Chapter 2

Exponential ()-topological spaces

2.1 Introduction

In [13], Escardo and Heckmann had proved that a topological space (Y,7T) in
the category TOP of topological spaces is exponential if and only if there exists
an splitting-conjoining topology on C((Y,T),S) which is the set of all continuous
functions from (Y,7) to S, where S is the Sierpinski topological space with two
points 1 and 0 such that {1} is open but {0} is not. In this chapter, we have
extended this characterization to the category Q-TOP of ()-topological spaces
introduced by Solovyov [36].

An object A of a category C with finite products is called exponential if the
functor A x —: C — C has a right adjoint (cf. [29]). In 1983, Schwarz [29] gave
a characterization of exponential objects in an initially structured category. He
proved that an object A of an initially structured category C is exponential if and
only if for every object B of C, there exists a proper admissible C-structure on
C(A, B), where C(A, B) is the set of all morphisms from A to B. Further he had
shown that we can restrict the B’s to initially dense classes, i.e., he proved that

an object A of an initially structured category C is exponential if and only if for

The contents of this chapter, in the form of a research paper, has been published in ‘Fuzzy
Sets Syst. 406 (2021) 58-65’.
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every B € D, there exists a proper admissible C-structure on C(A, B), where D

is initially dense in C.

In 1988, Alderton [5]| defined the power-set [A, B] of two objects A and B of a
monotopological category C. He also defined splitting and conjoining C-structures
on [A, B] and gave a similar characterization (as given by Schwarz [29] in an
initially structured category) of exponential objects in a monotopological category
with splitting objects which says that an object A of a monotopological category
C with splitting objects is exponential if and only if for every object B of C,
there exists a splitting-conjoining C-structure on [A, B]. We mention here that
the terminologies splitting, conjoining and splitting-conjoining are same as proper,
admissible and proper-admissible respectively, in an initially structured category
if [A, B] is replaced by C(A, B) (cf. [29]). We also mention that in 1985, Alderton
[4] has pointed out that for topological categories if we consider the power-set
[A, B] instead of considering the set C(A, B), then most of the theory developed
in [29] for exponential objects holds in topological categories (cf. Alderton [4], pp.
376-377). In particular, he mentioned that the Theorem 3.2 in [29] will hold in
topological categories which gives us the following characterization of exponential

objects in topological categories:

An object A of a topological category C is exponential if and only if for every
object B € D, there exists a splitting-conjoining C-structure on [A, B], where D

is initially dense in C.

As mentioned in the first chapter of the thesis, Solovyov [36] in 2008 gave the
concept of Q-topological spaces and ()-continuous maps between them and studied
the category @Q-TOP of @Q-topological spaces (where @ is a fixed member of a
fixed variety of Q-algebras). Solovyov [36] also introduced the @-Sierpinski space
(@, (idg)) and Singh and Srivastava [30] proved that (Q, (idg)) is a Sierpinski
object in the category Q)-TOP. Hence {(Q, (idg))} is initially dense in Q)-TOP.

We note that Q-TOP is a monotopological category with splitting objects in
the sense of [5] and a topological category in the sense of [4] and hence we have

the following characterizations of exponential objects in the category QQ-TOP:

1. A Q-topological space (Y, o) is exponential if and only if for every @-topological
space (Z,n), there exists an splitting-conjoining @)-topology on [(Y, o), (Z, )]
(cf. Theorem 2.3, Alderton [5]).



Chapter 2. Ezponential (Q-topological spaces 17

2. A Q-topological space (Y, o) is exponential if and only if there exists an
splitting-conjoining @-topology on [(Y,0), (@, (idg))] (cf. Alderton [4], pp.
376-377).

We mention here that the above characterizations of exponential ()-topological
spaces have been obtained by using the concepts of category theory. As the cate-
gory TOP is an example of the category Q-TOP, the above characterizations of
exponential objects hold in TOP.

In 2001, Escardo and Heckmann [13] obtained the characterization (2) of expo-
nential objects in TOP (using the characterization (1) as a Definition of exponen-
tial objects in TOP) without any use of category theory. In their development,
only a basic knowledge of general topology was required. It is important to men-
tion here that they have called such topological spaces as exponentiable instead
of exponential. Further, the terminologies weak, strong and exponential used by
Escardo and Heckmann [13] are the same as splitting, conjoining and splitting-
conjoining respectively (in the category TOP) used by Alderton [4, 5]. It is
also pointed out that, for given topological spaces (Y7, 7;) and (Y5, 7Tz), Escardo
and Heckmann have taken the set C'((Y1,71), (Y2, 72)) of all continuous functions
from (Y1, 7T7) to (Ya,Tz), instead of the power-set [(Y1,T:), (Y2, 73)], but in TOP,
(Y1, T2, (Y2, Ta)] = C((V2, Tr), (Y, Ta)) (cf. Aldexton [6]).

Motivated by Escardo and Heckmann [13], in this chapter, we have obtained the
characterization (2) of exponential objects in the category @-TOP. We have not
used categorical concepts in our proofs, only some basic concepts of ()-topological
spaces are required. In this process, for a given Q-topological space (Y, o), we
have also obtained a relation between the splitting-conjoining )-topologies on
(Y, 0),(Q, (idg))] and [(Y,0),(Z,n)], for every Q-topological space (Z,n).

2.2 Monotopological and Topological categories

Remark 2.2.1. In this chapter, we will use the definition of a topological category
in the sense of Alderton [5|. We mention here that the topological categories in
the sense of Alderton [5] are topological categories over Set in the sense of 1] (cf.
Definition 1.2.32)
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Definition 2.2.2. [1| A source {f; : A — A; | j € J} in Set is called point-
separating source if for a,b € A, a # b, there exists j € J such that f;(a) # f;(b).

In the following definition, a concrete category over Set will mean a category C
having objects as structured sets, i.e., objects of C are of the form (Y, s), where Y’
is a set and s is a C-structure on Y and for given two objects (Y, s) and (Z, p) of
C, the set of all morphisms from (Y, s) to (Z,p) consists of structure compatible

functions from Y to Z and their composition is the usual composition of functions.

Definition 2.2.3. [5] Let C be a concrete category over Set with forgetful functor
|—|: C — Set. Then C is called monotopological if it satisfies the following

conditions:
1. Every point-separating |—|-source {gx : Y — |(Yk, sx)|| k¥ € K} has a unique
initial lift.
2. For every set Y, the class of all C-structures on Y is a set and there is only

one C-structure on (.

If the condition (1) is replaced by the following condition:

(T) Given any |—|-source {gx : Y — (Y, sr)|| k € K}, there exists a unique initial
lift of the source {gx : Y — |(Ys, sx)|| k € K},
then C is called topological.

Remark 2.2.4. If we add one more condition in the Definition 2.2.3 given by,
(a) There is only one C-structure on each singleton,

then C is called an initially structured category (cf. [29]).

Remark 2.2.5. We note that Q-TOP is a topological category (in the sense of
[5]) in view of Proposition 1.2.41 and the fact that the class of all Q-topologies on

any given set X is a set.

2.3 Splitting-conjoining ()-topology on Power-set
in -TOP

Definition 2.3.1. [13| Let Y, Z and X be sets and g : X x Y — Z be a map.
Define g: X — Z¥ as
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9(z)(y) = g(x,y), for every x € X and every y € Y.

Also if we have a map g : X — ZY, then we can defineamap g: X xY — Z

as

g(z,y) =g(x)(y), for every x € X and every y € Y.

Remark 2.3.2. Let (Y, 0) and (Z, ) be Q-topological spaces. Then C((Y, o), (Z,n))
will denote the set of all Q-continuous maps from (Y, o) to (Z,n) and (Y, 0) x(Z,n)
will denote the product of (Y, ) and (Z,7n) in Q-TOP.

Q-TOP has finite concrete products (in view of Proposition 1.2.45), hence we
can define power-set of two Q-topological spaces as a consequence of Alderton [5],
Definition 1.1.

Definition 2.3.3. Let (Y,0) and (Z,n) be Q-topological spaces. Define the
power-set of (Y, o) and (Z,n) by,

(Y,0),(Z,n)] ={f:Y — Z |3 a Q-topological space (X,7), x € X and
g:(X,7)x (Y,0) — (Z,n) a @Q-continuous map such that g(z) = f}

The following definition is a consequence of the Definition 2.1 in Alderton [5],

as -TOP is a category with finite concrete products.

Definition 2.3.4. Let (Y, 0) and (Z,7n) be Q-topological spaces. A Q-topology 0
on [(Y,0),(Z,n)] is called

1. splitting if g : (X,7) — ([(Y,0),(Z,7n)],0) is Q-continuous whenever g :
(X,7) x (Y,0) = (Z,n) is Q-continuous.

2. conjoining if g : (X,7) x (Y,0) — (Z,n) is Q-continuous whenever g :
(X,7) = ([(Y,0),(Z,n)],0) is Q-continuous.

Thus a Q-topology 6 on [(Y,0),(Z,n)] is splitting-conjoining if and only if it
makes the map g — g into a well defined bijection from C'((X,7) x (Y, 0),(Z,n))
to C((X,7),([(Y,0),(Z,n)],0)), for every Q-topological space (X, ).
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Proposition 2.3.5. Let ([] Y, n) be the product of the family {(Yy,0%) | k € K}
of Q-topological spaces. Let (Y,0) be a @Q-topological space and py : [[Yr —
Yy, k € K be the projection maps. Then a map ¢ : (Y,0) — ([[Yx,n) is Q-

continuous if and only if pyog : (Y,0) — (Y%, 0k) is Q-continuous for every k € K.

Proof. Suppose first that g : (Y,0) — ([] Yk, n) is Q-continuous. Let o € oy.
Then aoprog = (aopy)ogeoasg: (Y,o0) = (][ Ye,n) is Q-continuous and
a o pi € n. Therefore pyog: (Y,0) = (Y, 0k) is Q-continuous.

Conversely, assume that pyog : (Y,0) — (Y, 0k) is Q-continuous, for every
k € K. Then aopgog = ao(pgog) € o, for every a € oy as prog : (Y,0) — (Y, 0%)
is Q-continuous. Therefore from Proposition 1.2.40, g : (Y,0) — (][ Yx,n) is @-

continuous. OJ

Proposition 2.3.6. Let g, : (X1,71) — (Y1,01) and go : (Xo, 72) — (Y3, 02) be ©-
continuous maps. Then the map g1 X go : (X1, 71) X (X2, 72) = (Y1,01) x (Y2, 09)
defined as (g1 X go)(w1,72) = (g1(x1), g2(x2)), for every (z1,z2) € X1 X Xo, is

(-continuous.

Proof. Let px, : X1 x X9 = X, and py, : Y1 x Yy = Y;, k = 1,2 be projection
maps. Now consider the map py, o (g1 X g2) : (X1,71) X (X2, 72) = (Yi,0%) and
let @ € 0. Then (aopy, o (1 X g2))(x1,22) = (a0 gx)(xk) = alge(zr)) =
a((gr © px,)(@1,22)) = (a0 g o px,)(21,22) = ((@v 0 gr) © px,)(1,22). Hence
aopy, 0(g1 X g2) = (wogy)opx,. Now since gy : (X, 1) — (Y, 0x) is Q-continuous
and « € oy, ao gy € 7. Hence aopy, o (g1 X g2) = (o gi) o px, belongs to
the product Q-topology of the Q-topological spaces (Xi,7;) and (X3, 72). Thus
Py, © (g1 X ¢2) @ (X1,7) X (Xo,72) — (Yi,0k) is Q-continuous. Therefore by
Proposition 2.3.5, the map ¢; x g2 : (X1,71) X (Xa,72) = (Y1,01) x (Ya,09) is

(Q-continuous. O

The proof of following proposition is on similar lines as Lemma 2.1 in [13],
though using only the concepts of Q-topological spaces, we are giving here a proof

of the proposition.

Proposition 2.3.7. Let (Y, 0) and (Z,n) be Q-topological spaces. A Q-topology

0 on [(Y,0),(Z,n)] is conjoining if and only if the evaluation map

e ([(Y,0),(Z,n)],0) x (Y,0) = (Z,n)
(fy) = fy)
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is (Q-continuous.

Proof. Suppose first that the Q-topology 6 on [(Y, o), (Z,n)] is conjoining. Let f €
[(Y,0),(Z,n)]. Then 2(f)(y) = e(f,y) = f(y). So we get that £(f) = f, for every
fellY,o),(Zn)]. Nowlet a € . Then (a0g)(f) = a(2(f)) = a(f). This implies
that « 02 = a € 6. Hence the map z : ([(Y,0),(Z,n)],0) — ([(Y,0),(Z,n)],0)
is @-continuous. Now since the Q-topology 6 on [(Y, o), (Z,n)] is conjoining, € :
([(Y,0),(Z,n)],0) x (Y,0) = (Z,n) is Q-continuous.

14

Conversely, assume that the evaluation map ¢ : ([(Y,0),(Z,n)],0) x (Y,0)
(Z,m) is Q-continuous. We have to show that 6 is conjoining. Let g : (X, 7)

([(Y,0),(Z,n)],0) be @Q-continuous. Consider (¢ o (g x idy))(x,y) = e(g(x),y) =
g(z)(y) = g(x,y). This implies that g = € o (g x idy). Now since g : (X,7) —
([(Y,0),(Z,n)],0) and idy : (Y,o0) — (Y,0) are Q-continuous, by Proposition
23.6, g xidy : (X,7) x (Y,0) = ([(Y,0),(Z,n)],0) x (Y,0) is Q-continuous.
Hence g : (X,7) x (Y,0) = (Z,n) is Q-continuous as g = € o (g X idy). Therefore

6 is conjoining. m

Definition 2.3.8. Let Y be a set and o7 and o5 be QQ-topologies on the set Y. If
01 C 09, then we say that o, is weaker than o,. In this case we also say that o

is stronger than o;.

We note that since every topological category has splitting objects (cf. Example
2.6 (i), Alderton [5]) and Q-TOP is a topological category, it is a monotopological
category with splitting objects. Alderton [5| mentioned that the result similar
to Proposition 2.6 in [29] will hold in monotopological categories with splitting
objects (cf. Alderton [5]|, proof of the Theorem 2.3), so we have the following
result, the proof of which is on similar lines as of the Proposition 2.6 in [29],
though using only the concepts of ()-topological spaces, we are giving here a proof

of the proposition.
Proposition 2.3.9. Let (Y,0) and (Z,n) be Q-topological spaces. Then,
1. Any @Q-topology on [(Y,0),(Z,n)] weaker than a splitting @Q-topology on
[(Y,0),(Z,n)] is also splitting.

2. Any Q-topology on [(Y, o), (Z,n)] stronger than a conjoining Q-topology on
[(Y,0),(Z,n)] is also conjoining,.
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3. Any splitting Q-topology on [(Y,0),(Z,n)] is weaker than any conjoining
Q-topology on [(Y,0), (Z,n)].

4. If 9 is splitting-conjoining Q-topology on [(Y, o), (Z,n)], then 6 is uniquely

determined.

Proof. (1) and (2) are obvious.

(3) Let 6y and 6, be conjoining and splitting Q-topologies on [(Y,0), (Z,n)] re-
spectively. We have to show that 6, C #;. Since 6; is conjoining, the evaluation
map ¢ : ([(Y,0),(Z,n)],0:) x (Y,0) — (Z,n) is Q-continuous. Now since 05 is
splitting, € : ([(Y,0),(Z,n)],01) — ([(Y,0),(Z,n)],02) is @Q-continuous. This im-
plies that a0 € € 0y, for every a € #5. But we have seen that (f) = f and so
(o &)(f) = a(E(f)) = a(f). Hence a = a0 € 0y, for every a € 05. Therefore
0y C 0.

(4) It follows from (3). O

2.4 A characterization of exponential objects in ()-

TOP
Definition 2.4.1. [1] Let F': C — D be a functor and let B be a D-object.

1. A F-costructured arrow with codomain B is a pair (A, f) consisting of
a C-object A and a D-morphism f: FA — B.

2. A F-costructured arrow (A, f) with codomain B is called F-co-universal
for B if for each F-costructured arrow (fl, g) with codomain B there exists
a unique C-morphism h : A — A such that g = fo Fh, ie., such that the

triangle

lg/ (2.4.1)

commutes.
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Definition 2.4.2. [1| Let C and D be categories and let F': C — D be a functor.
We say that F': C — D has a right adjoint if for every D-object B there exists

a F'-co-universal arrow with codomain B.

Definition 2.4.3. [29] Let C be a category with finite products. An object A of
C is called exponential if the functor A x — : C — C has a right adjoint.

The following result follows from the Theorem 2.3 in Alderton [5] as @-TOP is

a monotopological category with splitting objects.

Theorem 2.4.4. Let (Y, 0) be a Q-topological space. Then both of the following

statements are equivalent:

1. The functor (Y,0) x —: Q-TOP— @Q-TOP has a right adjoint.

2. Given any @Q-topological space (Z,7n), there exists an splitting-conjoining
Q“tOpOIOgy on [(}/7 O-)’ (Z’ 77)]

Thus in view of Definition 2.4.3 and Theorem 2.4.4, we can define exponential

(-topological spaces as follows:

Definition 2.4.5. Let (Y,0) be a @Q-topological space. Then (Y,0) is called
exponential if there exists an splitting-conjoining @-topology on [(Y, o), (Z,n)],
for every Q-topological space (Z,n).

From now onwards, we will follow the Definition 2.4.5 for exponential ()-topological

spaces.

Lemma 2.4.6. Let (Y, o) and (Z, n) be Q-topological spaces. Let f € [(Y,0),(Z,n)]
and § €, then fo f € [(Y,0),(Q, (idg))].

Proof. We note that since f € [(Y,0),(Z,n)], there exist a Q-topological space
(X,7), * € X and a Q-continuous map h : (X,7) x (Y,0) — (Z,n) such that
h(z) = f. Now consider the map Soh : (X,7) x (Y,0) = (Q, (idg)). Since
h:(X,7)x(Y,0) = (Z,n) is Q-continuous and § € 7, Boh belongs to the product
(Q)-topology of the Q-topological spaces (X, 7) and (Y, o). Now since idgo(Soh) =
[ oh,idgo (B oh) belongs to the product Q-topology of the Q)-topological spaces
(X,7) and (Y, 0). So by Proposition 1.2.40, foh: (X,7) x (Y,0) = (Q, (idg)) is

@-continuous. Now consider,
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(Boh)(x)(y) = (Boh)(z,y) = B(h(z,y)) = B(h(x)(y)) = (Boh(x))(y) = (Bof)(y),
for every y € Y.

Hence (B o h)(z) = B o f and therefore o f € [(Y,0),(Q, (idg))]. O

Let (Y, 0) and (Z, n) be Q-topological spaces and 6 be a Q-topology on [(Y, o), (@, (idg))].
Let ¢ € 6 and B € n. Define a map 0(v, 8) : [(Y,0),(Z,n)] = Q as,

0(, B)(f) = (B o f), for every f € [(Y,0),(Z,n)].

Here we point out that by Lemma 2.4.6, B o f € [(Y,0),(Q, (idg))]. Now let

Oz = {00, B) | ¥ €6, B €n}). Then 0z, is a Q-topology on [(Y,0), (Z,n)],
called as the Q)-topology induced by 6.

The following Propositions 2.4.7, 2.4.8 and Theorem 2.4.9 are concerned with

the extensions of the results of Lemma 3.1 in [13], for Q-topological spaces.

Proposition 2.4.7. Let (Y, 0) be a Q-topological space and € be a Q-topology
on [(Y,0),(Q, (idg))]. Then 6 is splitting if and only if the @-topology 6z, on
[(Y,0),(Z,n)] induced by 6 is splitting for every @Q-topological space (Z,n).

Proof. Suppose first that 6 is splitting and let g : (X,7) x (Y,0) — (Z,n) be
Q-continuous. We have to show that g : (X,7) = ([(Y,0),(Z,n)],0zy) is Q-
continuous. Let ¢ € § and 3 € n. Then,

(0(¢, B) 0 g)(x) = 0(¥, B)(g(x)) = (B o g(x)), for every x € X.

Now consider the map fog : (X,7) x (Y,0) = (Q, (idg)). Since g : (X,7) X
(Y,o0) — (Z,n) is Q-continuous and S € 7, § o g belongs to the product Q-
topology of the @Q-topological spaces (X, 7) and (Y,0). Hence the map foyg :
(X,7) x (Y,0) = (Q, {idg)) is Q-continuous. Now since 6 is splitting, fo g :
(X,7) = ([(Y,0),(Q, (idg))],0) is Q-continuous. Also we have,

Bog(x)(y) = (Bog)(x,y) =Byl y)) = B(H)(y) = (Bog(x))(y), for every
yey.

Thus B o g(z) = 30 g(x). Now,
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(o Bog)(x)=v(Bog(x)) =v(Bog(x)) = (04, B)og)(x), for every € X.

This implies that 103 0 g = 0(3, 8)og. Now since Bo g : (X, 1) — ([(V,0), (Q, (idg))], )
is Q-continuous and ¢ € 6, ¢ o fog = O(¢),B) oG € 7. Note that Ozm =
{0(v,0) | v € 6, B € n}) and hence by Proposition 1.2.40, g : (X,7) —
([(Y,0),(Z,n)],0(zy) is @-continuous. Therefore 6, is splitting.

Conversely, assume that the Q-topology 6z, on [(Y, o), (Z,n)] induced by @ is
splitting for every Q-topological space (Z,7). Then the Q-topology 0(q id,)) on
(Y, 0),(Q, (idg))] induced by 6 is splitting. Let ¢ € 6 and f € [(Y,0), (Q, (idg))]-
Consider 0(¢,idg)(f) = w(idg o f) = ¥(f). Thus 0(¢,idg) = ¢ and since

0(¢,idg) € 0(q,udg)): ¥ € 0(q.iidg))- This implies that 6 C 6(q (id,))- Now since
0(Q,(idg)) 18 splitting and 6 C 6(q,(i4,,)), by Proposition 2.3.9, ¢ is splitting. ]

Proposition 2.4.8. Let (Y, 0) be a ) topological space and 6 be a ()-topology on
[(Y,0),(Q, (idg))]. If 6 is conjoining, then the Q-topology 0z, on [(Y, o), (Z,n)]
induced by 6 is conjoining for every @-topological space (Z,n).

Proof. Suppose that @ is conjoining and let g : (X, 7) = ([(Y,0),(Z,n)],0zy) be
Q-continuous. We have to show that ¢ : (X, 7) x (Y,0) — (Z,n) is Q-continuous.
Let B € . Note that Bo g(z) = 80 g(x). Now, since g(z) € [(Y, ), (Z,1)] and
B € n, by Lemma 2.4.6, Bog(x) = Bog(z) € [(Y,0),(Q, (idg))]. So Bogisa
mapping from X to [(Y,0), (Q, (idg))]. Next, let ¢ € 6, then,

(), 8) 0 9)(x) = 0(y, B)(g(x)) = (B oG(x)) =¥ (Bog(x)) = (Yo Bog)(w), for

every x € X.

This implies that 6(¢, 3) og =10 Bog. Sinceg: (X,7) — ([(Y,0),(Z,n)],0(zn))
is Q-continuous and (¢, B) € Oz, 0(¥,8)0g = ¥ ofBog e r. Thus fog :
(X,7) = ([(Y,0),(Q, (idg))],0) is Q-continuous. Now since 6 is conjoining, J o
g : (X,7) x (Y,o) = (Q,(idg)) is Q-continuous. Thus S o g belongs to the
product Q-topology of the Q-topological spaces (X, 7) and (Y, o). Hence the map
g:(X,7)x(Y,0) = (Z,n) is @Q-continuous. Therefore ¢z, is conjoining. O

Theorem 2.4.9. Let (Y,0) be a @ topological space and 6 be a Q-topology

n [(Y,0),(Q, (idg))]. If 0 is splitting-conjoining, then the @Q-topology 6z, on
[(Y,0),(Z,n)] induced by 6 is splitting-conjoining for every (-topological space
(Z,m).
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Further, if the Q-topology 0z, on [(Y,0),(Z,n)] induced by 6§ is splitting-
conjoining for every Q-topological space (Z,n), then 6 is splitting-conjoining if

and only if 6 = H(Q’@dcﬁ)'

Proof. The proof of the first part of the Theorem follows from Propositions 2.4.7
and 2.4.8.

Now we will prove the second part. We are given that 0z, is splitting-
conjoining for every Q-topological space (Z,n). Let 6 be splitting-conjoining, then
0.z, is splitting-conjoining (in view of Propositions 2.4.7 and 2.4.8). In particu-
lar, 0(q,(iaq)) is splitting-conjoining. Now using Proposition 2.3.9(4), 6 = 0(q,(id))-
Conversely, if 6 = 0(q (i), then 0 is splitting-conjoining (it follows from the given

condition itself).

]

Thus we have obtained the following characterization of exponential objects in
the category Q-TOP.

Theorem 2.4.10. A Q-topological space (Y,0) is exponential if and only if
there exists an splitting-conjoining @-topology on [(Y, o), (@, (idg))]. In this case,
for a given Q-topological space (Z,n), the splitting-conjoining Q-topology on
[(Y,0),(Z,n)] is the Q-topology induced by the splitting-conjoining Q-topology
on (Y, ), (@, (ida))].

2.5 Conclusion

It is known that a topological space (Y, T) is exponential in the category TOP
of topological spaces if and only if there exists an splitting-conjoining topology
on C((Y,T),S), where S is the Sierpinski topological space with two points 1
and 0 such that {1} is open but {0} is not (cf. [13]). This chapter extends this
characterization to the category Q-TOP of ()-topological spaces introduced by
Solovyov [36]. As mentioned in the introduction, in the proofs, our approach
is not category theoretic, only some basic concepts of Q)-topological spaces are
required. Our study is motivated by Escardo and Heckmann [13], who obtained
the above characterization of exponential topological spaces in the category TOP

without using categorical concepts. In the results, presented in this chapter, the
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@-Sierpinski space plays a key role. It is well known that a topological space
is exponential in the category TOP if and only if it is core compact (cf. [13]).
The problem of characterizing exponential ()-topological spaces in terms of core
compactness is still open. To tackle this problem, first it is required to extend
the concept of core compactness for (Q-topological spaces and then to study the

characterization of exponential ()-topological spaces in terms of core compactness.



