
Chapter 2

Operational matrix method for

solving nonlinear space-time

fractional order reaction-diffusion

equation based on Genocchi

polynomial

2.1 Introduction

Fractional calculus is an ancient topic of mathematics with history like as ordinary

or integer calculus. It is developing progressively now. Theory of fractional calculus

is developed by N. H. Abel and J. Liouville. The details can be found in [34, 35].

In last few years fractional calculus has attracted attentions of the researchers of
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medical physics, chemistry, biology, engineering and mathematics. Fractional cal-

culus and fractional differential equation (FDE) are found in many applications in

different fields. Due to increasing applications, the attention is paid to numerical

and exact solutions of the FDEs. As there are many difficulties to solve a FDE

by analytic method so there is a need of seeking numerical methods. There are

many numerical methods available in literature viz., eigen-vector expansion, Ado-

main decomposition method [36], fractional differential transform method [37], ho-

motopy perturbation method [31, 38, 39], predictor-corrector method [40], multi

step homotopy analysis method [41, 42] and generalized block pulse operational ma-

trix method [43] etc. Some numerical methods based upon operational matrices

of fractional differentiation and integration with Legendre wavelets [28], Chebyshev

wavelets [29, 44, 45], Sine wavelets, Haar wavelets [46] have been developed to find

the solutions of fractional order differential and integro-differential equations. The

functions which are commonly used include Legendre polynomial [26, 47], Laguerre

polynomial [27], Chebyshev polynomial and semi-orthogonal polynomial as Genocchi

polynomial [13]. The application of Feng’s first integral method applied to the non-

linear mKdV space-time fractional partial differential equation is cited in article [48].

Many different forms of fractional order differential operators had been introduced as

the Grunwald-Letnikov, Riemann-Liouville, Hadamard, Caputo, Caputo–Fabrizio,

Riesz fractional order and variable order fractional operators. The applications of

these fractional derivatives in electrical circuits RC, RL, RLC, power electronics de-

vices and non linear loads are studied in [49].It can be seen that physical problems

arose in nature which follow three laws the power law, MittagLeffler law and the

exponential decay law. To describe the behavior of these problems a new type of

fractional operator is used in [50, 51]. Analytical solutions of a fractional-time wave

equation with memory effect and frictional memory kernel of Mittag–Leffler type via
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the Atangana–Baleanu fractional order derivative is described in article [52]. Appli-

cations of variable order fractional differential equations can be found in [53].

A family of generalized fractional Cattaneo’s equations for which passive transport

in porous media is possible is studied in [54] by using fractional substitutions in

integer order rational transform functions. Many applications of fractional deriva-

tives in porous media can be found as gas-flow equation in porous media [55], dis-

tributed order Hausdorff derivative diffusion model in porous media [56], modeling

of non-Darcian flow and solute transport [57]. Transport phenomena characterize

the motion of fluids in porous media structure as heat/mass transfer and chemical

reactions, like fluid behaves when flowing through wood or sponge, filtration of wa-

ter using sand and other porous material. Transport and flow phenomena in porous

medium and industrial synthetic porous matrices as well as fractured rock arise

in many fields of technology and sciences like soil sciences, agricultural, ceramic,

petroleum engineering, construction, chemical and biomedical, food technology etc.

Sixty percent part of the original oil is still left behind in a classic oil reservoir after

the end of oil recovery process. So there is a need of developing oil recovery methods

for the unrecovered oil. However, the recovery processes only establish a small-scale

fraction of a extensive amount. Lot of studies on it are available in the literature

on porous media. In the oil recovery processes, the another areas like soil science

and hydrology are imaginably the most established topics related to porous media.

Many study on groundwater flow and the restoration of aquifers which are contam-

inated by different type of pollutants are relevant areas of research present-days.

The ancient research areas of chemical engineers that deal with porous media con-

sist of drying, centrifuging, filtration, multiphase flow in packed columns, flow and

transport in micro porous membranes, separation and adsorption, and diffusion and

reaction in porous catalysts. Transport of solute in porous media is dependent on

solvent and solute properties, velocity field in porous media, size, shape and location
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of solid part of the medium. Solute transport arises by three processes viz., diffusion,

mechanical dispersion and advection in porous media. The process in which solutes

are transported by random thermal motion of solute molecules is called diffusion.

Rate of solute transport arising in diffusion is given by Fick’s Law. The process,

in which solutes are transported by bulk motion of flowing groundwater, is called

advection. Rate of solute transport arises in advection is given by the product of

solute concentration and the components of groundwater velocity. Mechanical dis-

persion is a spreading process which is caused by a small amount of fluctuations in

groundwater velocity along with path of flow within individual pores. Rate of solute

transport in mechanical dispersion can be represented by the generalized form of

Fick’s law of diffusion.

Advective-dispersive theory is used in many physical situations as flow through

porous media, mass transfer in fluids, relaxation in polymer systems, tracer dynam-

ics in polymer networks, spread of contaminations in fluids [58, 59]. Contaminations

occur on the land of surface and permeate into the surface by pores. Finally, con-

taminants are transported into groundwater.

The following equation represents solute transport in aquifers:

∂c(x, t)

∂t
= −v ∂c

∂x
+ d

∂2c

∂x2
, (2.1)

where c(x, t) is solute concentration, v > 0 represents average fluid velocity and

d represents dispersion coefficient. Equation 2.1 is also called advection-dispersion

equation. This equation also describes probability function for location of particles

in a continuum. The equation 2.1 is used in groundwater hydrology in which the

transport of passive tracers is carried by fluid flow in porous media. Reaction-

diffusion process has been investigated since a long time. In the process of reaction-

diffusion, reacting molecules are used to move through space due to diffusion. This
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definition excludes other modes of transports as convection. Drifts of those may

arise due to presence of externally imposed fields.

When a reaction occurs within an element of space, molecules can be created or

consumed. These events are added to the diffusion equation and lead to reaction-

diffusion equation of the form

∂c

∂t
= D∇2c+R(c, t), (2.2)

where R(c, t) denotes reaction term at time t. The extension of the reaction-diffusion

equation in fractional order system can be found in the articles [60, 61].

The process of diffusion in porous medium has been studied in many contexts. A

crucial equation on the mathematical description of the physical problem is mass

conservation equation, which is parabolic type, which induces a non physical behav-

ior. Our purpose is to study the models, such as, contaminant models with diffusion,

reaction and convective transport in porous media. In reaction-diffusion equation

(RDE), it is assumed that the behavior of various populations described is governed

by two processes. First one is local reaction in which the populations interact be-

tween themselves. The second one is the diffusion which makes the populations

spread out in the space. The concept of population is understood here quite loosely.

The RDE constitute a usual description for all complex systems in many areas of

physics, ecology, computer sciences, geology and combustion theory. The aim of the

authors is to investigate the diffusion phenomenon in a multi-scale porous medium

by using collocation method. The medium consists of a connected network made of

pores and fractures which are equi-distributed, and diffusion process is modeled by

a nonlinear RDE with a non-linear reaction term. More precisely, an attempt has

been taken to model a non-linear order RDE and solve it numerically with Dirich-

let’s type initial and boundary conditions.
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Here Genocchi polynomials have been introduced in collocation method to solve

non-linear fractional order reaction-diffusion equation. After finding the operational

matrix of fractional differentiation, the given non-linear fractional equation model

and boundary conditions are collocated. By collocating a non-linear system of alge-

braic equations are obtained which are solved by using an iteration method called

Newton method. The chapter is organized as follows.

In the section 2.2, the definitions, mathematical preliminaries of fractional calculus,

Genocchi numbers, Genocchi polynomial and their properties are given. The approx-

imation of a arbitrary function and operational matrix of fractional differentiation by

Genocchi polynomial are given in section 2.3 and 2.4, respectively. Section 2.5 con-

tains the error bound and stability analysis of the proposed method. In section 2.6,

a drive has been taken to solve proposed model using the operational matrix with

Genocchi polynomials. Section 2.7 contains the validation of the method through a

comparison of the numerical results with analytical results for two particular cases

and also illustrations of numerical results of proposed model through graphical pre-

sentations are given in section 2.7. The conclusion of over all work is presented in

section 2.8.

2.2 Preliminaries

Here, few definitions and important properties of fractional calculus have been intro-

duced [34]. It is well known that the Riemann-Liouville definition has disadvantages

when it comes to modeling real world problems. But definition of fractional differen-

tiation given by M. Caputo [35] is more reliable for application point of view. Basic

properties of Caputo fractional derivative are as follows.

Dϑ
cM = 0, (2.3)
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where M is a constant.

Dϑ
c t
σ =


0, σ ∈ N ∪ 0, andσ < dϑe ,

Γ (1 + σ)

Γ(1− ϑ+ σ)
t−ϑ+σ, σ ∈ N ∪ 0andσ ≥ dϑe orσ /∈ Nandσ > bϑc ,

(2.4)

where bϑc is floor function.

The operator Dϑ
c is linear, since

Dϑ
c (Af(t) +BG(t)) = ADϑ

c f(t) +BDϑ
c g(t), (2.5)

where A and B are constants.

Caputo operator and Riemann-Liouville operator have a relation given by

(IϑDϑ
c g)(t) = g(t)−

l−1∑
k=0

gk(0+)
tk

k!
, l − 1 < ϑ ≤ l. (2.6)

2.2.1 Genocchi polynomial and its properties [13, 14]

Genocchi polynomials and numbers have been investigated by many Mathematicians

and Physicists. Genocchi numbers Gn and Genocchi polynomials Gn(x) can be

derived respectively by following exponential generating functions.

2x

ex + 1
=
∞∑
n=0

Gn
xn

n!
, (|x| < π), (2.7)

2xetx

ex + 1
=
∞∑
n=0

Gn(t)
xn

n!
, (|x| < π), (2.8)

where Gn(t)is Genocchi polynomial whose degree is n. Genocchi polynomial is given

by

Gn(t) =
l∑

k=0

(
l

k

)
Gl−kt

k. (2.9)
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Here, Gl−k is the Genocchhi numbers. Few examples of some Genocchi polynomials

are

G0(t) = 0,

G1(t) = 1,

G2(t) = 2t− 1,

G3(t) = 3t2 − 3t,

G4(t) = 4t3 − 6t2 + 1.

Some properties of Genocchi polynomial are given below:

∫ 1

0

Gn(t)Gm(t)dt =
2(−1)lm!l!

(m+ l)!
Gm+l, l,m ≥ 1, (2.10)

Gn(1) +Gn(0) = 0, n > 1, (2.11)

dGl(t)

dt
= lGl−1(t), l ≥ 1. (2.12)

Genocchi polynomials have many advantages over the classical orthogonal polynomi-

als during approximation of a function as it has lesser terms and smaller coefficients

of individual terms. In certain cases, these polynomials provide better accuracy

than other polynomials. It has a lot of applications in many branches of physics and

mathematics viz; differential structures on spheres in differential topology, p-adic

analytic number theory, theory of modular forms in Eisenstein series and quantum

groups in quantum physics.
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2.3 Approximation of a arbitrary function

Let us Suppose {G1(t), G2(t), · · · , GM(t)} ⊂ L2[0, 1] is the set of Genocchi polyno-

mials. A function u(t) which belongs to L2[0, 1] can be expressed as

u(t) =
M∑
l=1

clGl(t) = CTG(t), (2.13)

where cl = (u(t), Gl(t)) and (,) denotes the inner product. C and G(t) are column

vectors.

Similarly, an arbitrary function u(x, t) belongs to L2[0, 1]× L2[0, 1] of two variables

can be expressed in terms of Genocchi polynomials as

u(x, t) =
M∑
l=1

M∑
m=1

ulmGm(t)Gl(x), (2.14)

where V = [ulm] and ulm = (Gl(x), (u(x, t), Gm(t))).

2.4 Genocchi operational matrix of fractional deriva-

tive [15]

2.4.1 Lemma

. Statement: Let us consider Gj(x) be the Genocchi polynomial then DϑGj(x) = 0

for j = 1, · · · , dϑe, ϑ > 0.

Theorem 1: Let, ψ(y) = (G1(y), G2(y), · · · , GN(y))T is the Genoochi vector and

ϑ > 0. Then

Dϑψ(y) = Qϑψ(y), (2.15)
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where Qϑ is a M ×M operational matrix of fractional derivative of order ϑ defined

by:

Qϑ =



0 0 · · · 0

0 0 · · · 0

...
... · · · ...∑dϑe

k=dϑe ςdϑe,k,1
∑dϑe

k=dϑe ςdϑe,k,2 · · ·
∑dϑe

k=dϑe ςdϑe,k,M
...

... · · · ...∑i
k=dϑe ςi,k,1

∑i
k=dϑe ςi,k,2 · · ·

∑i
k=dϑe ςi,k,M

...
... · · · ...∑M

k=dϑe ςM,k,1

∑M
k=dϑe ςM,k,2 · · ·

∑M
k=dϑe ςM,k,M



,

where ςi,k,j can be written as

ςi,k,j =
Gi−ki!

Γ(1− ϑ+ k)(i− k)!
hj. (2.16)

Here Gi−k is Genocchi numbers and hj can be obtained by

hj =
Gramj(G1(y), G2(y), · · · , GN(y))

Gram(G1(y), G2(y), · · · , GN(y))
, (2.17)

where Gram(G1(y), G2(y), · · · , GM(y)) is equal to

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈 G1(y), G1(y)〉 〈 G1(y), G2(y)〉 · · · 〈 G1(y), GM(y)〉

〈 G2(y), G1(y)〉 〈 G2(y), G2(y)〉 · · · 〈 G2(y), GM(y)〉
...

〈 GN(y), G1(y)〉 〈 GN(y), G2(y)〉 · · · 〈 GM(y), GM(y)〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.18)
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Here, Gramj(G1(y), G2(y), · · · , GM(y)) can be obtained by replacing the jth column

of

Gram(G1(y), G2(y), · · · , GM(y)) (2.19)

by column whose elements are

〈 G1(t), f(y)〉〈 G2(y), f(y)〉, · · · , 〈 GM(y), f(y)〉. (2.20)

2.5 Error bound and stability analysis

In this section, the upper bound is found by means of Genocchi polynomial on the

error which is being expecting in the approximation. Considering the following space

∏
M

= Span{G1(x), G2(x), · · · , GM(x), G1(t), G2(t), · · · , GM(t)}. (2.21)

Let ũ(x, t) ∈
∏

M be the best approximation of u(x, t). Then using the definition of

best approximation, the following is obtained

‖u(x, t)− ũ(x, t)|∞ ≤ ‖u(x, t)− w(x, t)|∞ ,∀w(x, t) ∈
∏
M

. (2.22)

The above inequality will remains true if w(x, t) represents the interpolating poly-

nomial for u(x, t) at points (xi, tk) where xi, tk for 0 ≤ i, k ≤ M are respectively

roots of GM+1(x) and GM+1(t). Then by the procedure given in article [62]

u(x, t)− w(x, t) =
1

(M + 1)!

∂M+1u(µ, t)

∂xM+1

M∏
i=0

(x− xi) +
1

(M + 1)!

∂M+1u(x, η)

∂tM+1

M∏
i=0

(t− tk)

− ∂2M+2u(µ′, η′)

∂xM+1∂tM+1
×
∏M

i=0(x− xi)
∏M

k=0(t− tk)
(M + 1)!(M + 1)!

, (2.23)
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where µ′, η′, µ, η ∈ [0, 1]. Now by the properties of the norm

‖u(x, t)− w(x, t)‖ ≤ 1

(M + 1)!
max
x,t∈[0,1]

∣∣∣∂M+1u(µ, t)

∂xM+1

∣∣∣www M∏
i=0

(x− xi)
www

+
1

(M + 1)!
max
x,t∈[0,1]

∣∣∣∂M+1u(x, η)

∂tM+1

∣∣∣www M∏
k=0

(t− tk)
www

+ max
x,t∈[0,1]

∣∣∣∂2M+2u(µ′, η′)

∂xM+1∂tM+1

∣∣∣×
www∏M

i=0(x− xi)
wwwwww∏M

k=0(t− tk)
www

(M + 1)!(M + 1)!
.

(2.24)

Since u(x, t) is a continuous differential function on the interval [0, 1] then there exist

constants A1, A2 and A3 such that

max
x,t∈[0,1]

∣∣∣∂M+1u(µ, t)

∂xM+1

∣∣∣ ≤ A1, (2.25)

max
x,t∈[0,1]

∣∣∣∂M+1u(x, η)

∂tM+1

∣∣∣ ≤ A2, (2.26)

max
x,t∈[0,1]

∣∣∣∂2M+2u(µ′, η′)

∂xM+1∂tM+1

∣∣∣ ≤ A3. (2.27)

Now to minimize the factor, the following procedure is obtained

min
xi∈[0,1]

max
x∈[0,1]

∣∣∣ M∏
i=0

(x− xi)
∣∣∣ = min

xi∈[0,1]
max
x∈[0,1]

∣∣∣GM+1(x)

M + 1

∣∣∣, (2.28)

where (M + 1) is the leading coefficient of Genocchi polynomial of order (M + 1)

and Genocchi polynomial satisfies

max
x∈[0,1]

∣∣∣GM+1(x)
∣∣∣ ≤ 4eππ−M−1(−2M+1Γ(2 +M,π) + eπΓ(2 +M, 2π)

−2 + 2M+1
. (2.29)
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From the above inequality, we get

‖u(x, t)− ũ(x, t)‖ ≤4eππ−M−1(−2M+1Γ(2 +M,π) + eπΓ(2 +M, 2π)

−2 + 2M+1

×
( A1 + A2

(M + 1)!
+

A3

((M + 1)!)2

)
. (2.30)

So, an upper bound is obtained for approximate solution of the absolute errors,

which shows that approximation ũ(x, t) converges to the exact solution u(x, t) and

validate the stability of the proposed scheme.

2.6 Solution of the problem

In this section, operational matrix method is applied based on Genocchi polynomials

of fractional derivatives to obtain the solution of following non-linear fractional order

diffusion equation of the type

∂αu(x, t)

∂tα
=

∂β

∂xβ
(um

∂u

∂x
) + λu(1− u) + ψ(x, t), 0 < α ≤ 1, 0 ≤ β ≤ 1, (2.31)

with initial and boundary conditions as

u(x, 0) = f(x), (2.32)

u(1, t) = g(t), (2.33)

u(0, t) = h(t), (2.34)

where 0 ≤ x ≤ 1, 0 ≤ t ≤ 1. If λ = 0, then system is known as conservative system

and λ 6= 0 implies the non-conservative. λ < 0 is known as sink term and λ > 0

as the source term. ψ(x, t) is the forced term. The function u(x, t) is approximated
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with the help of Genocchi polynomial as

u(x, t) =
M∑
i=1

M∑
j=1

cijGi(x)Gj(t), (2.35)

where cij are unknown coefficients for i = 1, 2, · · · ; and j = 1, 2, · · · ; This equation

can be rewritten in matrix form as

u(x, t) = φT (x).C.φ(t), (2.36)

where C = [cij]M×M is anM×M matrix of unknowns and φ(t) = (G1(t), · · · , GM(t))T

is a column vector. Now operating fractional derivative of order α on the expression

(2.36) with respect to x and using theorem 1, the following expression is obtained

∂αu

∂tα
= Qαu(x, t) = φT (x).C.Qαφ(t), (2.37)

Similarly,
∂βu

∂xβ
= Qβu(x, t) = QβφT (x).C.φ(t), (2.38)

Now equations (2.32)− (2.34) with the aid of the equation (2.36) give

φT (x).C.φ(0) = f(x), (2.39)

φT (1).C.φ(t) = g(t), (2.40)

φT (0).C.φ(t) = h(t). (2.41)
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After putting the values of u(x, t), ∂αu
∂xα

and ∂βu
∂tβ

from equations (2.36), (2.37) and

(2.38) in equation (2.31), the following residue is obtained

φT (x).C.Qαφ(t)−
(
(Qβ.φ(x))T .C.φ(t)

)m ×Q1.φT (x).C.φ(t)−
(
φT (x).C.φ(t)

)m
×Qβ+1.φT (x).C.φ(t)− λφT (x).C.φ(t)

(
1− φT (x).C.φ(t)

)
− ψ(x, t) = 0 (2.42)

Now collocating the equations (2.39) − (2.41) and (2.42) at points xi= i
M

for i =

1, 2, · · · ,M and ti= i
M

for i=1, 2, · · · ,M , a non linear system of algebraic equations

ia obtained. By Solving that system of equations and finding C, the numerical

solution of the proposed model (2.31) can be found.

2.7 Results and discussion

In this section, a drive has been taken to validate the effectiveness of the proposed

method through applying it in three standard order problems (α = 1) and compare

the obtained results with the existing analytical results for different particular cases.

Example 1:

Considering β = 0,m = 1, λ = 0, ψ(x, t) = x− xt2, so that model is reduced to

∂u(x, t)

∂t
= u(x, t)

∂u(x, t)

∂x
+ x− xt2. (2.43)

For the initial and boundary conditions

u(x, 0) = 0, u(0, t) = 0, u(1, t) = t, (2.44)
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Table 2.1: variations of L∞ and L2 for different time for first case takingM = 3.

t t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1
L∞ 2.77× 10−17 2× 10−17 1.1× 10−17 5.5× 10−17 5× 10−17

L2 3.72× 10−17 0 6.4× 10−17 0 1× 10−16

the exact solutions of above problem is u(x, t) = xt. Root mean square error (RMSE)

and maximum absolute error (MAE) denoted by L2 and L∞ respectively have been

commonly used to show the accuracy of the numerical solution over the existing

analytical result of a considered model. RMSE is used to measure model perfor-

mance in air quality, climate research studies and in meteorology. RMSE is more

appropriate to represent model performance compared to MAE when error distribu-

tion is expected to be Gaussian type. Another advantage of RMSE over MAE is it

avoids the use of absolute value which is highly undesirable in many mathematical

calculations, whereas it requires less calculation. The MAE L∞ and RMSE L2 are

defined by

L∞ = Max|u(xi, ti)− u(xi, ti)|, (2.45)

L2 =

√
1

M

∑
|u(xi, ti)− u(xi, ti)|2, (2.46)

which are calculated between the existing exact solution and the numerical solution

using proposed method forM = 3. The obtained results are displayed through Table

2.1, which clearly depict that obtained numerical results are in complete agreement

with the existing results. The similarity nature for both the solutions can also be

found from Fig.2.1 and Fig.2.2.
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Figure 2.1: Plots of u(x, t) vs. x and t forM = 3 in case of approximate solution.

Figure 2.2: Plots of u(x, t) vs. x and t for M = 3 in case of exact solution.

Example 2:

Considering another particular case for the proposed method as β = 1,m = 1, λ =

1, α = 1, so that the model is reduced to a standard order non-linear reaction

diffusion equation as

∂u(x, t)

∂t
=

∂

∂x
(u(x, t)

∂u(x, t)

∂x
) + u(x, t)(1− u(x, t)), (2.47)
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Table 2.2: variations of L∞ and L2 for different time for second case taking
M = 3.

t t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1
L∞ 1.1× 10−3 9.9× 10−4 4.4× 10−4 9× 10−4 5.8× 10−4

L2 8.8× 10−4 6.4× 10−4 3.1× 10−4 7.6× 10−4 3.3× 10−4

Table 2.3: variations of L∞ and L2 for different time for second case taking
M = 4.

t t=0.2 t=0.4 t=0.6 t=0.8 t=1
L∞ 9.7× 10−5 3× 10−5 2× 10−5 4× 10−5 2.2× 10−5

L2 6.4× 10−5 2.1× 10−5 1.3× 10−5 2.7× 10−5 1.2× 10−5

whose exact solution under the initial and boundary conditions

u(x, 0) =
1

4
(1− tanh(

x

2
√

6
))2, (2.48)

u(1, t) =
1

4
(1− tanh(

1

2
√

6
(1− 5t√

6
))2, (2.49)

u(0, t) =
1

4
(1− tanh(

1

2
√

6
(− 5t√

6
))2, (2.50)

is given by u(x, t) =
1

4
(1 − tanh( 1

2
√

6
(x − 5t√

6
))2. The maximum absolute error L∞

and the root mean square error L2 for different values of t are shown in Table 2.2

and Table 2.3, respectively for M = 3 and M = 4.

Example 3:

Consider the Burgers-Fisher equation

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
+ u

∂u(x, t)

∂x
+ u(1− u), 0 < x < 1, t > 0, (2.51)
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Figure 2.3: Plots of u(x, t) vs. x for various α at t=1 when λ = −1, β = 1.

Figure 2.4: Plots of of u(x, t) vs. x for various β at t=1 when λ = −1, α = 1.

with following initial and boundary conditions as

u(x, 0) =
1

2
+

1

2
tanh(

x

4
), (2.52)

u(0, t) =
1

2
+

1

2
tanh(

5t

8
), (2.53)

u(1, t) =
1

2
+

1

2
tanh(

1

4
(1 +

5t

2
)). (2.54)



Chapter 2. Nonlinear space-time fractional order reaction-diffusion... 37

Table 2.4: Comparison of absolute errors for proposed method and the method
given in [17].

(x, t) ↓ method given in literature proposed method
(0.1,1) 1.4× 10−4 2.51× 10−7

(0.2,1) 1.9× 10−4 1.07× 10−6

(0.3,1) 8.8× 10−5 2.13× 10−6

(0.4,1) 2.1× 10−5 3.21× 10−6

(0.5,1) 1.21× 10−5 4.13× 10−6

(0.6,1) 5.7× 10−4 4.74× 10−6

(0.7,1) 7.12× 10−4 4.89× 10−6

(0.8,1) 8.1× 10−4 4.37× 10−6

(0.9,1) 5.15× 10−5 2.8× 10−6

where exact solution of above problem is 1
2

+ 1
2

tanh(1
4
(x+ 5t

2
)). A comparison of the

absolute error obtained using method used in this chapter and the exact solution

with the absolute error obtained by [17], is shown in Table 2.4. It is seen from the

table that proposed method in this chapter is much superior as compared to the

existing numerical method when maximum absolute error is computed for the given

example. After the confirmation of accuracy and efficiency of the method, proposed

numerical method is applied to find numerical solution of the considered non linear

space time fractional order non-conservative system (2.31) under the following initial

and boundary conditions as

u(x, 0) = x(1− x), u(1, t) = 0, u(0, t) = 0. (2.55)

The numerical results of the solute concentration vs. x at time t = 1 are calculated

numerically for various values of α and β for conservative and non-conservative

systems. All these effects on pollute concentration in ground water are depicted

through Figs.2.3 − 2.6. It is seen from Fig.2.3 that for non-linear time fractional

reaction diffusion equation the sub diffusion phenomena of solute concentration oc-

curs for the case when the order of non-linearity is m = 2. It is also found that

overshoots of sub diffusion decrease with the increase in α. i.e, pollute diffuses with
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slower rate in groundwater as system approaches fractional order to standard order

α = 1. It is seen from Fig.2.4 that similar sub-diffusions are found for non-linear

spatial fractional reaction-diffusion equation (α = 1,m = 2, λ = −1). Here pollute

diffuses with faster rate as β approaches to standard order (β = 1) from fractional

order. This means initially solute concentration decreases as β increases and after

a small duration it becomes opposite in nature. The effects of reaction term on the

solution profile for standard order reaction-diffusion equation (α = 1, β = 1) are

shown through Fig.2.5 and Fig.2.6, respectively without and with the presence of

forced term. It is clear from the figures that overshoots of the sub-diffusions of so-

lute concentration decrease for the case of sink term(λ = −1) as compared to source

term(λ = +1). Thus the rate of diffusion of the pollute will be more due to the

effect of source term and effect of forced term causes the increment in diffusion rate

of pollute concentration. Fig.2.5 justifies the fact that the overshoots of the solute

concentration will be higher in presence of force term (Fig.2.6) as compared to the

case during its absence (Fig.2.5.)

Figure 2.5: Plots of u(x, t) vs. x for different values of λ at t=1 when α = 1, β =
1, ψ(x, t) = 0.
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Figure 2.6: Plots of u(x, t) vs. x for different values of λ at t=1 when α = 1, β =
1, ψ(x, t) = x− xt2.

2.8 Conclusion

The present scientific contribution has achieved four important goals. First one is the

use of collocation method based on Genocchi polynomials to solve the considered

non linear time-space reaction-diffusion equation in presence of the forced term.

The efficiency and effectiveness of the proposed method are validated by comparing

obtained numerical results with existing analytical results of Burgers and Burgers-

Fisher equations. Second one is the pictorial presentations of the nature of overshoots

during sub-diffusion as the system approaches from standard order to fractional order

and the effect of fractional order time and spatial derivatives on pollute concentration

in ground water is shown through graphs. The important feature of the present study

on proposed mathematical model is the graphical exhibitions of the rate of pollute

diffusion for spatial fractional case as compared to time fractional case. Third one

is the exhibition of decrease of solute concentration due to the presence of sink term

for standard order as well as fractional order systems and also increase in solution

profile due to the effect of forced term. The last one is finding the error bound and
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stability analysis of the proposed model. In future study, the model can be extended

to diffusion equation to variable order and riesz fractional order diffusion equation.

The aim will be to develop some numerical methods to solve those models in two

dimensional cases.

***********


