stackrel{s'}{\longrightarrow} & & & \\ & & & & \\ & \tilde{L}, \tilde{\eta}) & \stackrel{g}{\longrightarrow} (\tilde{Y}, \tilde{\sigma}) \end{array}$$
 (3.4.10)

Let $p = q_X^{-1} \circ s' \circ q_Z$. Then $p \circ h = q_X^{-1} \circ s' \circ q_Z \circ h = q_X^{-1} \circ s' \circ (q_Z \circ h) = q_X^{-1} \circ s' \circ (\tilde{h} \circ q_W) = q_X^{-1} \circ (s' \circ \tilde{h}) \circ q_W = q_X^{-1} \circ \tilde{g} \circ q_W = q_X^{-1} \circ (\tilde{g} \circ q_W) = q_X^{-1} \circ (q_X \circ g) = g$ and $f \circ p = f \circ q_X^{-1} \circ s' \circ q_Z = (f \circ q_X^{-1}) \circ s' \circ q_Z = (q_Y^{-1} \circ \tilde{f}) \circ s' \circ q_Z = q_Y^{-1} \circ (\tilde{f} \circ s') \circ q_Z = q_Y^{-1} \circ \tilde{k} \circ q_Z = q_Y^{-1} \circ (\tilde{k} \circ q_Z) = q_Y^{-1} \circ (q_Y \circ k) = k$. Thus we have a Q-continuous map $p: (Z, \eta) \to (X, \tau)$ such that $p \circ h = g$ and $f \circ p = k$. Therefore $((X, \tau), f)$ is injective in Q-TOP/ (Y, σ) .

Proposition 3.4.7. Let (X, τ) be a Q-topological space and (Y, σ) be a stratified Q-topological space. If $((X, \tau), f)$ is injective in Q-**TOP**/ (Y, σ) , then $f : (X, \tau) \to (Y, \sigma)$ is a retraction in Q-**TOP**. In particular, for any $x \in X$ there exists a section $s_x : (Y, \sigma) \to (X, \tau)$ of $f : (X, \tau) \to (Y, \sigma)$ with $s_x(f(x)) = x$.

Proof. Consider the following commutative diagram in Q-TOP:

$$\begin{array}{cccc} (\{x\}, \delta) & \stackrel{\imath_x}{\longrightarrow} & (X, \tau) \\ f_x & & & \downarrow f \\ (Y, \sigma) & \stackrel{i_d_Y}{\longrightarrow} & (Y, \sigma) \end{array}$$
 (3.4.11)

where $\delta = \{\underline{q} \mid q \in Q\}, i_x : \{x\} \to X$ is the inclusion map and $f_x : \{x\} \to Y$ is defined as $f_x(x) = f(x)$.

It can be easily seen that $f_x : (\{x\}, \delta) \to (Y, \sigma)$ is an embedding in Q-TOP. Then since $((X, \tau), f)$ is injective in Q-TOP/ (Y, σ) , there exists a Q-continuous map $s_x : (Y, \sigma) \to (X, \tau)$ such that $s_x \circ f_x = i_x$ and $f \circ s_x = id_Y$. Therefore $s_x(f(x)) = x$ and $f : (X, \tau) \to (Y, \sigma)$ is a retraction in Q-TOP.

Let (X, τ) be a Q-topological space and let $x \in X$. Consider the subset $\{x' \in X \mid x' \sim x\}$ of X (note that \sim is the equivalence relation on X defined in the starting of the section 3). Clearly this subset gives the equivalence class [x] of x. We will denote this subset of X by C_x where it is considered as a subset of X and it will be denoted by [x] where it is considered as an element of \tilde{X} , to avoid confusions.

Proposition 3.4.8. Let (X, τ) and (Y, σ) be *Q*-topological spaces and let f: $(X, \tau) \to (Y, \sigma)$ be a *Q*-continuous map. Then $f(C_x) \subseteq C_{f(x)}$, for every $x \in X$.

Proof. Let $y \in f(C_x)$, then y = f(x'), for some $x' \in C_x$. Now let $\beta \in \sigma$. Then since $f : (X, \tau) \to (Y, \sigma)$ is Q-continuous, $\beta \circ f \in \tau$ and then since $x' \sim x$, $(\beta \circ f)(x') = (\beta \circ f)(x) \Rightarrow \beta(f(x')) = \beta(f(x))$. Thus $f(x') \sim f(x)$. This implies that $y = f(x') \in C_{f(x)}$. Therefore $f(C_x) \subseteq C_{f(x)}$.

Proposition 3.4.9. ([1], Proposition 9.5) Every retract of an injective object is injective.

Proposition 3.4.10. Let (X, τ) and (Y, σ) be *Q*-topological spaces. If $((X, \tau), f)$ is injective in Q-TOP $/(Y, \sigma)$, then $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is injective in Q-TOP $_0/(\tilde{Y}, \tilde{\sigma})$.

Proof. We know that in the category **Set**, retractions are precisely onto maps and since q_X is onto, q_X is a retraction in **Set**. So there exists a map $g: \tilde{X} \to X$ such that $q_X \circ g = id_{\tilde{X}}$. This implies that $(q_X \circ g)([x]) = [x]$, for every $x \in X \Rightarrow [g([x])] =$ [x], for every $x \in X \Rightarrow \alpha(g[x]) = \alpha(x)$, for every $\alpha \in \tau$ and for every $x \in X$. Now we will show that $g: (\tilde{X}, \tilde{\tau}) \to (X, \tau)$ is Q-continuous. Let $\alpha \in \tau$. Then $((\alpha \circ g) \circ q_X)(x) = \alpha(g([x])) = \alpha(x)$, for every $x \in X$. Thus $(\alpha \circ g) \circ q_X = \alpha \in \tau$. Hence $\alpha \circ g \in \tilde{\tau}$. So $g: (\tilde{X}, \tilde{\tau}) \to (X, \tau)$ is Q-continuous. Now $q_Y \circ f \circ g =$ $(q_Y \circ f) \circ g = (\tilde{f} \circ q_X) \circ g = \tilde{f} \circ (q_X \circ g) = \tilde{f} \circ id_{\tilde{X}} = \tilde{f}$. Thus we have morphisms $g: ((\tilde{X}, \tilde{\tau}), \tilde{f}) \to ((X, \tau), q_Y \circ f)$ and $q_X: ((X, \tau), q_Y \circ f) \to ((\tilde{X}, \tilde{\tau}), \tilde{f})$ in Q- $\mathbf{TOP}/(\tilde{Y}, \tilde{\sigma})$ such that $q_X \circ g = id_{\tilde{X}}$. Thus $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is a retract of $((X, \tau), q_Y \circ f)$ in Q- $\mathbf{TOP}/(\tilde{Y}, \tilde{\sigma})$. By Proposition 3.4.4 and Corollary 3.4.3, $((X, \tau), q_Y \circ f)$ is injective in Q- $\mathbf{TOP}/(\tilde{Y}, \tilde{\sigma})$. Therefore by Proposition 3.4.6, $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is injective in Q- $\mathbf{TOP}/(\tilde{Y}, \tilde{\sigma})$.

The following Theorem 3.4.11 is concerned with the extension of Theorem 2.6 of [8], in the category Q-**TOP**/ (Y, σ) .

Theorem 3.4.11. Let (X, τ) be a *Q*-topological space and (Y, σ) be a stratified *Q*-topological space. Then $((X, \tau), f)$ is injective in *Q*-**TOP**/ (Y, σ) if and only if

- 1. $f(C_x) = C_{f(x)}$, for every $x \in X$.
- 2. Its T_0 -reflection $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is injective in Q-**TOP** $_0/(\tilde{Y}, \tilde{\sigma})$.

Proof. Let $((X, \tau), f)$ be injective in Q-TOP $/(Y, \sigma)$.

(1) Let $x \in X$. Then by Proposition 3.4.8, $f(C_x) \subseteq C_{f(x)}$. Now we have to show that $C_{f(x)} \subseteq f(C_x)$. By Proposition 3.4.7, there exists a section $s_x : (Y, \sigma) \to (X, \tau)$ of $f : (X, \tau) \to (Y, \sigma)$ such that $s_x(f(x)) = x$ and $f \circ s_x = id_Y$. Then since by Proposition 3.4.8, $s_x(C_{f(x)}) \subseteq C_{(s_x \circ f)(x)}$, $s_x(C_{f(x)}) \subseteq C_x$ (as $s_x(f(x)) = x$). Then $f(s_x(C_{f(x)})) \subseteq f(C_x) \Rightarrow (f \circ s_x)(C_{f(x)}) \subseteq f(C_x) \Rightarrow id_Y(C_{f(x)}) \subseteq f(C_x) \Rightarrow C_{f(x)} \subseteq f(C_x)$. Therefore $f(C_x) = C_{f(x)}$.

(2) Follows from Proposition 3.4.10

Conversely, assume that (1) and (2) hold. Let following be a commutative diagram in Q-TOP:

$$\begin{array}{cccc} (W,\theta) & \stackrel{m}{\longrightarrow} (X,\tau) \\ \downarrow & & \downarrow f \\ (Z,\eta) & \stackrel{m}{\longrightarrow} (Y,\sigma) \end{array} \end{array}$$

$$(3.4.12)$$

where $h: (W, \theta) \to (Z, \eta)$ is an embedding in Q-TOP.

Now since $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is injective in Q-**TOP**₀/ $(\tilde{Y}, \tilde{\sigma})$, by Proposition 3.4.6, $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is injective in Q-**TOP**/ $(\tilde{Y}, \tilde{\sigma})$. So there exists a Q-continuous map $s : (Z, \eta) \to (\tilde{X}, \tilde{f})$ such that the following diagram commutes:

Let $\tilde{X} = \{ [x_j] \mid j \in J \}$. Now let $w \in m^{-1}(C_{x_j})$, then $(s \circ h)(w) = (q_X \circ m)(w) = [m(w)] = [x_j]$ (as $m(w) \in C_{x_j}$, $[m(w)] = [x_j]$). So $h(w) \in s^{-1}(\{ [x_j] \})$. Thus for

each $j \in J$, we have a map $h_j : m^{-1}(C_{x_j}) \to s^{-1}(\{[x_j]\})$ defined as $h_j(w) = h(w)$, for every $w \in m^{-1}(C_{x_j})$. Next let $z \in s^{-1}(\{[x_j]\})$, then $(q_Y \circ n)(z) = (\tilde{f} \circ s)(z) =$ $\tilde{f}(s(z)) = \tilde{f}([x_j]) = (\tilde{f} \circ q_X)(x_j) = (q_Y \circ f)(x_j)$. This implies that $[n(z)] = [f(x_j)]$. So $n(z) \sim f(x_j)$ and hence $n(z) \in C_{f(x_j)}$. Thus for each $j \in J$, we have a map $n_j : s^{-1}(\{[x_j]\}) \to C_{f(x_j)}$ defined as $n_j(z) = n(z)$, for every $z \in s^{-1}(\{[x_j]\})$. Now consider the following commutative diagram in category **Set**:

$$\begin{array}{ccc} m^{-1}(C_{x_j}) & \xrightarrow{m_j} & C_{x_j} \\ & & & & \downarrow_{f_j} \\ s^{-1}(\{[x_j]\}) & \xrightarrow{n_j} & C_{f(x_j)} \end{array}$$
(3.4.14)

where $f_i: C_{x_i} \to C_{f(x_i)}$ is defined as $f_i(x) = f(x)$, for every $x \in C_{x_i}$ and $m_j: m^{-1}(C_{x_j}) \to C_{x_j}$ is defined as $m_j(w) = m(w)$, for every $w \in m^{-1}(C_{x_j})$. Now by (1), $f_j: C_{x_j} \to C_{f(x_j)}$ is onto and so by Proposition 3.4.1, (C_{x_j}, f_j) is injective in the comma category $\mathbf{Set}/C_{f(x_i)}$. Also since h is one-one, h_j is one-one. So there exists a map $g_j: s^{-1}(\{[x_j]\}) \to C_{x_j}$ such that $g_j \circ h_j = m_j$ and $f_j \circ g_j = n_j$. Thus for each $j \in J$, we have a map $g_j : s^{-1}(\{[x_j]\}) \to C_{x_j}$ such that $g_j \circ h_j = m_j$ and $f_j \circ g_j = n_j$. Note that since $\tilde{X} = \bigcup_{i \in J} \{ [x_j] \}, Z = \bigcup_{i \in J} s^{-1}(\{ [x_j] \})$. Thus we can define a map $g: Z \to X$ as $g(z) = g_i(z)$, if $z \in s^{-1}(\{[x_i]\})$. Now we have to prove that $f \circ g = n, g \circ h = m$ and $g: (Z, \eta) \to (X, \tau)$ is Q-continuous. Let $z \in Z$, then there exists a unique $j \in J$ such that $z \in s^{-1}(\{[x_j]\})$. Then $(f \circ g)(z) = f(g(z)) =$ $f(g_j(z)) = f_j(g_j(z)) = (f_j \circ g_j)(z) = n_j(z) = n(z)$. This implies that $f \circ g = n$. Now consider $(g \circ h)(w) = g(h(w)) = g_i(h(w))$, if $h(w) \in s^{-1}(\{[x_i]\})$. Now if $h(w) \in s^{-1}(\{[x_i]\}), \text{ then } (s \circ h)(w) = [x_i] \Rightarrow (q_X \circ m)(w) = [x_i] \Rightarrow [m(w)] =$ $[x_i] \Rightarrow m(w) \sim x_i \Rightarrow m(w) \in C_{x_i} \Rightarrow w \in m^{-1}(C_{x_i})$ and so $h(w) = h_i(w)$. Thus if $h(w) \in s^{-1}(\{[x_i]\})$, then $(g \circ h)(w) = g_i(h(w)) = g_i(h_i(w)) = (g_i \circ h_i)(w) =$ $m_i(w) = m(w)$. Thus $g \circ h = m$. Now to show that $g: (Z, \eta) \to (X, \tau)$ is Qcontinuous. Let $\alpha \in \tau$, then $\alpha = \beta \circ q_X$, for some $\beta \in \tilde{\tau}$. Now let $z \in Z$, then there exists a unique $j \in J$ such that $z \in s^{-1}(\{[x_i]\})$. Now consider $(\alpha \circ g)(z) =$ $(\beta \circ q_X \circ g)(z) = (\beta \circ q_X)(g(z)) = (\beta \circ q_X)(g_i(z)) = \beta([g_i(z)]) = \beta([x_i])$ (since $g_i(z) \in C_{x_i}, [g_i(z)] = [x_i]$. Thus $(\alpha \circ g)(z) = \beta([x_i]) = \beta(s(z)) = (\beta \circ s)(z)$. Thus $\alpha \circ g = \beta \circ s \in \eta$ as $s: (Z, \eta) \to (X, \tilde{\tau})$ is Q-continuous. Hence $g: (Z, \eta) \to (X, \tau)$ is Q-continuous. Therefore $((X, \tau), f)$ is injective in Q-TOP/ (Y, σ) .

3.5 Existence of injective hulls in Q-TOP/ (Y, σ)

Proposition 3.5.1. Let (X, τ) and (Y, σ) be T_0 -Q-topological spaces. Then $((X, \tau), f)$ has an injective hull in Q-**TOP**₀/ (Y, σ) if and only if it has an injective hull in Q-**TOP**₀/ (Y, σ) and in this case injective hulls coincide.

Proof. Suppose first that $((X, \tau), f)$ has an injective hull $j : ((X, \tau), f) \to ((Z, \eta), g)$ in Q-**TOP**₀/(Y, σ). Then ((Z, η), g) is injective in Q-**TOP**₀/(Y, σ) and then by Proposition 3.4.6, $((Z,\eta),g)$ is injective in Q-TOP/ (Y,σ) . Furthermore, j: $(X,\tau) \rightarrow (Z,\eta)$ is an embedding in Q-TOP₀ and then by Lemma 3.4.5, j : $(X,\tau) \to (Z,\eta)$ is an embedding in Q-TOP. Now we have to prove that j: $((X,\tau),f) \to ((Z,\eta),g)$ is essential in Q-TOP/ (Y,σ) . We note that since j: $(X,\tau) \to (Z,\eta)$ is an embedding in Q-TOP, by Proposition 3.3.2, $\tilde{j}: (\tilde{X},\tilde{\tau}) \to$ $(\tilde{Z}, \tilde{\eta})$ is an embedding in Q-TOP and hence $\tilde{j}: (\tilde{X}, \tilde{\tau}) \to (\tilde{Z}, \tilde{\eta})$ is an embedding in Q-TOP₀ by Lemma 3.4.5. Now we will first prove that $\tilde{j}: ((\tilde{X}, \tilde{\tau}), \tilde{f}) \to ((\tilde{Z}, \tilde{\eta}), \tilde{g})$ is essential in Q-TOP₀/ $(\tilde{Y}, \tilde{\sigma})$. Let $h: ((\tilde{Z}, \tilde{\eta}), \tilde{g}) \to ((A, \tau_A), m)$ be a morphism in Q-TOP₀/ $(\tilde{Y}, \tilde{\sigma})$ such that $h \circ \tilde{j} : (\tilde{X}, \tilde{\tau}) \to (A, \tau_A)$ is an embedding in Q-**TOP**₀. Since composition of embeddings is an embedding, $h \circ \tilde{j} \circ q_X : (X, \tau) \to$ (A, τ_A) is an embedding in Q-TOP₀ and then since $h \circ \tilde{j} \circ q_X = (h \circ q_Z) \circ j$, $(h \circ q_Z) \circ j : (X, \tau) \to (A, \tau_A)$ is an embedding in Q-**TOP**₀. Thus we have a morphism $h \circ q_Z$: $((Z,\eta),g) \rightarrow ((A,\tau_A),q_Y^{-1} \circ m)$ in Q-TOP₀/ (Y,σ) such that $(h \circ q_Z) \circ j : (X, \tau) \to (A, \tau_A)$ is an embedding in Q-**TOP**₀. Then since $j: ((X,\tau), f) \to ((Z,\eta), g)$ is essential in Q-TOP₀/ $(Y,\sigma), h \circ q_Z: (Z,\eta) \to (A,\tau_A)$ is an embedding in Q-TOP₀. Now since $(Z, \eta) \in Q$ -TOP₀, $q_Z : (Z, \eta) \to (Z, \tilde{\eta})$ is an isomorphism in Q-**TOP**₀ and so by Proposition 1.2.20(1), it is essential in Q-**TOP**₀ and then since $h \circ q_Z : (Z, \eta) \to (A, \tau_A)$ is an embedding in Q-**TOP**₀, h : $(\tilde{Z}, \tilde{\eta}) \to (A, \tau_A)$ is an embedding in Q-**TOP**₀. Thus $\tilde{j} : ((\tilde{X}, \tilde{\tau}), \tilde{f}) \to ((\tilde{Z}, \tilde{\eta}), \tilde{g})$ is essential in Q-TOP₀/ $(\tilde{Y}, \tilde{\sigma})$. Next let $k : ((Z, \eta), g) \to ((W, \theta), l)$ be a morphism in Q-TOP $/(Y, \sigma)$ such that $k \circ j : (X, \tau) \to (W, \theta)$ is an embedding in Q-TOP. Then by Proposition 3.3.2, $\tilde{k} \circ \tilde{j} : (\tilde{X}, \tilde{\tau}) \to (\tilde{W}, \tilde{\theta})$ is an embedding in Q-TOP and then by Lemma 3.4.5, it is an embedding in Q-TOP₀. Thus we have a morphism $\tilde{k}: ((\tilde{Z}, \tilde{\eta}), \tilde{g}) \to ((\tilde{W}, \tilde{\theta}), \tilde{l})$ in Q-TOP₀/ $(\tilde{Y}, \tilde{\sigma})$ such that $\tilde{k} \circ \tilde{j}: (\tilde{X}, \tilde{\tau}) \to (\tilde{W}, \tilde{\theta})$ is an embedding in Q-**TOP**₀. Then since $\tilde{j}: ((\tilde{X}, \tilde{\tau}), \tilde{f}) \to ((\tilde{Z}, \tilde{\eta}), \tilde{g})$ is essential in Q-TOP₀/ $(\tilde{Y}, \tilde{\sigma}), \tilde{k} : (\tilde{Z}, \tilde{\eta}) \to (\tilde{W}, \tilde{l})$ is an embedding in Q-TOP₀ and hence it is an embedding in Q-TOP by Lemma 3.4.5. Now we will prove that kis one-one. Let $k(z_1) = k(z_2) \Rightarrow (q_W \circ k)(z_1) = (q_W \circ k)(z_2) \Rightarrow (\tilde{k} \circ q_Z)(z_1) =$

 $(\tilde{k} \circ q_Z)(z_2) \Rightarrow z_1 = z_2$ (since $\tilde{k} \circ q_Z$ is one-one as both \tilde{k} and q_Z are one-one). Hence k is one-one. Thus by Proposition 3.3.2, $k : (Z, \eta) \to (W, \theta)$ is an embedding in Q-**TOP**. Hence $j : ((X, \tau), f) \to ((Z, \eta), g)$ is essential in Q-**TOP**/ (Y, σ) . Therefore $j : ((X, \tau), f) \to ((Z, \eta), g)$ is an injective hull of $((X, \tau), f)$ in Q-**TOP**/ (Y, σ) .

Conversely, let $((X,\tau), f)$ have an injective hull $j : ((X,\tau), f) \to ((Z,\eta), g)$ in Q-TOP (Y, σ) . Now since $(X, \tau) \in Q$ -TOP $_0, q_X : (X, \tau) \to (\tilde{X}, \tilde{\tau})$ is an isomorphism in Q-TOP and hence $q_X : (X, \tau) \to (\tilde{X}, \tilde{\tau})$ is an embedding in Q-**TOP.** Also since $j: (X, \tau) \to (Z, \eta)$ is an embedding in Q-**TOP**, by Proposition 3.3.2, $\tilde{j}: (\tilde{X}, \tilde{\tau}) \to (\tilde{Z}, \tilde{\eta})$ is an embedding in Q-TOP. Thus $\tilde{j} \circ q_X: (X, \tau) \to (\tilde{Z}, \tilde{\eta})$ is an embedding in Q-TOP and since $\tilde{j} \circ q_X = q_Z \circ j, q_Z \circ j : (X, \tau) \to (\tilde{Z}, \tilde{\eta})$ is an embedding in Q-TOP. Thus we have a morphism $q_Z: ((Z, \eta), g) \to ((\tilde{Z}, \tilde{\eta}), q_V^{-1} \circ \tilde{g})$ in Q-TOP/ (Y, σ) such that $q_Z \circ j : (X, \tau) \to (\tilde{Z}, \tilde{\eta})$ is an embedding in Q-TOP and then since $j: ((X,\tau), f) \to ((Z,\eta), g)$ is essential in Q-TOP/ $(Y,\sigma), q_Z: (Z,\eta) \to$ $(\tilde{Z}, \tilde{\eta})$ is an embedding in Q-TOP. Hence $q_Z : (Z, \eta) \to (\tilde{Z}, \tilde{\eta})$ is initial in Q-**TOP** and q_Z is bijective and thus by Proposition 3.3.3, $q_Z: (Z, \eta) \to (\tilde{Z}, \tilde{\eta})$ is an isomorphism in Q-TOP. Now since Q-TOP₀ is an isomorphism closed subcategory of Q-TOP, $(Z,\eta) \in Q$ -TOP₀. Thus $j : ((X,\tau), f) \to ((Z,\eta), g)$ is a morphism in Q-TOP₀/ (Y, σ) . Now since $j : (X, \tau) \to (Z, \eta)$ is an embedding in Q-TOP, by Lemma 3.4.5, $j: (X,\tau) \to (Z,\eta)$ is an embedding in Q-TOP₀. It can also be easily verified that $j: ((X,\tau), f) \to ((Z,\eta), g)$ is essential in Q-TOP₀/ (Y, σ) . We also note that since $((Z, \eta), g)$ is injective in Q-TOP/ (Y, σ) by Proposition 3.4.6, it is injective in Q-TOP₀/ (Y, σ) . Therefore $j : ((X, \tau), f) \to ((Z, \eta), g)$ is an injective hull of $((X, \tau), f)$ in Q-TOP₀/ (Y, σ) .

Definition 3.5.2. [41] Let $m : U \to B$ and $e : A \to U$ be morphisms in a category **C**. Then a **pullback complement of the pair** (m, e) in the category **C** is a pullback diagram

$$\begin{array}{cccc}
A & \stackrel{e}{\longrightarrow} & U \\
 & \bar{m} & & \downarrow_{m} \\
P & \stackrel{}{\longrightarrow} & B
\end{array}$$
(3.5.1)

such that, given any pullback diagram

$$\begin{array}{cccc} X & \stackrel{d}{\longrightarrow} & U \\ k \\ \downarrow & & \downarrow^{m} \\ Y & \stackrel{g}{\longrightarrow} & B \end{array} \tag{3.5.2}$$

and a morphism $h : X \to A$ with $e \circ h = d$, there is a unique morphism $h' : Y \to P$ with $\bar{e} \circ h' = g$ and $h' \circ k = \bar{m} \circ h$.

([41], [8]) In the category **Set**, pullback complement of the pair (m, e), where $m: Z \to Y$ is one-one and $e: X \to Z$ is a map, always exists and given by

$$\begin{array}{cccc} X & & \stackrel{e}{\longrightarrow} & Z \\ & & & & \downarrow^{m} \\ & & & \downarrow^{m} \\ (Y \setminus m(Z)) + X & \xrightarrow{\overline{e}} & Y \end{array} \tag{3.5.3}$$

where $(Y \setminus m(Z)) + X = \{(y, 1) \mid y \in Y \setminus m(Z)\} \cup \{(x, 2) \mid x \in X\}, \ \bar{m} : X \to (Y \setminus m(Z)) + X$ is defined as $\bar{m}(x) = (x, 2)$ and $\bar{e} : (Y \setminus m(Z)) + X \to Y$ is defined as $\bar{e}(y, 1) = y$, $\bar{e}(x, 2) = (m \circ e)(x)$. It can also be easily verified that if e is onto, then \bar{e} is onto.

Proposition 3.5.3. Let $m : (Z, \eta) \to (Y, \sigma)$ be an embedding in Q-TOP and let $e : (X, \tau) \to (Z, \eta)$ be initial in Q-TOP. Then there exists a pullback complement of (m, e) in Q-TOP:

$$\begin{array}{ccc} (X,\tau) & \stackrel{e}{\longrightarrow} (Z,\eta) \\ & & & \downarrow_{m} \\ (W,\theta) & \stackrel{e}{\longrightarrow} (Y,\sigma) \end{array} \end{array}$$

$$(3.5.4)$$

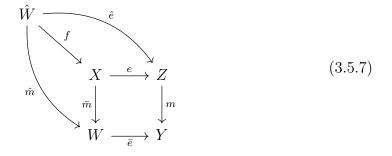
where $\bar{e}: (W, \theta) \to (Y, \sigma)$ is initial in Q-TOP.

Proof. Let us consider the pullback complement of the pair (m, e) in **Set** given by the following:

where $W = (Y \setminus m(Z)) + X$, $\overline{m} : X \to (Y \setminus m(Z)) + X$ is defined as $\overline{m}(x) = (x, 2)$ and $\overline{e} : (Y \setminus m(Z)) + X \to Y$ is defined as $\overline{e}(y, 1) = y$, $\overline{e}(x, 2) = (m \circ e)(x)$. Now let $\theta = \{\beta \circ \overline{e} \mid \beta \in \sigma\}$. Let $\beta \circ \overline{e} \in \theta$, where $\beta \in \sigma$. Then $\beta \circ \overline{e} \circ \overline{m} = \beta \circ m \circ e = \beta \circ (m \circ e) \in \tau$ (as $m \circ e : (X, \tau) \to (Y, \sigma)$ is *Q*-continuous). Thus $\overline{m} : (X, \tau) \to (W, \theta)$ is *Q*-continuous. Next let following be a commutative diagram in *Q*-**TOP**:

$$\begin{array}{ccc} (\hat{W}, \hat{\theta}) & \stackrel{\hat{e}}{\longrightarrow} (Z, \eta) \\ & & & & \downarrow^{m} \\ & & & \downarrow^{m} \\ (W, \theta) & \stackrel{}{\longrightarrow} (Y, \sigma) \end{array}$$
 (3.5.6)

Since the diagram 3.5.5 is a pullback square in **Set**, there exists a unique map $f: \hat{W} \to X$ such that the following diagram commutes:



Now we will show that $f : (\hat{W}, \hat{\theta}) \to (X, \tau)$ is *Q*-continuous. Let $\beta \circ e \in \tau$, where $\beta \in \eta$. Then $\beta \circ e \circ f = \beta \circ \hat{e} \in \hat{\theta}$ (as $\hat{e} : (\hat{W}, \hat{\theta}) \to (Z, \eta)$ is *Q*-continuous). Thus $f : (\hat{W}, \hat{\theta}) \to (X, \tau)$ is *Q*-continuous. Hence the diagram 3.5.4 is a pullback square in *Q*-**TOP**. Now let following be a pullback square in *Q*-**TOP**:

$$\begin{array}{ccc} (A, \tau_A) & \stackrel{d}{\longrightarrow} (Z, \eta) \\ & & \downarrow \\ & & \downarrow \\ (B, \tau_B) & \stackrel{g}{\longrightarrow} (Y, \sigma) \end{array}$$

$$(3.5.8)$$

and let $h: (A, \tau_A) \to (X, \tau)$ be a *Q*-continuous map such that $e \circ h = d$. Then if we consider the diagram 3.5.8 in **Set**, then it is a pullback square in **Set** also and since the diagram 3.5.5 is a pullback complement diagram in **Set**, there exists a unique map $h': B \to W$ such that $\bar{e} \circ h' = g$ and $h' \circ k = \bar{m} \circ h$. So now it is sufficient to show that $h': (B, \tau_B) \to (W, \theta)$ is *Q*-continuous. Let $\beta \circ \bar{e} \in \theta$, where $\beta \in \sigma$. Then $\beta \circ \bar{e} \circ h' = \beta \circ g \in \tau_B$ (as $g: (B, \tau_B) \to (Y, \sigma)$ is *Q*-continuous). Thus $h': (B, \tau_B) \to (W, \theta)$ is *Q*-continuous. Therefore the diagram 3.5.4 gives a pullback complement of (m, e) in *Q*-**TOP**.

Proposition 3.5.4. [7] Let C be a category and let following be a pullback square in C

$$\begin{array}{cccc} W & \stackrel{p}{\longrightarrow} X \\ q & & \downarrow_{f} \\ Z & \stackrel{q}{\longrightarrow} Y \end{array}$$
 (3.5.9)

If (X, f) is injective in \mathbb{C}/Y , then (W, q) is injective in \mathbb{C}/Z .

The following Theorem 3.5.5 is concerned with the extension of Theorem 2.11 of [8], in the category Q-TOP/ (Y, σ) .

Theorem 3.5.5. Let (X, τ) and (Y, σ) be Q-topological spaces and let $f : (X, \tau) \to (Y, \sigma)$ be a Q-continuous map. Then following statements are equivalent:

- 1. $((X, \tau), f)$ has an injective hull in Q-**TOP**/ (Y, σ) .
- 2. $((\tilde{X}, \tilde{\tau}), \tilde{f})$ has an injective hull in Q-**TOP**₀/ $(\tilde{Y}, \tilde{\sigma})$.
- 3. $((\tilde{X}, \tilde{\tau}), \tilde{f})$ has an injective hull in Q-**TOP** $/(\tilde{Y}, \tilde{\sigma})$.

Proof. (1) \Rightarrow (2) Let $((X,\tau), f)$ have an injective hull $j : ((X,\tau), f) \rightarrow ((Z,\eta), g)$ in Q-**TOP**/ (Y,σ) . We will show that $\tilde{j} : ((\tilde{X},\tilde{\tau}), \tilde{f}) \rightarrow ((\tilde{Z},\tilde{\eta}), \tilde{g})$ is an injective hull of $((\tilde{X},\tilde{\tau}), \tilde{f})$ in Q-**TOP**₀/ $(\tilde{Y}, \tilde{\sigma})$. Now since $((Z,\eta), g)$ is injective in Q-**TOP**/ (Y,σ) , by Proposition 3.4.10 $((\tilde{Z},\tilde{\eta}), \tilde{g})$ is injective in Q-**TOP**₀/ $(\tilde{Y}, \tilde{\sigma})$. Next since $j : (X,\tau) \rightarrow (Y,\sigma)$ is an embedding in Q-**TOP**, $\tilde{j} : (\tilde{X},\tilde{\tau}) \rightarrow (\tilde{Z},\tilde{\eta})$ is an embedding in Q-**TOP** and then by Lemma 3.4.5, $\tilde{j} : (\tilde{X},\tilde{\tau}) \rightarrow (\tilde{Z},\tilde{\eta})$ is an embedding in Q-**TOP**₀. Next let $k : ((\tilde{Z},\tilde{\eta}),\tilde{g}) \rightarrow ((W,\theta), l)$ be a morphism in Q-**TOP**₀/ $(\tilde{Y},\tilde{\sigma})$ such that $k \circ \tilde{j} : (\tilde{X},\tilde{\tau}) \rightarrow (W,\theta)$ is an embedding in Q-**TOP**₀. Consider the Q-topology $\{\alpha \circ p_1 \mid \alpha \in \theta\}$ on $W \times Z$, where $p_1 : W \times Z \to W$ is the first projection map. Let $T = W \times Z$ and $\rho = \{\alpha \circ p_1 \mid \alpha \in \theta\}$. Now we will prove that $(T, \tilde{\rho})$ and (W, θ) are isomorphic. Define a map $h: T \to W$ as h([(w, z)]) = w. Let $[(w_1, z_1)] = [(w_2, z_2)] \Rightarrow (\alpha \circ p_1)(w_1, z_1) = (\alpha \circ p_1)(w_2, z_2)$, for every $\alpha \in \theta \Rightarrow \alpha(w_1) = \alpha(w_2)$, for every $\alpha \in \theta \Rightarrow w_1 = w_2$ (since $(W, \theta) \in Q$ -**TOP**₀ and if $w_1 \neq w_2$, then there exists $\alpha \in \theta$ such that $\alpha(w_1) \neq \alpha(w_2)$). Thus the map h is well-defined. Now let $h([(w_1, z_1)]) = h([(w_2, z_2)]) \Rightarrow w_1 = w_2 \Rightarrow$ $\alpha(w_1) = \alpha(w_2)$, for every $\alpha \in \theta \Rightarrow (\alpha \circ p_1)(w_1, z_1) = (\alpha \circ p_1)(w_2, z_2)$, for every $\alpha \in \theta \Rightarrow [(w_1, z_1)] = [(w_2, z_2)]$. Thus h is one-one and hence h is bijective. Now let $\alpha \in \theta$. Then $(\alpha \circ h \circ q_{W \times Z})(w, z) = \alpha(w) = (\alpha \circ p_1)(w, z) \Rightarrow \alpha \circ h \circ q_{W \times Z} =$ $\alpha \circ p_1 \in \rho \Rightarrow \alpha \circ h \in \tilde{\rho}$. Thus $h: (\tilde{T}, \tilde{\rho}) \to (W, \theta)$ is Q-continuous. Now let $\beta \in \tilde{\rho}$, then $\beta \circ q_{W \times Z} \in \rho$ and so $\beta \circ q_{W \times Z} = \alpha \circ p_1$, for some $\alpha \in \theta$. Then $(\beta \circ q_{W \times Z})(w, z) = (\alpha \circ p_1)(w, z) = \alpha(w) = \alpha(h([(w, z)])) = (\alpha \circ h)([(w, z)]) = (\alpha \circ h)([(w, z)])$ $(\alpha \circ h \circ q_{W \times Z})(w, z) \Rightarrow \beta \circ q_{W \times Z} = \alpha \circ h \circ q_{W \times Z}$ and so $\beta = \alpha \circ h$ (as $q_{W \times Z}$ is onto). Thus $h: (\tilde{T}, \tilde{\rho}) \to (W, \theta)$ is initial in Q-TOP and also h is bijective. Hence by Proposition 3.3.3, $h: (T, \tilde{\rho}) \to (W, \theta)$ is an isomorphism in Q-TOP. Now define a map $k' = (k \circ q_Z, id_Z) : (Z, \eta) \to (W \times Z, \rho)$ as $k'(z) = ((k \circ q_Z)(z), z)$. Let $\alpha \circ p_1 \in \rho \ (\alpha \in \theta).$ Then $(\alpha \circ p_1 \circ k')(z) = (\alpha \circ p_1)(k'(z)) = (\alpha \circ p_1)((k \circ q_Z)(z), z) =$ $(\alpha \circ k \circ q_Z)(z)$. This implies that $\alpha \circ p_1 \circ k' = \alpha \circ k \circ q_Z \in \eta$ (as $k \circ q_Z : (Z, \eta) \to (W, \theta)$ is Q-continuous and $\alpha \in \theta$). Thus $k' : (Z, \eta) \to (W \times Z, \rho)$ is Q-continuous. Now consider $(l \circ h \circ q_{W \times Z} \circ k')(z) = (l \circ h \circ q_{W \times Z})(k'(z)) = (l \circ h \circ q_{W \times Z})((k \circ q_Z)(z), z) =$ $(l \circ h)([((k \circ q_Z)(z), z)]) = l((k \circ q_Z)(z)) = (l \circ k \circ q_Z)(z) = (\tilde{g} \circ q_Z)(z) = (q_Y \circ g)(z).$ This implies that $l \circ h \circ q_{W \times Z} \circ k' = q_Y \circ g$. Thus we have the following commutative diagram:

$$(Z,\eta) \xrightarrow{k'} (W \times Z,\rho)$$

$$g \downarrow \qquad \qquad \downarrow_{l \circ h \circ q_{W \times Z}} \qquad (3.5.10)$$

$$(Y,\sigma) \xrightarrow{q_Y} (\tilde{Y},\tilde{\sigma})$$

Now since q_Y is onto, by Proposition 3.4.1, (Y, q_Y) is injective in the comma category \mathbf{Set}/\tilde{Y} and since k' is one-one, there exists a map $m : W \times Z \to Y$ such that $m \circ k' = g$ and $q_Y \circ m = l \circ h \circ q_{W \times Z}$. Let $v \circ q_Y \in \sigma$, where $v \in \tilde{\sigma}$, then $v \circ q_Y \circ m = v \circ l \circ h \circ q_{W \times Z} \in \rho$ (as $l \circ h \circ q_{W \times Z} : (W \times Z, \rho) \to (\tilde{Y}, \tilde{\sigma})$ is Q-continuous). Thus $m : (W \times Z, \rho) \to (Y, \sigma)$ is Q-continuous. Hence $((W \times Z, \rho), m) \in Q$ - $\mathbf{TOP}/(Y, \sigma)$. Now it can be easily verified that the following diagram commutes:

$$\begin{array}{cccc} (Z,\eta) & \stackrel{k'}{\longrightarrow} (W \times Z,\rho) \\ q_{z} & & & \downarrow q_{W \times Z} \\ (\tilde{Z},\tilde{\eta}) & \stackrel{h^{-1} \circ k}{\longrightarrow} (\tilde{T},\tilde{\rho}) \end{array}$$

$$(3.5.11)$$

Thus $\tilde{k'} = h^{-1} \circ k$. Let $p = k' \circ j$. Then $\tilde{p} = \tilde{k'} \circ \tilde{j} = (h^{-1} \circ k) \circ \tilde{j} = h^{-1} \circ (k \circ \tilde{j})$. Now since $h^{-1} : (W, \theta) \to (\tilde{T}, \tilde{\rho})$ is an isomorphism in Q-**TOP**, by Proposition 1.2.20, it is an embedding in Q-**TOP**. By Proposition 1.2.18(1), we know that composition of embeddings is an embedding and since $\tilde{p} = h^{-1} \circ (k \circ \tilde{j})$, $\tilde{p} : (\tilde{X}, \tilde{\tau}) \to (\tilde{T}, \tilde{\rho})$ is an embedding in Q-**TOP**. Also $p = k' \circ j$ is one-one. Thus by Proposition 3.3.2, $p = k' \circ j : (X, \tau) \to (W \times Z, \rho)$ is an embedding in Q-**TOP**. Thus $k' : ((Z, \eta), g) \to$ $((W \times Z, \rho), m)$ is a morphism in Q-**TOP**/ (Y, σ) such that $k' \circ j : (X, \tau) \to$ $(W \times Z, \rho)$ is an embedding in Q-**TOP** and then since $j : ((X, \tau), f) \to ((Z, \eta), g)$ is essential in Q-**TOP**/ (Y, σ) , $k' : (Z, \eta) \to (W \times Z, \rho)$ is an embedding in Q-**TOP**. Now since $\tilde{k'} = h^{-1} \circ k$, $h^{-1} \circ k : (\tilde{Z}, \tilde{\eta}) \to (\tilde{T}, \tilde{\rho})$ is an embedding in Q-**TOP**. Then by Proposition 1.2.18(2), $k : (\tilde{Z}, \tilde{\eta}) \to (W, \theta)$ is an embedding in Q-**TOP**. Then by Lemma 3.4.5, $k : (\tilde{Z}, \tilde{\eta}) \to (W, \theta)$ is an embedding in Q-**TOP**. Thus $\tilde{j} : ((\tilde{X}, \tilde{\tau}), \tilde{f}) \to ((\tilde{Z}, \tilde{\eta}), \tilde{g})$ is essential in Q-**TOP**_0/ $(\tilde{Y}, \tilde{\sigma})$. Therefore $\tilde{j} :$ $((\tilde{X}, \tilde{\tau}), \tilde{f}) \to ((\tilde{Z}, \tilde{\eta}), \tilde{g})$ is an injective hull of $((\tilde{X}, \tilde{\tau}), \tilde{f})$ in Q-**TOP**_0/ $(\tilde{Y}, \tilde{\sigma})$.

 $(2) \Rightarrow (3)$ Follows from Proposition 3.5.1.

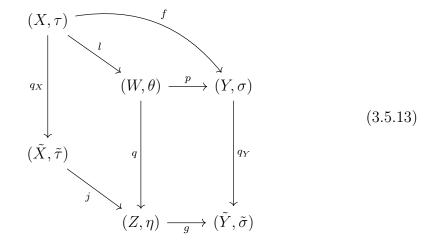
(3) \Rightarrow (1) Let $j : ((\tilde{X}, \tilde{\tau}), \tilde{f}) \rightarrow ((Z, \eta), g)$ be an injective hull of $((\tilde{X}, \tilde{\tau}), \tilde{f})$ in Q-**TOP**/ $(\tilde{Y}, \tilde{\sigma})$. Then by Proposition 3.5.1, $j : ((\tilde{X}, \tilde{\tau}), \tilde{f}) \rightarrow ((Z, \eta), g)$ is an injective hull of $(\tilde{X}, \tilde{\tau}), \tilde{f}$ in Q-**TOP**₀/ $(\tilde{Y}, \tilde{\sigma})$. Thus clearly $(Z, \eta) \in Q$ -**TOP**₀. Now let $q : (W, \theta) \rightarrow (Z, \eta)$ be a pullback of $q_Y : (Y, \sigma) \rightarrow (\tilde{Y}, \tilde{\sigma})$ along $g : (Z, \eta) \rightarrow (\tilde{Y}, \tilde{\sigma})$ in Q-**TOP**:

$$(W,\theta) \xrightarrow{q} (Z,\eta)$$

$$\downarrow^{p} \qquad \qquad \downarrow^{g} \qquad (3.5.12)$$

$$(Y,\sigma) \xrightarrow{q_{Y}} (\tilde{Y},\tilde{\sigma})$$

We note that by Proposition 3.3.6, $\tilde{q} : (\tilde{W}, \tilde{\theta}) \to (\tilde{Z}, \tilde{\eta})$ is an isomorphism in *Q*-TOP. Now since $g \circ j \circ q_X = (g \circ j) \circ q_X = \tilde{f} \circ q_X = q_Y \circ f$ and the diagram 3.5.12 is a pullback, there exists a unique Q-continuous map $l: (X, \tau) \to (W, \theta)$ for which the following diagram commutes:



Now since $q_X : (X, \tau) \to (\tilde{X}, \tilde{\tau})$ and $j : (\tilde{X}, \tilde{\tau}) \to (Z, \eta)$ both are initial in Q-**TOP** and composition of initial maps is initial, $j \circ q_X : (X, \tau) \to (Z, \eta)$ is initial in Q-**TOP** and since $j \circ q_X = q \circ l$, $q \circ l : (X, \tau) \to (Z, \eta)$ is initial in Q-**TOP** and then by Proposition 1.2.18(2), $l : (X, \tau) \to (W, \theta)$ is initial in Q-**TOP**. Now let $e : X \to l(X)$ defined as e(x) = l(x) and let $m : l(X) \to W$ be the inclusion map. Next if we take the Q-topology $\theta' = \{\beta \circ m \mid \beta \in \theta\}$ on l(X), then we have a factorization of $l : (X, \tau) \to (W, \theta)$ given by $l = m \circ e$ such that $e : (X, \tau) \to (l(X), \theta')$ is onto and $m : (l(X), \theta') \to (W, \theta)$ is an embedding in Q-**TOP**. Then since $l : (X, \tau) \to (W, \theta)$ is initial in Q-**TOP** and $l = m \circ e$, $e : (X, \tau) \to (l(X), \theta')$ is initial in Q-**TOP**. Thus by Proposition 3.5.3, there exists a pullback complement of (m, e) in Q-**TOP** given by:

$$\begin{array}{cccc} (X,\tau) & \stackrel{e}{\longrightarrow} & (l(X),\theta') \\ & & & & \downarrow^{m} \\ (E,\tau_{E}) & \stackrel{e}{\longrightarrow} & (W,\theta) \end{array} \end{array}$$

$$(3.5.14)$$

where $E = (W \setminus m(l(X))) + X$, $\overline{m} : X \to E$ is defined as $\overline{m}(x) = (x, 2)$, $\overline{e} : E \to W$ is defined as $\overline{e}(w, 1) = w$, $\overline{e}(x, 2) = (m \circ e)(x)$ and $\overline{e} : (E, \tau_E) \to (W, \theta)$ is initial in Q-TOP. Also since e is onto, \overline{e} is onto. Now since \overline{e} is onto and $\overline{e} : (E, \tau_E) \to (W, \theta)$ is initial in Q-TOP, as in the proof of the Proposition 3.3.6, we can prove that $\tilde{\overline{e}}$ is bijective and $\tilde{\overline{e}} : (\tilde{E}, \tau_E) \to (\tilde{W}, \tilde{\theta})$ is initial in Q-TOP and hence by Proposition 3.3.3, $\tilde{\overline{e}} : (\tilde{E}, \tau_E) \to (\tilde{W}, \tilde{\theta})$ is an isomorphism

in Q-TOP. Also by Proposition 3.4.2, $((E, \tau_E), \bar{e})$ is injective in Q-TOP/ (W, θ) . Now since $((Z, \eta), q)$ is injective in Q-TOP $/(\tilde{Y}, \tilde{\sigma})$ and the diagram 3.5.12 is a pullback, by Proposition 3.5.4, $((W, \theta), p)$ is injective in Q-TOP/ (Y, σ) . Thus by Proposition 3.4.4, $((E, \tau_E), p \circ \bar{e})$ is injective in Q-TOP/ (Y, σ) . Now since $p \circ \bar{e} \circ \bar{m} = p \circ l = f, \ \bar{m} : ((X, \tau), f) \to ((E, \tau_E), p \circ \bar{e})$ is a morphism in Q-**TOP**/ (Y, σ) . Now we will prove that $\bar{m} : ((X, \tau), f) \to ((E, \tau_E), p \circ \bar{e})$ is an injective hull of $((X,\tau), f)$ in Q-TOP/ (Y,σ) . We know that by the Theorem 1.2.42, Q-TOP is a topological category over Set and so by Proposition 1.2.33, regular monomorphisms in Q-TOP are precisely embeddings in Q-TOP. Then since the diagram 3.5.14 is a pullback and $m: (l(X), \theta') \to (W, \theta)$ is an embedding in Q-TOP, by Proposition 3.3.4, $\bar{m}: (X,\tau) \to (E,\tau_E)$ is an embedding in Q-**TOP**. Next let $k : ((E, \tau_E), p \circ \overline{e}) \to ((G, \tau_G), h)$ be a morphism in Q-**TOP**/ (Y, σ) such that $k \circ \overline{m} : (X, \tau) \to (G, \tau_G)$ is an embedding in Q-TOP. We have to show that $k: (E, \tau_E) \to (G, \tau_G)$ is an embedding in Q-TOP. Now since $k \circ \bar{m}: (X, \tau) \to$ (G, τ_G) is an embedding in Q-TOP, by Proposition 3.3.2, $\tilde{k} \circ \tilde{\bar{m}} : (\tilde{X}, \tilde{\tau}) \to (\tilde{G}, \tilde{\tau_G})$ is an embedding in Q-TOP. Now $(\tilde{q})^{-1} \circ q_Z \circ j \circ q_X = (\tilde{q})^{-1} \circ q_Z \circ (j \circ q_X) =$ $(\tilde{q})^{-1} \circ q_Z \circ (q \circ l) = (\tilde{q})^{-1} \circ (q_Z \circ q) \circ l = (\tilde{q})^{-1} \circ (\tilde{q} \circ q_W) \circ l = q_W \circ l$. Thus the following diagram commutes:

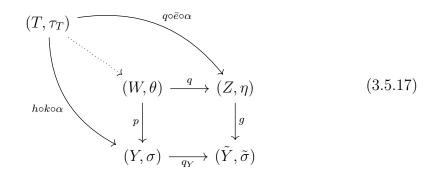
$$\begin{array}{cccc} (X,\tau) & & \stackrel{l}{\longrightarrow} & (W,\theta) \\ [1mm] q_X & & & \downarrow q_W \\ [1mm] \tilde{\chi}, \tilde{\tau}) & & & \downarrow q_W \\ (\tilde{X},\tilde{\tau}) & & & \downarrow \tilde{\chi}, \tilde{\chi} \end{array}$$
(3.5.15)

and hence $\tilde{l} = (\tilde{q})^{-1} \circ q_Z \circ j$. We also have $g \circ q_Z^{-1} \circ \tilde{q} \circ q_W = g \circ q_Z^{-1} \circ (\tilde{q} \circ q_W) = g \circ q_Z^{-1} \circ (q_Z \circ q) = g \circ q = q_Y \circ p$. Thus the following diagram commutes:

$$\begin{array}{cccc} (W,\theta) & & \stackrel{p}{\longrightarrow} & (Y,\sigma) \\ \\ q_W & & & \downarrow \\ q_Y & & & \downarrow \\ (\tilde{W},\tilde{\theta}) & & & \downarrow \\ \hline & & & & \\ g \circ q_Z^{-1} \circ \tilde{q} & (\tilde{Y},\tilde{\sigma}) \end{array}$$
 (3.5.16)

and so $\tilde{p} = g \circ q_Z^{-1} \circ \tilde{q}$. Now since $(Z, \eta) \in Q$ -**TOP**₀, $q_Z : (Z, \eta) \to (\tilde{Z}, \tilde{\eta})$ is an isomorphism in Q-**TOP** and since $(\tilde{q})^{-1} : (\tilde{Z}, \tilde{\eta}) \to (\tilde{W}, \tilde{\theta})$ is also an isomorphism

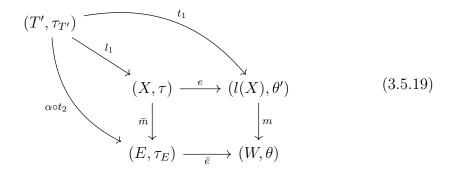
in Q-TOP, $(\tilde{q})^{-1} \circ q_Z : (Z, \eta) \to (\tilde{W}, \tilde{\theta})$ is an isomorphism in Q-TOP and so by Proposition 1.2.20(1), it is an essential embedding in Q-TOP and then it can be easily seen that $(\tilde{q})^{-1} \circ q_Z : ((Z,\eta),g) \to ((\tilde{W},\tilde{\theta}),\tilde{p})$ is a morphism in Q-TOP $/(\tilde{Y}, \tilde{\sigma})$ which is essential in Q-TOP $/(\tilde{Y}, \tilde{\sigma})$. Thus $\tilde{l} = (\tilde{q})^{-1} \circ q_Z \circ j$: $((\tilde{X}, \tilde{\tau}), \tilde{f}) \to ((\tilde{W}, \tilde{\theta}), \tilde{p})$ is essential in Q-**TOP** $/(\tilde{Y}, \tilde{\sigma})$. Now since $l = \bar{e} \circ \bar{m}$, $\tilde{l} = \tilde{e} \circ \tilde{m}$ and so $\tilde{m} = (\tilde{e})^{-1} \circ \tilde{l}$. Now since $(\tilde{e})^{-1} : (\tilde{W}, \tilde{\theta}) \to (\tilde{E}, \tilde{\tau_E})$ is an isomorphism in Q-TOP, by Proposition 1.2.20(1), it is an essential embedding in Q-TOP. Thus we have a morphism $(\tilde{e})^{-1} : ((\tilde{W}, \tilde{\theta}), \tilde{p}) \to ((\tilde{E}, \tau_{\tilde{E}}), \tilde{p} \circ \tilde{e})$ in Q-TOP $/(\tilde{Y}, \tilde{\sigma})$ which is essential in Q-TOP $/(\tilde{Y}, \tilde{\sigma})$. Then since $\tilde{\tilde{m}} = (\tilde{\tilde{e}})^{-1} \circ \tilde{l}$, $\tilde{m}: ((\tilde{X}, \tilde{\tau}), \tilde{f}) \to ((\tilde{E}, \tilde{\tau}_{E}), \tilde{p} \circ \tilde{e})$ is essential in Q-**TOP**/ $(\tilde{Y}, \tilde{\sigma})$. Now since $\tilde{k}:$ $((\tilde{E}, \tilde{\tau_E}), \tilde{p} \circ \tilde{e}) \to ((\tilde{G}, \tilde{\tau_G}), \tilde{h})$ is a morphism in Q-**TOP** $/(\tilde{Y}, \tilde{\sigma})$ such that $\tilde{k} \circ \tilde{\tilde{m}}$: $(\tilde{X}, \tilde{\tau}) \to (\tilde{G}, \tilde{\tau}_G)$ is an embedding in Q-TOP, and $\tilde{\bar{m}} : ((\tilde{X}, \tilde{\tau}), \tilde{f}) \to ((\tilde{E}, \tilde{\tau}_E), \tilde{p} \circ \tilde{e})$ is essential in Q-TOP $/(\tilde{Y}, \tilde{\sigma}), \tilde{k} : (\tilde{E}, \tilde{\tau_E}) \to (\tilde{G}, \tilde{\tau_G})$ is an embedding in Q-TOP. Thus by Proposition 3.3.2, to prove that $k: (E, \tau_E) \to (G, \tau_G)$ is an embedding in Q-TOP, now it is sufficient to prove that k is one-one. Let (T, τ_T) be a Qtopological space and let $\alpha, \beta: (T, \tau_T) \to (E, \tau_E)$ be Q-continuous maps such that $k \circ \alpha = k \circ \beta$. This implies that $q_G \circ k \circ \alpha = q_G \circ k \circ \beta \Rightarrow (q_G \circ k) \circ \alpha = (q_G \circ k) \circ \beta =$ $(\tilde{k} \circ q_E) \circ \alpha = (\tilde{k} \circ q_E) \circ \beta \Rightarrow \tilde{k} \circ (q_E \circ \alpha) = \tilde{k} \circ (q_E \circ \beta)$ and since \tilde{k} is one-one, $q_E \circ \alpha = q_E \circ \beta$. Now since $g \circ q \circ \overline{e} \circ \alpha = q_Y \circ p \circ \overline{e} \circ \alpha = q_Y \circ h \circ k \circ \alpha$ and the diagram 3.5.12 is a pullback, there exists a unique Q-continuous map from (T, τ_T) to (W, θ) making the following diagram commutative



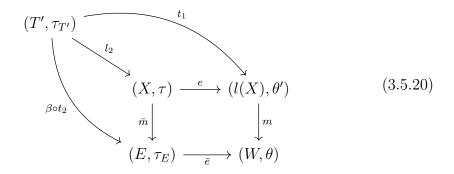
Now we have $p \circ \bar{e} \circ \beta = (p \circ \bar{e}) \circ \beta = (h \circ k) \circ \beta = h \circ (k \circ \beta) = h \circ k \circ \alpha$ and $q \circ \bar{e} \circ \beta = q_Z^{-1} \circ \tilde{q} \circ q_W \circ \bar{e} \circ \beta = q_Z^{-1} \circ \tilde{q} \circ (q_W \circ \bar{e}) \circ \beta = q_Z^{-1} \circ \tilde{q} \circ (\tilde{\bar{e}} \circ q_E) \circ \beta = q_Z^{-1} \circ \tilde{q} \circ (\tilde{\bar{e}} \circ q_E) \circ \beta = q_Z^{-1} \circ \tilde{q} \circ (\tilde{\bar{e}} \circ q_E) \circ \beta = q_Z^{-1} \circ \tilde{q} \circ (\tilde{\bar{e}} \circ q_E) \circ \alpha = q_Z^{-1} \circ \tilde{q} \circ (q_W \circ \bar{e}) \circ \alpha = (q_Z^{-1} \circ \tilde{q} \circ q_W) \circ \bar{e} \circ \alpha = q \circ \bar{e} \circ \alpha$. Also we have $p \circ \bar{e} \circ \alpha = h \circ k \circ \alpha$. Thus here we have two *Q*-continuous maps $\bar{e} \circ \alpha, \bar{e} \circ \beta : (T, \tau_T) \to (W, \theta)$ making the diagram 3.5.17 commutative. So $\bar{e} \circ \alpha = \bar{e} \circ \beta$. Now consider a pullback of $\bar{e} \circ \alpha = \bar{e} \circ \beta : (T, \tau_T) \to (W, \theta)$ along $m : (l(X), \theta') \to (W, \theta)$ in Q-TOP given by the following:

$$\begin{array}{ccc} (T', \tau_{T'}) & \xrightarrow{t_1} & (l(X), \theta') \\ t_2 \downarrow & & \downarrow_m \\ (T, \tau_T) & \xrightarrow{\alpha}_{\beta} & (E, \tau_E) & \xrightarrow{\overline{e}} & (W, \theta) \end{array}$$
 (3.5.18)

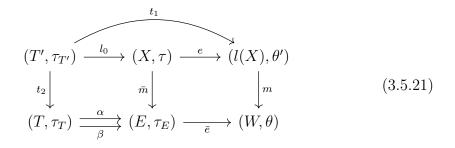
Now since the diagram 3.5.14 is a pullback square, there exists a unique Qcontinuous map $l_1: (T', \tau'_T) \to (X, \tau)$ for which the following diagram commutes:



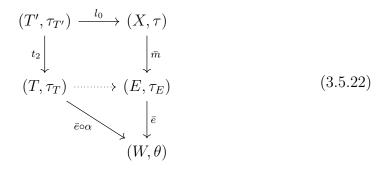
Similarly we have a unique Q-continuous map $l_2 : (T', \tau'_T) \to (X, \tau)$ for which the following diagram commutes:



Then we have $\beta \circ t_2 = \overline{m} \circ l_2 \Rightarrow k \circ \beta \circ t_2 = k \circ \overline{m} \circ l_2 \Rightarrow k \circ \alpha \circ t_2 = k \circ \overline{m} \circ l_2$ and $\overline{m} \circ l_1 = \alpha \circ t_2 \Rightarrow k \circ \overline{m} \circ l_1 = k \circ \alpha \circ t_2$. Thus $k \circ \overline{m} \circ l_1 = k \circ \overline{m} \circ l_2$ and since $k \circ \overline{m}$ is one-one, $l_1 = l_2$. Let $l_1 = l_2 = l_0$. Thus the following diagram commutes:



Now since the diagram 3.5.14 is a pullback complement diagram, with respect to the pullback diagram 3.5.18 and Q-continuous map $l_0 : (T', \tau_{T'}) \to (X, \tau)$, there exists a unique Q-continuous map from (T, τ_T) to (E, τ_E) making the following diagram commutative



But here we have two Q-continuous maps $\alpha, \beta : (T, \tau_T) \to (E, \tau_E)$ making the diagram 3.5.22 commutative. So $\alpha = \beta$ and hence k is one-one. Therefore $\overline{m} : ((X, \tau), f) \to ((E, \tau_E), p \circ \overline{e})$ is an injective hull of $((X, \tau), f)$ in Q-TOP/ (Y, σ) .

3.6 Conclusion

In this chapter, we have obtained a characterization of injective objects (with respect to the class of embeddings in the category Q-**TOP** of Q-topological spaces) in the comma category Q-**TOP**/ (Y, σ) , when (Y, σ) is a stratified Q-topological space, with the help of their T_0 -reflection. Further, we have proved that for any Q-topological space (Y, σ) , the existence of an injective hull of $((X, \tau), f)$ in the comma category Q-**TOP**/ (Y, σ) is equivalent to the existence of an injective hull of its T_0 -reflection $((\tilde{X}, \tilde{\tau}), \tilde{f})$ in the comma category Q-**TOP**/ $(\tilde{Y}, \tilde{\sigma})$ (and in the comma category Q-**TOP**₀/($\tilde{Y}, \tilde{\sigma}$), where Q-**TOP**₀ denotes the category of T_0 -Q-topological spaces).