
Chapter 1

Introduction and Preliminaries

1.1 Introduction

Fuzzy sets were introduced by Zadeh [43] in 1965. Mathematically, a fuzzy
set in a set X is a function from X to the unit interval [0, 1]. This concept
clearly generalizes the concept of a subset of a set if we identify a subset by
its characteristic function. Zadeh also extended the notion of inclusion, union,
intersection, complement etc., as for sets, to fuzzy sets and gave various properties
related to these notions in the context of fuzzy sets.

Chang [10] in 1968, introduced a fuzzy topology on a set X as a collection
of fuzzy sets in X which is closed under arbitrary union, finite intersection and
contains X and ∅. He also introduced many basic concepts in fuzzy topology,
e.g., continuity, compactness etc. In 1967, Goguen [15] generalized the notion of
a fuzzy set and introduced an L-fuzzy set, by replacing [0, 1] in the definition of a
fuzzy set by a suitable lattice L. In 1973, Goguen [16] introduced an L-topological
space as a generalization of a fuzzy topological space in an obvious way.

Lowen [22], in 1976, observed the absence of a basic feature in the Chang’s
concept of a fuzzy topology (when compared with topology), viz., constant maps
between such spaces need not be continuous. He believed that this feature in gen-
eral, ought to be present in fuzzy topology also. So he modified Chang’s definition
of a fuzzy topology by redefining a fuzzy topology on a set X as a collection of
fuzzy sets in X which is closed under arbitrary union, finite intersection and con-
tains all constant fuzzy sets. Lowen’s fuzzy topological spaces satisfy several other
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desirable properties, which were not satisfied by Chang’s fuzzy topological spaces
(cf. Lowen and Wuyts [23]).

We mention that there have also been other approaches to fuzzy topology, e.g.,
as given by Höhle [20], Hutton [21], Šostak [37], Rodabaugh [28].

If L is a lattice, we observe that it has both, an order structure as well as an
algebraic structure through its ‘join’ and ‘meet’ operations. In 2008, Solovyov [36]
generalized the Goguen’s L-valued set (i.e. L-fuzzy set) by introducing algebra-
valued Q-set for some fixed Ω-algebra Q. Mathematically, if Q is a fixed Ω-algebra,
then a Q-set on a set X is a map from X to Q. Continuing further, Solovyov
introduced Q-topological spaces as follows. Given a set X and a fixed Ω-algebra
Q, a subset τ of QX (where QX denotes the set of all maps from X to Q), was
called a Q-topology on X by Solovyov, if τ is a subalgebra of the Ω-algebra QX

(more details will appear in the Preliminaries section). The pair (X, τ) is called a
Q-topological space. Solovyov also introduced and studied the category Q-TOP of
Q-topological spaces. It must be noted that many results in L-topological spaces,
use the order structure of L. However, in passing from a lattice to an algebra Q,
the order structure is lost. But even then, analogues of many concepts and results
in L-topology, were shown to exist in Q-topology, by Solovyov. In particular,
Solovyov introduced the Q-Sierpinski space, T0-Q-topological space, stratified Q-
topological space, sober Q-topological space etc. and studied many properties
related to these notions, including those of categorical nature.

Before continuing further with Q-topological spaces, we wish to point out that
Q-topological spaces are a special case of ‘affine sets’ of Giuli [14], which we briefly
describe next.

An affine set over a given set A is a pair (X,A(X)), where X is a set and A(X)

is a subset of the set AX of all functions from X to A. If (X,A(X)) and (Y,A(Y ))

are two affine sets, both over A, then a map f : X → Y is called an affine map if
for each β ∈ A(Y ), β ◦ f ∈ A(X). Many well known structures, e.g., topological
spaces, closure spaces, fuzzy topological spaces etc. are examples of affine sets.
Giuli [14] initiated the study of the category ASet of all affine sets over A and
affine maps between them, in 2005. Giuli also noted that similar objects have
been studied earlier by Diers [11] for the special case when the ‘base-set’ A is an
Ω-algebra (in the sense of universal algebra), in this case the resulting category is
denoted by ASet(Ω).



Chapter 1. Introduction and Preliminaries 3

The study ofQ-topological spaces was continued further by Singh and Srivastava
[30–33] and Noor et al. [27] etc.

In particular, Singh and Srivastava [30] gave a characterization of Q-TOP in
terms of the Q-Sierpinski space.

Further, they also identified the category Q-TOP0 of T0-Q-topological spaces
and the category Q-Sob of sober Q-topological spaces as the epireflective hull of
the Q-Sierpinski space in the category Q-TOP (cf. [32]) and Q-TOP0 (cf. [33])
respectively.

They also studied connectedness and disconnectedness for Q-topological spaces
with respect to a class of Q-topological spaces (cf. [31]).

Noor et al. [27] considered the category Q-BTOP of Q-bitopological spaces
and determined two Sierpinski objects in Q-BTOP. They also showed that the
epireflective hulls of both these Sierpinski objects in the category Q-BTOP is the
category Q-BTOP0 of T0-Q-bitopological spaces.

A large part of the present thesis is concerned with a further study of Q-
topological spaces. In particular, we have studied exponentialQ-topological spaces,
injective objects and existence of injective hulls in the comma categoryQ-TOP/(Y, σ),
some coreflective hulls in the category Str-Q-TOP of stratified Q-topological
spaces. In a somewhat different direction, we have also given in this thesis, a
characterization of the category FCS of fuzzy closure spaces, as considered in
Srivastava et al. [40], in terms of the Sierpinski fuzzy closure space.

The thesis is divided into five chapters.

Chapter 1 is introductory, which contains a brief introduction of the subject,
basic definitions and results which are used in the thesis.

In chapter 2, motivated by Escardo and Heckmann [13], we have obtained a
characterization of exponential objects in the category Q-TOP of Q-topological
spaces. We have not used categorical concepts in our proofs, only some basic
concepts of Q-topological spaces are required.

In chapter 3, motivated by Cagliari and Mantovani [8], we have obtained a
characterization of injective objects (with respect to the class of embeddings in the
category Q-TOP of Q-topological spaces) in the comma category Q-TOP/(Y, σ),
when (Y, σ) is a stratified Q-topological space, with the help of their T0-reflection.
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Further, we have proved that for any Q-topological space (Y, σ), the existence of
an injective hull of ((X, τ), f) in the comma category Q-TOP/(Y, σ) is equivalent
to the existence of an injective hull of its T0-reflection ((X̃, τ̃), f̃) in the comma
category Q-TOP/(Ỹ , σ̃) (and in the comma category Q-TOP0/(Ỹ , σ̃), where Q-
TOP0 denotes the category of T0-Q-topological spaces).

In chapter 4, motivated by Singh [34], we have determined the coreflective hull of
(Q, 〈{idQ} ∪ {q | q ∈ Q}〉) in the category Str-Q-TOP of stratified Q-topological
spaces. We have also determined the coreflective hulls of the categories Str-Dis-
Q-TOP of discrete Q-topological spaces and Str-Ind-Q-TOP of stratified indis-
crete Q-topological spaces in the category Str-Q-TOP, motivated by the works
of Hoffmann [19] and Singh and Srivastava [35].

In chapter 5, we have introduced the Sierpinski fuzzy closure space and given
a characterization of the category FCS of fuzzy closure spaces, with the help of
the Sierpinski fuzzy closure space, which is similar to the characterization of the
category TOP given by Manes [24].

In the last, we have given conclusion and future scope of the work presented in
the thesis.

1.2 Preliminaries

In this section we mention the definitions, notations and results which will be
used throughout the thesis.

Definition 1.2.1. [43] Let X be a non empty set. Then a fuzzy set in X is a
function from X to [0, 1].

The set of all fuzzy sets in X, is denoted by [0, 1]X .

A constant fuzzy set c in X is a fuzzy set f ∈ [0, 1]X such that f(x) = c, for
each x, for some c ∈ [0, 1].

Chang [10] gave the following definition of a fuzzy topology.

Definition 1.2.2. [10] Let X be a non-empty set. A fuzzy topology on X is a
subset τ of [0, 1]X such that τ is closed under arbitrary union, finite intersection
and contains 1 and 0. (X, τ) is called a fuzzy topological space.
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In 1973, Lowen [22] modified the Chang’s definition of a fuzzy topology and
proposed the following definition of a fuzzy topology.

Definition 1.2.3. [22] Let X be a set. A fuzzy topology on X is a subset τ of
[0, 1]X which is closed under arbitrary union, finite intersection and contains all
constant fuzzy sets. The pair (X, τ) is called a fuzzy topological space.

The fuzzy topological space in the sense of Lowen, will be called as a stratified
fuzzy topological space.

Let L be a frame (i.e., a complete lattice satisfying ‘first infinite distributive
law’) with 0 and 1 as the least and greatest elements respectively.

Definition 1.2.4. [15] If X is a set, then a map f : X → L is called an L-fuzzy
set (or an L-set).

Now LX is also a frame with respect to the order on it, induced by L and it
has the least element 0 and greatest element 1, where 0 and 1 denote the constant
L-fuzzy sets taking values 0 and 1 respectively.

Definition 1.2.5. [16] Let X be a set and L be a frame with 0 and 1 as the least
and greatest elements respectively. Then an L-topology on X is a subframe of
LX .

All category theoretic notions, used here, but not defined or explained, are fairly
standard (and can be found in [1]). Accordingly, we assume familiarity with some
of the most basic notions in the category theory, viz., categories, subcategories,
functors, epimorphisms, monomorphisms, isomorphisms, regular monomorphisms,
extremal epimorphisms, retractions, sources, sinks, products, coproducts.

We now recall some more notions and results from category theory.

Definition 1.2.6. [1] A full subcategoryW of a categoryC is called isomorphism-

closed if everyW-object that is isomorphic to someC-object, is itself aW-object.

Definition 1.2.7. [1] Let M be a class of monomorphisms in a category C. An
M -subobject of an object B is a pair (A, g), where g : A→ B belongs to M .

Definition 1.2.8. [1] Let (A1, g1) and (A2, g2) be two subobjects of an object B
in a category C. We say that (A1, g1) and (A2, g2) are isomorphic if there exists
an isomorphism g : A1 → A2 such that g1 = g2 ◦ g.
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Definition 1.2.9. [1] Let M be the class of monomorphisms in a category C. C
is called wellpowered provided that no C-object has a proper class of pairwise
non-isomorphic M -subobjects.

Definition 1.2.10. [1] Let E be a class of epimorphisms in a category C. An
E-quotient object of an object A is a pair (h,B), where h : A → B belongs to
E. In case E consists of all extremal epimorphisms, E-quotient objects are called
extremal quotient objects.

Definition 1.2.11. [1] Let C and D be categories and let F : C → D be a
functor. We say that F is faithful if all the hom-set restrictions

F : homC(A,B)→ homD(FA, FB)

are injective.

Definition 1.2.12. [1] Let K be a category. A concrete category over K is a
pair (C, F ), where C is a category and F : C→ K is a faithful functor. Sometimes
F is called the forgetful (or underlying) functor of the concrete category and
K is called the base category for (C, F ).

Definition 1.2.13. [1] A concrete category over Set is called a construct, where
Set is the category of sets and maps.

Remark 1.2.14. 1. We will denote a concrete category (C, F ) over K by C

alone and denote the underlying functor F by | |.

2. Let C be a concrete category over K. The expression “|A| g−→ |B| is a
C-morphism” means that for the K-morphism |A| g−→ |B| there exists a
(necessarily unique) C-morphism A → B, which will also be denoted by g,
with |A→ B| = |A| g−→ |B|.

Definition 1.2.15. [1] Let C be a category.

1. A square

D B

A C

f̄

ḡ g

f

(1.2.1)
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in C is called a pullback square if it commutes and for any commutative
square of the form

E B

A C

f̂

ĝ g

f

(1.2.2)

there exists a unique morphism h : E → D such that the following diagram
commutes

E

D B

A C

f̂

ĝ

h

f̄

ḡ g

f

(1.2.3)

2. If the diagram 1.2.1 is a pullback square, then the 2-source A D B
ḡ f̄

is called a pullback of the 2-sink A C B
f g and f̄ is called a

pullback of f along g.

Definition 1.2.16. [1] A classM of morphisms in a category C is called pullback
stable (or closed under the formation of pullbacks) provided that for each
pullback square

D B

A C

f̄

ḡ g

f

(1.2.4)

with f ∈M , it follows that f̄ ∈M .

Definition 1.2.17. [1] Let C be a concrete category over K.

1. A C-morphism f : A → B is called initial provided that for any C-object
D, a K-morphism g : |D| → |A| is a C-morphism whenever f ◦g : |D| → |B|
is a C-morphism.
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2. An initial morphism f : A → B that has a monomorphic underlying K-
morphism f : |A| → |B| is called an embedding.

Proposition 1.2.18. ([1], Proposition 8.9) Let C be a concrete category over K.

1. Let g : A → B and h : B → C be initial morphisms (resp. embeddings)
in the category C. Then h ◦ g : A → C is an initial morphism (resp. an
embedding) in C.

2. Let g : A → B and h : B → C be C-morphisms. If h ◦ g : A → C is an
initial morphism (resp. an embedding) in C, then g : A→ B is initial (resp.
an embedding) in C.

Definition 1.2.19. [1] In a concrete category an embedding e : A→ B is called an
essential embedding if every morphism g : B → C is an embedding, whenever
g ◦ e : A→ C is an embedding.

Proposition 1.2.20. ([1], Proposition 9.14) Let C be a concrete category over
K. Then,

1. Every isomorphism in C is an essential embedding.

2. Composition of essential embeddings is an essential embedding.

Definition 1.2.21. [1] Let C be a concrete category over K.

1. A C-morphism f : A→ B is called final provided that for any C-object D,
a K-morphism g : |B| → |D| is a C-morphism whenever g ◦ f : |A| → |D| is
a C-morphism.

2. A final morphism f : A→ B that has an epimorphic underlyingK-morphism
f : |A| → |B| is called a quotient morphism.

Proposition 1.2.22. ([1], Proposition 8.13) Let C be a concrete category over
K.

1. Let g : A → B and h : B → C be final morphisms (resp. quotient mor-
phisms) in the category C. Then h ◦ g : A→ C is a final morphism (resp. a
quotient morphism) in C.
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2. Let g : A → B and h : B → C be C-morphisms. If h ◦ g : A → C is a
final morphism (resp. a quotient morphism) in C then, h : B → C is a final
(resp. a quotient) morphism in C.

We mention here that monomorphisms (resp. epimorphisms, isomorphisms) in
the category Set are precisely injective (resp. surjective, bijective) functions (cf.
[1]). Thus by Proposition 8.14 in [1], we have the following result:

Proposition 1.2.23. Let C be a concrete category over Set and let f : A → B

be a C-morphism. Then the following statements are equivalent:

1. f : A→ B is a C-isomorphism.

2. f : A→ B is an initial morphism and the underlying function f : |A| → |B|
in Set is bijective.

3. f : A→ B is a final morphism and the underlying function f : |A| → |B| in
Set is bijective.

Definition 1.2.24. [1] Let C be a concrete category over K. A source {gj : A→
Aj | j ∈ J} in C is called initial provided that a K-morphism g : |B| → |A| is a
C-morphism whenever each composite gj ◦ g : |B| → |Aj| is a C-morphism.

Definition 1.2.25. [1] Let C be a concrete category over K. A class X of C-
objects is called initially dense in C if for every C-object A, there exists an
initial source {gj : A→ Aj | j ∈ J} in C with Aj ∈ X , for every j ∈ J .

Definition 1.2.26. ([26], [24]) LetC be a concrete category overK. AC-object S
is called a Sierpinski object if for every object B of C, the source {f | f : B → S

is a C-morphism } in C is initial .

Remark 1.2.27. The categories TOP of topological spaces and FTOP of fuzzy
topological spaces (in the sense of Chang [10]) are concrete categories of over Set
and the usual two-point Sierpinski space and the fuzzy Sierpinski space (of [39])
are Sierpinski objects in TOP and FTOP respectively.

Definition 1.2.28. [1] Let F : C → D be a functor. A source S = {fj : A →
Aj | j ∈ J} in C is called F -initial if for each source T = {gj : B → Aj | j ∈ J}
in C with the same codomain as S and each D-morphism h : FB → FA with
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Fgj = Ffj ◦h, for every j ∈ J , there exists a unique C-morphism ĥ : B → A such
that gj = fj ◦ ĥ, for every j ∈ J and h = Fĥ.

B

A Aj

ĥ
gj

fj

(1.2.5)

FB

FA FAj

F ĥ=h
Fgj

Ffj

(1.2.6)

Remark 1.2.29. [1] If (C, F ) is a concrete category overK, then F -initial sources
are precisely the initial sources in (C, F ).

Definition 1.2.30. [1] Let F : C→ D be a functor and let {fj : B → FAj | j ∈
J} be a F -structured source. A source {f̂j : A → Aj | j ∈ J} in C is called a
F -initial lift of {fj : B → FAj | j ∈ J} if

1. the source {f̂j : A→ Aj | j ∈ J} is F -initial,

2. F (A
f̂j−→ Aj) = B

fj−→ FAj, for every j ∈ J .

Definition 1.2.31. [1] A functor F : C → D is called topological if every F -
structured source {fj : B → FAj | j ∈ J} has a unique F -initial lift {f̂j : A →
Aj | j ∈ J}.

Definition 1.2.32. [1] Let (C, F ) be a concrete category over K, then (C, F ) is
called topological if the functor F : C→ K is topological.

Proposition 1.2.33. ([1], Proposition 21.13) In topological construct, the follow-
ing hold:

1. embeddings = regular monomorphisms.

2. quotient morphisms = extremal epimorphisms.

We now recall the notions of Ω-algebras and their homomorphisms.

Let Ω = (nλ)λ∈K be a class of cardinal numbers.
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Definition 1.2.34. [36] A pair (Z, (ωZλ )λ∈K), where Z is a set and (ωZλ )λ∈K is a
family of maps ωZλ : Znλ → Z, is called an Ω-algebra. A subsetM of Z is called a
subalgebra of the Ω-algebra (Z, (ωZλ )λ∈K) if ωZλ ((mj)j∈nλ) ∈M , for every λ ∈ K
and for every (mj)j∈nλ ∈Mnλ .

Definition 1.2.35. [36] Let (Z, (ωZλ )λ∈K) and (S, (ωSλ )λ∈K) be Ω-algebras. A map
g : Z → S is said to be an Ω-homomorphism if the diagram

Znλ Snλ

Z S

gnλ

ωZλ ωSλ

g

(1.2.7)

commutes for every λ ∈ K.

Alg(Ω) will denote the category of Ω-algebras and Ω-homomorphisms.

Definition 1.2.36. [36] LetM (resp. E) be the class of Ω-homomorphisms with
injective (resp. surjective) underlying maps. A variety of Ω-algebras is a full
subcategory of Alg(Ω), which is closed under the formation of products, M-
subobjects (subalgebras), and E-quotients (homomorphic images).

From now onwards (Q, (ωQλ )λ∈K) will denote a fixed member of a fixed variety
of Ω-algebras.

([36]) Let R be a subset of Q. Then it is easy to check that the intersection of
all subalgebras of (Q, (ωQλ )λ∈K) containing R is a subalgebra of (Q, (ωQλ )λ∈K). We
will denote it by 〈R〉.

([36]) Let Z be a set and QZ be the set of all functions from Z to Q. All
operations on Q lift point-wise to QZ as:

(ωQ
Z

λ (〈pj〉j∈nλ))(z) = ωQλ (〈pj(z)〉j∈nλ), for every 〈pj〉j∈nλ ∈ (QZ)nλ and every
z ∈ Z .

In particular (QZ , (ωQ
Z

λ )λ∈K) is an Ω-algebra.

From now onwards, the Ω-algebra (Q, (ωQλ )λ∈K) and its underlying set, both will
be denoted by Q.

Now we recall the definition a of Q-topological space.
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Definition 1.2.37. [36] Let Z be a set. A subset η of QZ is called a Q-topology
on Z if η is a subalgebra of the Ω-algebra (QZ , (ωQ

Z

λ )λ∈K). A pair (Z, η), where Z
is a set and η is a Q-topology on Z, is called a Q-topological space. Let (Z, η)

and (X, τ) be Q-topological spaces and h : Z → X be a function. Then we say
that h : (Z, η)→ (X, τ) is Q-continuous if α ◦ h ∈ η, for every α ∈ τ .

Q-TOP will denote the category of Q-topological spaces and Q-continuous
maps. Q-TOP is a construct via the obvious forgetful functor |−|: Q-TOP→
Set.

Definition 1.2.38. [36] A Q-topological space (X, τ) is called T0 if for every
x1, x2 ∈ X such that x1 6= x2, there exists α ∈ τ such that α(x1) 6= α(x2).

Q-TOP0 will denote the full subcategory ofQ-TOP consisting of T0-Q-topological
spaces. It can be easily seen that Q-TOP0 is an isomorphism closed subcategory
of Q-TOP.

Definition 1.2.39. [36] A Q-topological space (X, τ) is said to be stratified if
q ∈ τ , for every q ∈ Q, where q : X → Q is defined as q(x) = q, for every x ∈ X.

Str-Q-TOP will denote the category of stratified Q-topological spaces and Q-
continuous maps.

Proposition 1.2.40. [36] Let (Y, σ) and (Z, η) be Q-topological spaces and let
η = 〈R〉, where R ⊆ QZ . Then a map g : (Y, σ) → (Z, η) is Q-continuous if and
only if α ◦ g ∈ σ, for every α ∈ R.

Proposition 1.2.41. [30] Let {gk : Y → |(Yk, σk)|| k ∈ K} be a |−|-structured
source (where Y is a set and (Yk, σk) is a Q-topological space for each k). Then the
initial lift of the source {gk : Y → |(Yk, σk)|| k ∈ K} in Q-TOP is {gk : (Y, σ) →
(Yk, σk) | k ∈ K}, where σ = 〈{αk ◦ gk | αk ∈ σk, k ∈ K}〉.

Theorem 1.2.42. Q-TOP is a topological category over Set.

Proof. It immediately follows from the Proposition 1.2.41.

Definition 1.2.43. [36] TheQ-topological space (Q, 〈idQ〉) is called theQ-Sierpinski
space.

Theorem 1.2.44. [30] The Q-Sierpinski space (Q, 〈idQ〉) is a Sierpinski object in
the category Q-TOP.
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Proposition 1.2.45. [30] Let {(Yk, σk) | k ∈ K} be a family of Q-topological
spaces. Let {pk : (

∏
Yk, η) → (Yk, σk) | k ∈ K} be the initial lift of the family of

all projections {pk :
∏
Yk → |(Yk, σk)|| k ∈ K} in Q-TOP. Then (

∏
Yk, η) is the

product of the family {(Yk, σk) | k ∈ K} in Q-TOP.

The following Proposition can be verified on similar lines as in the category
TOP of topological spaces (cf. [1]).

Proposition 1.2.46. Let (X, τ) and (Y, σ) be Q-topological spaces and let f :

(X, τ)→ (Y, σ) be a Q-continuous map. Then,

1. f : (X, τ)→ (Y, σ) is initial in Q-TOP if and only if τ = {β ◦ f | β ∈ σ},

2. f : (X, τ) → (Y, σ) is an embedding in Q-TOP if and only if it is initial in
Q-TOP and f is one-one,

3. f : (X, τ)→ (Y, σ) is final in Q-TOP if and only if σ = {v ∈ QY | v◦f ∈ τ},

4. f : (X, τ) → (Y, σ) is a quotient morphism in Q-TOP if and only if it is
final in Q-TOP and f is onto.


