
Chapter 2

Exponential Q-topological spaces

2.1 Introduction

In [13], Escardo and Heckmann had proved that a topological space (Y, T ) in
the category TOP of topological spaces is exponential if and only if there exists
an splitting-conjoining topology on C((Y, T ),S) which is the set of all continuous
functions from (Y, T ) to S, where S is the Sierpinski topological space with two
points 1 and 0 such that {1} is open but {0} is not. In this chapter, we have
extended this characterization to the category Q-TOP of Q-topological spaces
introduced by Solovyov [36].

An object A of a category C with finite products is called exponential if the
functor A×− : C → C has a right adjoint (cf. [29]). In 1983, Schwarz [29] gave
a characterization of exponential objects in an initially structured category. He
proved that an object A of an initially structured category C is exponential if and
only if for every object B of C, there exists a proper admissible C-structure on
C(A,B), where C(A,B) is the set of all morphisms from A to B. Further he had
shown that we can restrict the B’s to initially dense classes, i.e., he proved that
an object A of an initially structured category C is exponential if and only if for

The contents of this chapter, in the form of a research paper, has been published in ‘Fuzzy
Sets Syst. 406 (2021) 58-65’.
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every B ∈ D, there exists a proper admissible C-structure on C(A,B), where D
is initially dense in C.

In 1988, Alderton [5] defined the power-set [A,B] of two objects A and B of a
monotopological category C. He also defined splitting and conjoining C-structures
on [A,B] and gave a similar characterization (as given by Schwarz [29] in an
initially structured category) of exponential objects in a monotopological category
with splitting objects which says that an object A of a monotopological category
C with splitting objects is exponential if and only if for every object B of C,
there exists a splitting-conjoining C-structure on [A,B]. We mention here that
the terminologies splitting, conjoining and splitting-conjoining are same as proper,
admissible and proper-admissible respectively, in an initially structured category
if [A,B] is replaced by C(A,B) (cf. [29]). We also mention that in 1985, Alderton
[4] has pointed out that for topological categories if we consider the power-set
[A,B] instead of considering the set C(A,B), then most of the theory developed
in [29] for exponential objects holds in topological categories (cf. Alderton [4], pp.
376-377). In particular, he mentioned that the Theorem 3.2 in [29] will hold in
topological categories which gives us the following characterization of exponential
objects in topological categories:

An object A of a topological category C is exponential if and only if for every
object B ∈ D, there exists a splitting-conjoining C-structure on [A,B], where D
is initially dense in C.

As mentioned in the first chapter of the thesis, Solovyov [36] in 2008 gave the
concept of Q-topological spaces and Q-continuous maps between them and studied
the category Q-TOP of Q-topological spaces (where Q is a fixed member of a
fixed variety of Ω-algebras). Solovyov [36] also introduced the Q-Sierpinski space
(Q, 〈idQ〉) and Singh and Srivastava [30] proved that (Q, 〈idQ〉) is a Sierpinski
object in the category Q-TOP. Hence {(Q, 〈idQ〉)} is initially dense in Q-TOP.

We note that Q-TOP is a monotopological category with splitting objects in
the sense of [5] and a topological category in the sense of [4] and hence we have
the following characterizations of exponential objects in the category Q-TOP:

1. AQ-topological space (Y, σ) is exponential if and only if for everyQ-topological
space (Z, η), there exists an splitting-conjoining Q-topology on [(Y, σ), (Z, η)]

(cf. Theorem 2.3, Alderton [5]).
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2. A Q-topological space (Y, σ) is exponential if and only if there exists an
splitting-conjoining Q-topology on [(Y, σ), (Q, 〈idQ〉)] (cf. Alderton [4], pp.
376-377).

We mention here that the above characterizations of exponential Q-topological
spaces have been obtained by using the concepts of category theory. As the cate-
gory TOP is an example of the category Q-TOP, the above characterizations of
exponential objects hold in TOP.

In 2001, Escardo and Heckmann [13] obtained the characterization (2) of expo-
nential objects in TOP (using the characterization (1) as a Definition of exponen-
tial objects in TOP) without any use of category theory. In their development,
only a basic knowledge of general topology was required. It is important to men-
tion here that they have called such topological spaces as exponentiable instead
of exponential. Further, the terminologies weak, strong and exponential used by
Escardo and Heckmann [13] are the same as splitting, conjoining and splitting-
conjoining respectively (in the category TOP) used by Alderton [4, 5]. It is
also pointed out that, for given topological spaces (Y1, T1) and (Y2, T2), Escardo
and Heckmann have taken the set C((Y1, T1), (Y2, T2)) of all continuous functions
from (Y1, T1) to (Y2, T2), instead of the power-set [(Y1, T1), (Y2, T2)], but in TOP,
[(Y1, T1), (Y2, T2)] = C((Y1, T1), (Y2, T2)) (cf. Alderton [6]).

Motivated by Escardo and Heckmann [13], in this chapter, we have obtained the
characterization (2) of exponential objects in the category Q-TOP. We have not
used categorical concepts in our proofs, only some basic concepts of Q-topological
spaces are required. In this process, for a given Q-topological space (Y, σ), we
have also obtained a relation between the splitting-conjoining Q-topologies on
[(Y, σ), (Q, 〈idQ〉)] and [(Y, σ), (Z, η)], for every Q-topological space (Z, η).

2.2 Monotopological and Topological categories

Remark 2.2.1. In this chapter, we will use the definition of a topological category
in the sense of Alderton [5]. We mention here that the topological categories in
the sense of Alderton [5] are topological categories over Set in the sense of [1] (cf.
Definition 1.2.32)
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Definition 2.2.2. [1] A source {fj : A → Aj | j ∈ J} in Set is called point-

separating source if for a, b ∈ A, a 6= b, there exists j ∈ J such that fj(a) 6= fj(b).

In the following definition, a concrete category over Set will mean a category C
having objects as structured sets, i.e., objects of C are of the form (Y, s), where Y
is a set and s is a C-structure on Y and for given two objects (Y, s) and (Z, p) of
C, the set of all morphisms from (Y, s) to (Z, p) consists of structure compatible
functions from Y to Z and their composition is the usual composition of functions.

Definition 2.2.3. [5] Let C be a concrete category over Set with forgetful functor
|−|: C → Set. Then C is called monotopological if it satisfies the following
conditions:

1. Every point-separating |−|-source {gk : Y → |(Yk, sk)|| k ∈ K} has a unique
initial lift.

2. For every set Y , the class of all C-structures on Y is a set and there is only
one C-structure on ∅.

If the condition (1) is replaced by the following condition:

(T) Given any |−|-source {gk : Y → |(Yk, sk)|| k ∈ K}, there exists a unique initial
lift of the source {gk : Y → |(Yk, sk)|| k ∈ K},
then C is called topological.

Remark 2.2.4. If we add one more condition in the Definition 2.2.3 given by,

(a) There is only one C-structure on each singleton,

then C is called an initially structured category (cf. [29]).

Remark 2.2.5. We note that Q-TOP is a topological category (in the sense of
[5]) in view of Proposition 1.2.41 and the fact that the class of all Q-topologies on
any given set X is a set.

2.3 Splitting-conjoining Q-topology on Power-set

in Q-TOP

Definition 2.3.1. [13] Let Y, Z and X be sets and g : X × Y → Z be a map.
Define g : X → ZY as
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g(x)(y) = g(x, y), for every x ∈ X and every y ∈ Y .

Also if we have a map g : X → ZY , then we can define a map g : X × Y → Z

as

g(x, y) = g(x)(y), for every x ∈ X and every y ∈ Y .

Remark 2.3.2. Let (Y, σ) and (Z, η) beQ-topological spaces. Then C((Y, σ), (Z, η))

will denote the set of all Q-continuous maps from (Y, σ) to (Z, η) and (Y, σ)×(Z, η)

will denote the product of (Y, σ) and (Z, η) in Q-TOP.

Q-TOP has finite concrete products (in view of Proposition 1.2.45), hence we
can define power-set of two Q-topological spaces as a consequence of Alderton [5],
Definition 1.1.

Definition 2.3.3. Let (Y, σ) and (Z, η) be Q-topological spaces. Define the
power-set of (Y, σ) and (Z, η) by,

[(Y, σ), (Z, η)] = {f : Y → Z | ∃ a Q-topological space (X, τ), x ∈ X and
g : (X, τ)× (Y, σ)→ (Z, η) a Q-continuous map such that g(x) = f}

The following definition is a consequence of the Definition 2.1 in Alderton [5],
as Q-TOP is a category with finite concrete products.

Definition 2.3.4. Let (Y, σ) and (Z, η) be Q-topological spaces. A Q-topology θ
on [(Y, σ), (Z, η)] is called

1. splitting if g : (X, τ) → ([(Y, σ), (Z, η)], θ) is Q-continuous whenever g :

(X, τ)× (Y, σ)→ (Z, η) is Q-continuous.

2. conjoining if g : (X, τ) × (Y, σ) → (Z, η) is Q-continuous whenever g :

(X, τ)→ ([(Y, σ), (Z, η)], θ) is Q-continuous.

Thus a Q-topology θ on [(Y, σ), (Z, η)] is splitting-conjoining if and only if it
makes the map g 7→ g into a well defined bijection from C((X, τ)× (Y, σ), (Z, η))

to C((X, τ), ([(Y, σ), (Z, η)], θ)), for every Q-topological space (X, τ).
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Proposition 2.3.5. Let (
∏
Yk, η) be the product of the family {(Yk, σk) | k ∈ K}

of Q-topological spaces. Let (Y, σ) be a Q-topological space and pk :
∏
Yk →

Yk, k ∈ K be the projection maps. Then a map g : (Y, σ) → (
∏
Yk, η) is Q-

continuous if and only if pk ◦g : (Y, σ)→ (Yk, σk) is Q-continuous for every k ∈ K.

Proof. Suppose first that g : (Y, σ) → (
∏
Yk, η) is Q-continuous. Let α ∈ σk.

Then α ◦ pk ◦ g = (α ◦ pk) ◦ g ∈ σ as g : (Y, σ) → (
∏
Yk, η) is Q-continuous and

α ◦ pk ∈ η. Therefore pk ◦ g : (Y, σ)→ (Yk, σk) is Q-continuous.

Conversely, assume that pk ◦ g : (Y, σ) → (Yk, σk) is Q-continuous, for every
k ∈ K. Then α◦pk◦g = α◦(pk◦g) ∈ σ, for every α ∈ σk as pk◦g : (Y, σ)→ (Yk, σk)

is Q-continuous. Therefore from Proposition 1.2.40, g : (Y, σ) → (
∏
Yk, η) is Q-

continuous.

Proposition 2.3.6. Let g1 : (X1, τ1)→ (Y1, σ1) and g2 : (X2, τ2)→ (Y2, σ2) be Q-
continuous maps. Then the map g1 × g2 : (X1, τ1)× (X2, τ2)→ (Y1, σ1)× (Y2, σ2)

defined as (g1 × g2)(x1, x2) = (g1(x1), g2(x2)), for every (x1, x2) ∈ X1 × X2, is
Q-continuous.

Proof. Let pXk : X1 × X2 → Xk and pYk : Y1 × Y2 → Yk, k = 1, 2 be projection
maps. Now consider the map pYk ◦ (g1 × g2) : (X1, τ1) × (X2, τ2) → (Yk, σk) and
let α ∈ σk. Then (α ◦ pYk ◦ (g1 × g2))(x1, x2) = (α ◦ gk)(xk) = α(gk(xk)) =

α((gk ◦ pXk)(x1, x2)) = (α ◦ gk ◦ pXk)(x1, x2) = ((α ◦ gk) ◦ pXk)(x1, x2). Hence
α◦pYk ◦(g1×g2) = (α◦gk)◦pXk . Now since gk : (Xk, τk)→ (Yk, σk) is Q-continuous
and α ∈ σk, α ◦ gk ∈ τk. Hence α ◦ pYk ◦ (g1 × g2) = (α ◦ gk) ◦ pXk belongs to
the product Q-topology of the Q-topological spaces (X1, τ1) and (X2, τ2). Thus
pYk ◦ (g1 × g2) : (X1, τ1) × (X2, τ2) → (Yk, σk) is Q-continuous. Therefore by
Proposition 2.3.5, the map g1 × g2 : (X1, τ1) × (X2, τ2) → (Y1, σ1) × (Y2, σ2) is
Q-continuous.

The proof of following proposition is on similar lines as Lemma 2.1 in [13],
though using only the concepts of Q-topological spaces, we are giving here a proof
of the proposition.

Proposition 2.3.7. Let (Y, σ) and (Z, η) be Q-topological spaces. A Q-topology
θ on [(Y, σ), (Z, η)] is conjoining if and only if the evaluation map

ε : ([(Y, σ), (Z, η)], θ)× (Y, σ)→ (Z, η)

(f, y) 7→ f(y)
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is Q-continuous.

Proof. Suppose first that the Q-topology θ on [(Y, σ), (Z, η)] is conjoining. Let f ∈
[(Y, σ), (Z, η)]. Then ε(f)(y) = ε(f, y) = f(y). So we get that ε(f) = f , for every
f ∈ [(Y, σ), (Z, η)]. Now let α ∈ θ. Then (α◦ε)(f) = α(ε(f)) = α(f). This implies
that α ◦ ε = α ∈ θ. Hence the map ε : ([(Y, σ), (Z, η)], θ) → ([(Y, σ), (Z, η)], θ)

is Q-continuous. Now since the Q-topology θ on [(Y, σ), (Z, η)] is conjoining, ε :

([(Y, σ), (Z, η)], θ)× (Y, σ)→ (Z, η) is Q-continuous.

Conversely, assume that the evaluation map ε : ([(Y, σ), (Z, η)], θ) × (Y, σ) →
(Z, η) is Q-continuous. We have to show that θ is conjoining. Let g : (X, τ) →
([(Y, σ), (Z, η)], θ) be Q-continuous. Consider (ε ◦ (g × idY ))(x, y) = ε(g(x), y) =

g(x)(y) = g(x, y). This implies that g = ε ◦ (g × idY ). Now since g : (X, τ) →
([(Y, σ), (Z, η)], θ) and idY : (Y, σ) → (Y, σ) are Q-continuous, by Proposition
2.3.6, g × idY : (X, τ) × (Y, σ) → ([(Y, σ), (Z, η)], θ) × (Y, σ) is Q-continuous.
Hence g : (X, τ)× (Y, σ)→ (Z, η) is Q-continuous as g = ε ◦ (g × idY ). Therefore
θ is conjoining.

Definition 2.3.8. Let Y be a set and σ1 and σ2 be Q-topologies on the set Y . If
σ1 ⊆ σ2, then we say that σ1 is weaker than σ2. In this case we also say that σ2

is stronger than σ1.

We note that since every topological category has splitting objects (cf. Example
2.6 (i), Alderton [5]) and Q-TOP is a topological category, it is a monotopological
category with splitting objects. Alderton [5] mentioned that the result similar
to Proposition 2.6 in [29] will hold in monotopological categories with splitting
objects (cf. Alderton [5], proof of the Theorem 2.3), so we have the following
result, the proof of which is on similar lines as of the Proposition 2.6 in [29],
though using only the concepts of Q-topological spaces, we are giving here a proof
of the proposition.

Proposition 2.3.9. Let (Y, σ) and (Z, η) be Q-topological spaces. Then,

1. Any Q-topology on [(Y, σ), (Z, η)] weaker than a splitting Q-topology on
[(Y, σ), (Z, η)] is also splitting.

2. Any Q-topology on [(Y, σ), (Z, η)] stronger than a conjoining Q-topology on
[(Y, σ), (Z, η)] is also conjoining.
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3. Any splitting Q-topology on [(Y, σ), (Z, η)] is weaker than any conjoining
Q-topology on [(Y, σ), (Z, η)].

4. If θ is splitting-conjoining Q-topology on [(Y, σ), (Z, η)], then θ is uniquely
determined.

Proof. (1) and (2) are obvious.
(3) Let θ1 and θ2 be conjoining and splitting Q-topologies on [(Y, σ), (Z, η)] re-
spectively. We have to show that θ2 ⊆ θ1. Since θ1 is conjoining, the evaluation
map ε : ([(Y, σ), (Z, η)], θ1) × (Y, σ) → (Z, η) is Q-continuous. Now since θ2 is
splitting, ε : ([(Y, σ), (Z, η)], θ1) → ([(Y, σ), (Z, η)], θ2) is Q-continuous. This im-
plies that α ◦ ε ∈ θ1, for every α ∈ θ2. But we have seen that ε(f) = f and so
(α ◦ ε)(f) = α(ε(f)) = α(f). Hence α = α ◦ ε ∈ θ1, for every α ∈ θ2. Therefore
θ2 ⊆ θ1.
(4) It follows from (3).

2.4 A characterization of exponential objects in Q-

TOP

Definition 2.4.1. [1] Let F : C→ D be a functor and let B be a D-object.

1. A F -costructured arrow with codomain B is a pair (A, f) consisting of
a C-object A and a D-morphism f : FA→ B.

2. A F -costructured arrow (A, f) with codomain B is called F -co-universal
for B if for each F -costructured arrow (Â, g) with codomain B there exists
a unique C-morphism h : Â → A such that g = f ◦ Fh, i.e., such that the
triangle

FÂ FA

B

Fh

g
f

(2.4.1)

commutes.
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Definition 2.4.2. [1] Let C and D be categories and let F : C→ D be a functor.
We say that F : C→ D has a right adjoint if for every D-object B there exists
a F -co-universal arrow with codomain B.

Definition 2.4.3. [29] Let C be a category with finite products. An object A of
C is called exponential if the functor A×− : C→ C has a right adjoint.

The following result follows from the Theorem 2.3 in Alderton [5] as Q-TOP is
a monotopological category with splitting objects.

Theorem 2.4.4. Let (Y, σ) be a Q-topological space. Then both of the following
statements are equivalent:

1. The functor (Y, σ)×− : Q-TOP→ Q-TOP has a right adjoint.

2. Given any Q-topological space (Z, η), there exists an splitting-conjoining
Q-topology on [(Y, σ), (Z, η)].

Thus in view of Definition 2.4.3 and Theorem 2.4.4, we can define exponential
Q-topological spaces as follows:

Definition 2.4.5. Let (Y, σ) be a Q-topological space. Then (Y, σ) is called
exponential if there exists an splitting-conjoining Q-topology on [(Y, σ), (Z, η)],
for every Q-topological space (Z, η).

From now onwards, we will follow the Definition 2.4.5 for exponentialQ-topological
spaces.

Lemma 2.4.6. Let (Y, σ) and (Z, η) beQ-topological spaces. Let f ∈ [(Y, σ), (Z, η)]

and β ∈ η, then β ◦ f ∈ [(Y, σ), (Q, 〈idQ〉)].

Proof. We note that since f ∈ [(Y, σ), (Z, η)], there exist a Q-topological space
(X, τ), x ∈ X and a Q-continuous map h : (X, τ) × (Y, σ) → (Z, η) such that
h(x) = f . Now consider the map β ◦ h : (X, τ) × (Y, σ) → (Q, 〈idQ〉). Since
h : (X, τ)×(Y, σ)→ (Z, η) is Q-continuous and β ∈ η, β◦h belongs to the product
Q-topology of the Q-topological spaces (X, τ) and (Y, σ). Now since idQ◦(β ◦h) =

β ◦ h, idQ ◦ (β ◦ h) belongs to the product Q-topology of the Q-topological spaces
(X, τ) and (Y, σ). So by Proposition 1.2.40, β ◦ h : (X, τ)× (Y, σ)→ (Q, 〈idQ〉) is
Q-continuous. Now consider,
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(β ◦ h)(x)(y) = (β◦h)(x, y) = β(h(x, y)) = β(h(x)(y)) = (β◦h(x))(y) = (β◦f)(y),
for every y ∈ Y .

Hence (β ◦ h)(x) = β ◦ f and therefore β ◦ f ∈ [(Y, σ), (Q, 〈idQ〉)].

Let (Y, σ) and (Z, η) beQ-topological spaces and θ be aQ-topology on [(Y, σ), (Q, 〈idQ〉)].
Let ψ ∈ θ and β ∈ η. Define a map θ(ψ, β) : [(Y, σ), (Z, η)]→ Q as,

θ(ψ, β)(f) = ψ(β ◦ f), for every f ∈ [(Y, σ), (Z, η)].

Here we point out that by Lemma 2.4.6, β ◦ f ∈ [(Y, σ), (Q, 〈idQ〉)]. Now let
θ(Z,η) = 〈{θ(ψ, β) | ψ ∈ θ, β ∈ η}〉. Then θ(Z,η) is a Q-topology on [(Y, σ), (Z, η)],
called as the Q-topology induced by θ.

The following Propositions 2.4.7, 2.4.8 and Theorem 2.4.9 are concerned with
the extensions of the results of Lemma 3.1 in [13], for Q-topological spaces.

Proposition 2.4.7. Let (Y, σ) be a Q-topological space and θ be a Q-topology
on [(Y, σ), (Q, 〈idQ〉)]. Then θ is splitting if and only if the Q-topology θ(Z,η) on
[(Y, σ), (Z, η)] induced by θ is splitting for every Q-topological space (Z, η).

Proof. Suppose first that θ is splitting and let g : (X, τ) × (Y, σ) → (Z, η) be
Q-continuous. We have to show that g : (X, τ) → ([(Y, σ), (Z, η)], θ(Z,η)) is Q-
continuous. Let ψ ∈ θ and β ∈ η. Then,

(θ(ψ, β) ◦ g)(x) = θ(ψ, β)(g(x)) = ψ(β ◦ g(x)), for every x ∈ X.

Now consider the map β ◦ g : (X, τ) × (Y, σ) → (Q, 〈idQ〉). Since g : (X, τ) ×
(Y, σ) → (Z, η) is Q-continuous and β ∈ η, β ◦ g belongs to the product Q-
topology of the Q-topological spaces (X, τ) and (Y, σ). Hence the map β ◦ g :

(X, τ) × (Y, σ) → (Q, 〈idQ〉) is Q-continuous. Now since θ is splitting, β ◦ g :

(X, τ)→ ([(Y, σ), (Q, 〈idQ〉)], θ) is Q-continuous. Also we have,

β ◦ g(x)(y) = (β ◦ g)(x, y) = β(g(x, y)) = β(g(x)(y)) = (β ◦ g(x))(y), for every
y ∈ Y .

Thus β ◦ g(x) = β ◦ g(x). Now,
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(ψ ◦ β ◦ g)(x) = ψ(β ◦ g(x)) = ψ(β ◦ g(x)) = (θ(ψ, β) ◦ g)(x), for every x ∈ X.

This implies that ψ◦β ◦ g = θ(ψ, β)◦g. Now since β ◦ g : (X, τ)→ ([(Y, σ), (Q, 〈idQ〉)], θ)
is Q-continuous and ψ ∈ θ, ψ ◦ β ◦ g = θ(ψ, β) ◦ g ∈ τ . Note that θ(Z,η) =

〈{θ(ψ, β) | ψ ∈ θ, β ∈ η}〉 and hence by Proposition 1.2.40, g : (X, τ) →
([(Y, σ), (Z, η)], θ(Z,η)) is Q-continuous. Therefore θ(Z,η) is splitting.

Conversely, assume that the Q-topology θ(Z,η) on [(Y, σ), (Z, η)] induced by θ is
splitting for every Q-topological space (Z, η). Then the Q-topology θ(Q,〈idQ〉) on
[(Y, σ), (Q, 〈idQ〉)] induced by θ is splitting. Let ψ ∈ θ and f ∈ [(Y, σ), (Q, 〈idQ〉)].
Consider θ(ψ, idQ)(f) = ψ(idQ ◦ f) = ψ(f). Thus θ(ψ, idQ) = ψ and since
θ(ψ, idQ) ∈ θ(Q,〈idQ〉), ψ ∈ θ(Q,〈idQ〉). This implies that θ ⊆ θ(Q,〈idQ〉). Now since
θ(Q,〈idQ〉) is splitting and θ ⊆ θ(Q,〈idQ〉), by Proposition 2.3.9, θ is splitting.

Proposition 2.4.8. Let (Y, σ) be a Q topological space and θ be a Q-topology on
[(Y, σ), (Q, 〈idQ〉)]. If θ is conjoining, then the Q-topology θ(Z,η) on [(Y, σ), (Z, η)]

induced by θ is conjoining for every Q-topological space (Z, η).

Proof. Suppose that θ is conjoining and let g : (X, τ)→ ([(Y, σ), (Z, η)], θ(Z,η)) be
Q-continuous. We have to show that g : (X, τ)× (Y, σ)→ (Z, η) is Q-continuous.
Let β ∈ η. Note that β ◦ g(x) = β ◦ g(x). Now, since g(x) ∈ [(Y, σ), (Z, η)] and
β ∈ η, by Lemma 2.4.6, β ◦ g(x) = β ◦ g(x) ∈ [(Y, σ), (Q, 〈idQ〉)]. So β ◦ g is a
mapping from X to [(Y, σ), (Q, 〈idQ〉)]. Next, let ψ ∈ θ, then,

(θ(ψ, β) ◦ g)(x) = θ(ψ, β)(g(x)) = ψ(β ◦ g(x)) = ψ(β ◦ g(x)) = (ψ ◦ β ◦ g)(x), for
every x ∈ X.

This implies that θ(ψ, β) ◦ g = ψ ◦ β ◦ g. Since g : (X, τ)→ ([(Y, σ), (Z, η)], θ(Z,η))

is Q-continuous and θ(ψ, β) ∈ θ(Z,η), θ(ψ, β) ◦ g = ψ ◦ β ◦ g ∈ τ . Thus β ◦ g :

(X, τ) → ([(Y, σ), (Q, 〈idQ〉)], θ) is Q-continuous. Now since θ is conjoining, β ◦
g : (X, τ) × (Y, σ) → (Q, 〈idQ〉) is Q-continuous. Thus β ◦ g belongs to the
product Q-topology of the Q-topological spaces (X, τ) and (Y, σ). Hence the map
g : (X, τ)× (Y, σ)→ (Z, η) is Q-continuous. Therefore θ(Z,η) is conjoining.

Theorem 2.4.9. Let (Y, σ) be a Q topological space and θ be a Q-topology
on [(Y, σ), (Q, 〈idQ〉)]. If θ is splitting-conjoining, then the Q-topology θ(Z,η) on
[(Y, σ), (Z, η)] induced by θ is splitting-conjoining for every Q-topological space
(Z, η).
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Further, if the Q-topology θ(Z,η) on [(Y, σ), (Z, η)] induced by θ is splitting-
conjoining for every Q-topological space (Z, η), then θ is splitting-conjoining if
and only if θ = θ(Q,〈idQ〉).

Proof. The proof of the first part of the Theorem follows from Propositions 2.4.7
and 2.4.8.

Now we will prove the second part. We are given that θ(Z,η) is splitting-
conjoining for every Q-topological space (Z, η). Let θ be splitting-conjoining, then
θ(Z,η) is splitting-conjoining (in view of Propositions 2.4.7 and 2.4.8). In particu-
lar, θ(Q,〈idQ〉) is splitting-conjoining. Now using Proposition 2.3.9(4), θ = θ(Q,〈idQ〉).
Conversely, if θ = θ(Q,〈idQ〉), then θ is splitting-conjoining (it follows from the given
condition itself).

Thus we have obtained the following characterization of exponential objects in
the category Q-TOP.

Theorem 2.4.10. A Q-topological space (Y, σ) is exponential if and only if
there exists an splitting-conjoining Q-topology on [(Y, σ), (Q, 〈idQ〉)]. In this case,
for a given Q-topological space (Z, η), the splitting-conjoining Q-topology on
[(Y, σ), (Z, η)] is the Q-topology induced by the splitting-conjoining Q-topology
on [(Y, σ), (Q, 〈idQ〉)].

2.5 Conclusion

It is known that a topological space (Y, T ) is exponential in the category TOP

of topological spaces if and only if there exists an splitting-conjoining topology
on C((Y, T ),S), where S is the Sierpinski topological space with two points 1

and 0 such that {1} is open but {0} is not (cf. [13]). This chapter extends this
characterization to the category Q-TOP of Q-topological spaces introduced by
Solovyov [36]. As mentioned in the introduction, in the proofs, our approach
is not category theoretic, only some basic concepts of Q-topological spaces are
required. Our study is motivated by Escardo and Heckmann [13], who obtained
the above characterization of exponential topological spaces in the category TOP

without using categorical concepts. In the results, presented in this chapter, the
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Q-Sierpinski space plays a key role. It is well known that a topological space
is exponential in the category TOP if and only if it is core compact (cf. [13]).
The problem of characterizing exponential Q-topological spaces in terms of core
compactness is still open. To tackle this problem, first it is required to extend
the concept of core compactness for Q-topological spaces and then to study the
characterization of exponential Q-topological spaces in terms of core compactness.


