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Introduction

1.1 Fractional Calculus

The introduction of fractional calculus was started with the letters having a message

"what might be a derivative of order 1
2
?" After Gottfried Leibnitz, Leonhard Euler

started to think about the development and application of fractional calculus. He

give the first definition of fractional derivative with arbitrary order by suggesting

the integral representation with gamma function. The first application of fractional

calculus is developed by Abel for solving an integral equation associated with tau-

tochrone problem. The fractional calculus experiences fast development in 20th

century. Many definitions and properties of fractional order differentiation and inte-

gration were formulated. There are so many definitions and approaches available at

present day. The mathematician Bertizan Ross proposed the following criteria for

an operator to be fractional derivative;

1. An analytic function remains analytic after interacting with fractional deriva-

tive.
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2. The effect of fractional derivative with positive integer order is equal to the

value of integer order derivative.

3. In case of negative integer the result of fractional derivative must be equal to

the value of that order of the integration.

4. The function remains fixed under zero order fractional derivative or integration.

5. The operator must satisfy the linear property.

6. The operator should follow the semi-group property.

1.1.1 Classical fractional derivative

Let β ∈ C such that R(β) ∈ (n − 1, n], n ∈ N and R(.) represents the real part

of complex number. The notation [β] denotes the integer part of number and {β}

corresponds to fractional part. The notation bβc represents the floor function. The

followings are the classical fractional operator [1, 2]:

1. Liouville derivative

Dβζ(y) =
1

Γ(1− β)

d

dy

∫ y

−∞
(y − η)−βζ(η)dη, −∞ < y < +∞. (1.1)

2. Liouville left-sided derivative

Dβ
0+ζ(y) =

1

Γ(n− β)

dn

dyn

∫ y

0

(y − η)−β+n−1ζ(η)dη, y > 0, n− 1 < β ≤ n.

(1.2)
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3. Liouville right-sided derivative

Dβ
0−ζ(y) =

(−1)n

Γ(n− β)

dn

dyn

∫ +∞

y

(η−y)−β+n−1ζ(η)dη, y <∞, n−1 < β ≤ n.

(1.3)

4. Riemann-Liouville left-sided derivative

RLDβ
a+ζ(y) =

1

Γ(n− β)

dn

dyn

∫ y

a

(y−η)−β+n−1ζ(η)dη, y > a, n−1 < β ≤ n.

(1.4)

5. Riemann-Liouville right-sided derivative

RLDβ
b−ζ(y) =

(−1)n

Γ(n− β)

dn

dyn

∫ b

y

(η− y)−β+n−1ζ(η)dη, y ≤ b, n− 1 < β ≤ n.

(1.5)

6. Caputo left-sided derivative

CDβ
a+ζ(y) =

1

Γ(n− β)

∫ y

a

(y−η)−β+n−1 d
n

dyn
{ζ(η)}dη, y ≥ a, n−1 < β ≤ n.

(1.6)

7. Caputo right-sided derivative

CDβ
b−ζ(y) =

(−1)n

Γ(n− β)

∫ b

y

(η−y)−β+n−1 d
n

dyn
{ζ(η)}dη, y ≤ b, n−1 < β ≤ n.

(1.7)

8. Grünwald-Letnikov left-sided derivative

GLDβ
a+ζ(y) = lim

h→0

1

hβ

bnc∑
l=0

(−1)lΓ(β + 1)ζ(y − lh)

Γ(l + 1)Γ(β − l + 1)
, nh = y − a. (1.8)
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9. Grünwald-Letnikov right-sided derivative

GLDβ
b−ζ(y) = lim

h→0

1

hβ

bnc∑
l=0

(−1)lΓ(β + 1)ζ(y + lh)

Γ(l + 1)Γ(β − l + 1)
, nh = b− y. (1.9)

10. Riesz derivative

Dβ
y ζ(y) =

−1

2 cos(βπ
2

)

1

Γ(β)

dn

dyn

[ ∫ y

−infty
(y − η)−β+n−1ζ(η)dη (1.10)

+

∫ +∞

y

(η − y)−β+n−1ζ(η)dη
]
, n− 1 < β ≤ n.

(1.11)

11. Hadamard derivative

HDβ
+ζ(y) =

β

Γ(1− β)

∫ y

0

ζ(y)− ζ(η)

{In(y
η
)}1+β

dη

η
, y ≤ b, n− 1 < β ≤ n. (1.12)

12. Riemann-Liouville left-sided integral

RLIβa+ζ(y) =
1

Γ(β)

∫ y

a

(y − η)β−1ζ(η)dη, y ≥ a. (1.13)

13. Riemann-Liouville right-sided integral

RLIβa+ζ(y) =
1

Γ(β)

∫ b

y

(η − y)β−1ζ(η)dη, y ≤ b. (1.14)

14. Hadamard integral

HIβ+ζ(y) =
1

Γ(β)

∫ y

0

ζ(η)

{In(y
η
)}1−β

dη

η
, y > 0, β > 0. (1.15)
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1.1.2 Fractional operator with non-singular kernel

Let us consider the function ζ(y) ∈ H1(a, b), b > a and Eβ(y) =
∑∞

i=0
yi

1+βi

corresponds to Mittag-Leffler function with one parameter [3]

15. Caputo-Fabrizio derivative

CFDβ
y ζ(y) =

M(β)

n− β

∫ y

a

e
−β
1−β (y−η) d

n

dyn
{ζ(η)}dη, y ≤ b, n− 1 < β ≤ n.

(1.16)

16. Atangana Baleanu Caputo derivative

ABCDβ
y ζ(y) =

B(β)

n− β

∫ y

a

Eβ{
−β

1− β
(y−η)β} d

n

dyn
{ζ(η)}dη, y ≤ b, n−1 < β ≤ n.

(1.17)

17. Atangana Baleanu derivative in Riemann-Liouville type

ABCDβ
y ζ(y) =

B(β)

n− β
dn

dyn

∫ y

a

Eβ{
−β

1− β
(y−η)β}{ζ(η)}dη, y > b, n−1 < β ≤ n.

(1.18)

18. Caputo-Fabrizio with Gaussian kernel

CFDβ
y ζ(y) =

1 + β2√
(πβ(1− β))

∫ y

a

e
−β
1−β (y−η)2

{ζ(η)}dη, y > a, ζ(a) = 0. (1.19)

1.1.3 Variable order fractional derivative and integration [4]

The variable order fractional derivative are non-local operator. These operators are

useful in characterizing the memory property of a system. The hereditary property

and self-similarity of a system can be derived by variable order differential equations.

Variable order fractional derivatives are useful in determining the memory effect in
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two ways. First one is memory change with spatial and time coordinates. Second

one is connected with the memory of orders. This can be effective by the previous

values of orders of derivatives.

1. Type 1 (V1) derivative

The type 1 variable order derivative of order n− 1 < β(x, t) ≤ n is defined as

follows.

0D
β(x,t)
t ζ(x, t) =

1

Γ(n− β(x, t))

∫ t

0

(t− η)−β(x,t)+n−1 ∂
n

∂ηn
{ζ(x, η)}dη,

n− 1 < β(x, t) ≤ n.

(1.20)

This is equivalent to the well-known definition of Caputo’s definition of frac-

tional order derivative if we consider β(x, t) as a constant.

2. Type 2 (V2) derivative

The type 2 variable order fractional derivative ia defined as follows.

0D
β(x,t)
t ζ(x, t) =

∫ t

0

1

Γ(n− β(x, η))
(t− η)−β(x,η)+n−1 ∂

n

∂ηn
{ζ(x, η)}dη,

n− 1 < β(x, t) ≤ n.

(1.21)

If we consider the order β(x, t) as constant, this V 2 type derivative reduces to

the Riemann-Liouville definition.
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1.2 Diffusion Phenomena

Diffusion is the process in which any matter or material atoms or molecules is trans-

ported or moved from one system to another with random molecular motions [5].

This process is not due to any action of force, it is a result of random moments of

atoms with resulting in the uniform distribution of that matter or material atoms.

It occurs in all types of materials having temperature above absolute zero. It occurs

from the region of higher concentration to lower concentration even in the absence

of driving force or concentration gradient. The diffusion process is related with the

Markov process. The Markov process has three properties: drift, a random process

and jump process. Thus a diffusion process is a Markov process that has continuous

sample paths.

1.2.1 Derivation of diffusion equation [6]

The diffusion and conduction processes have a analogy. The diffusion is transport

of molecules or material atoms with in effect of a random motion. Conduction is

transport of electrons and heat by random motion. These mechanisms perform by

Brownian motion in gases and liquids by vacancy or interstitial diffusion in solids.

The cause or driving force for this diffusion phenomena is concentration gradient.

The diffusion phenomenon is co-related to the mass transfer process. Mass transfer

is happened when a mixture of substance travels from one point to another point

in a medium. The process diffusion or convection is occurred by the mass transfer.

So, it is said that the diffusion process is mass transfer in a fluid or stationary solid

under the influence of concentration gradient. While convection is mass transfer

between a boundary surface and a moving fluid. The difference between diffusion

and convection can be understood by the example in which we dip a sugar piece



Chapter 1. Introduction 8

into water. Then sugar is slowly and gradually dissolved in water. Thus is called

diffusion. But if we stir it with a spoon and create forces to dissolve it, then this is

called convection. Thus diffusion is slower and convection is faster.

Concentration gradient :

Let there are two media having concentration η1 and η2, respectively. If these are

bring together then the molecules in a concentrated region will move or disperse into

rest of the medium. The difference in concentration is the concentration gradient

−∆η1

∆x
=
η1 − η2

∆x
(1.22)

Fick’s law:

In the year 1855, Adolf Fick was the first who found the analogy between convec-

tion and diffusion. Let F is the rate of transfer per unit area of section, η is the

concentration of diffusing substance and x is spatial co-ordinates which is measured

normal to the section then according to this law

F ∝ ∂η

∂x
, (1.23)

⇒ F = −D∂η

∂x
, (1.24)

where D is called diffusion coefficient . The negative sign in this equation corre-

sponds the occurrences in the direction opposite to that of increasing concentration.

This equation is valid for isotropic medium. The derivation of diffusion equation

is performed with the help of Fick’s law. Let us consider a volume of rectangular

parallelepiped having sides parallel to the axes and length of 2dx, 2dy and 2dz (see
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Figure 1.1: Geometry of considered rectangular volume

Fig.1.1). The concentration at center P (x, y, z) of parallelepiped is η. The entering

rate of diffusing substance through ABCD is given by

4dxdydz(Fx −
∂Fx
∂x

dx),

with Fx is known as rate of transfer in one unit area. Similarly, diffusing matter

pass with a rate of

4dxdydz(Fx −
∂Fx
∂x

dx),

The net contribution in the X direction

4dxdydz(Fx −
∂Fx
∂x

dx)− 4dxdydz(Fx −
∂Fx
∂x

dx) = −8dxdydz
∂Fx
∂x

.

Thus in the similar way, the net contribution in Y and Z directions is obtained as

−8dxdydz
∂Fy
∂y

,−8dxdydz
∂Fz
∂z

,

respectively. The substance which is diffusing increases with a rate of

8dxdydz
∂η

∂t
.
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Hence we have the following relation

8dxdydz
∂η

∂t
= −8dxdydz

∂Fy
∂y
− 8dxdydz

∂Fz
∂z
− 8dxdydz

∂Fx
∂x

. (1.25)

⇒ ∂η

∂t
+
∂Fy
∂y

+
∂Fz
∂z

+
∂Fx
∂x

= 0. (1.26)

Considering diffusion coefficient as constants and using Fick’s law, we have

∂η

∂t
= D

(∂2η

∂y2
+
∂2η

∂2z2
+
∂2η

∂x2

)
,

∂η

∂t
= DO2η. (1.27)

Reaction-diffusion phenomenon comprises the reaction process with diffusion pro-

cess. In this common phenomenon, the concentration of the chemical substances

change with change in space and time. And another local chemical reactions oc-

cur with transformation of substances into each other. This process is denoted by

diffusion equation with adding of a reaction term R(η) as

∂η

∂t
= DO2η +R(η). (1.28)

Complex system along with anomalous diffusion:

In physics, the basic rule and theory based structure correspond the investigation of

complex system structural and dynamical properties. The study of complex system

plays a crucial role in many fields like as bio-polymers, polymers, liquid crystals, and

life science. The pattern in complex system is different from the classical exponential

Debye pattern [21]

ψ(η) = ψ0 e
−η
τ (1.29)
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and with the help of Kohlravsh-Williams-Watts stretched exponential law [22], we

obtain the following expression

ψ(η) = ψ0e
(−η
τ

)β , 0 < β < 1. (1.30)

Using the asymptotic power law, the following relation is derived as

ψ(η) = ψ0

(
1 +

η

τ

)−n
, n > 0 (1.31)

In the same way, diffusion process does not follow the Gaussian statistics occurring in

many complex systems and so Fick’s law fails in describing this transport behavior.

In the non-complex system, the linear time dependence of mean square displacement

is observed which is consistent with Brownian motion. With the help of central limit

theorem and Markovian nature

< x2(t) >∼ K1(t). (1.32)

But in complex system, we found the non-linear behavior of mean square displace-

ment as

< x2(t) >∼ Kβt
β, (1.33)

where the coefficientKβ denotes the generalized diffusion coefficient. We have picked

up here the power law pattern, many other patterns also exist in nature like as log-

arithmic and time dependence. The above equation is in consistent with central

limit theorem. This non-Gaussian behavior of complex system is due to waiting

time distributions and broad spatial jump. Standard diffusion process is although

in ubiquity but not every diffusion phenomenon occurring in universe is standard.
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Table 1.1: Different type of fractional diffusion

Diffusion type Scale Medium
Richardson diffusion < x2(t) >∼ t3 atmosphere turbulence

Super-diffusion < x2(t) >∼ tγ, transport in polymers
1 < γ < 2 turbulent plasmas

Levy fights

Standard diffusion < x2(t) >∼ t homogeneous media

Sub-diffusion < x2(t) >∼ tγ porous media
0 < γ < 1 fractal media

disordered media

Ultra slow diffusion < x2(t) >∼ t(ln t)γ Deterministic diffusion
1 < γ < 4 Sinai diffusion

Many phenomenon with experimental measurements show the validity of fractional

diffusion equation. The summary table for fractional diffusion occurring in differ-

ent fields is given in Table 1.1. The mathematical form of diffusion equation is

represented as

∂γu(x, t)

∂tγ
= D

∂2u(x, t)

∂x2
. (1.34)

Memory concept of fractional derivatives

The main concerned problem for the researchers is to find out the physical mean-

ing of fractional derivative. Memory concept of models is usually associated with

fractional derivative. The meaning of memory of a system shows that "how much

information this system contains/carries from its previous stage?" The integer order

system carries the information only from its previous one stage. But the fractional

derivative carries information from many past stages. The reason behind this is that

fractional derivatives are non-local and integro-differential operators. In this work,
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the author has studied the Scott-Blair’s model for showing the utility of fractional

order derivative in memory concepts. In observations of this model, it is found that

there are two stages of memory: the first one fresh memory and second one work-

ing memory. The fresh stage has short time-period with permanent retention. The

fractional model of system depicts the working stage of memory. It is derived that

the order of fractional derivative is equal to the index of memory.

1.3 Application of diffusion equation

The diffusion equation is a partial differential equation. Its application can be seen

in many fields like medical science, earth science, chemical science and mechanical

engineering.

1.3.1 Medical Science [7]

(i) The diffusion equation can be used in modeling of many diseases. In tumor

or cancer treatment, this equation plays a crucial role because the diffusion of

cancerous cells into normal cells can be depicted by diffusion equation system.

(ii) Diffusion equation is used in interactive medical image segmentation. The

nonlinear isotropic and anisotropic diffusion methods are used in the treatment

of sinus disease.

(iii) The diffusion based models represent better results in biomedical imaging like

X-Ray.
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1.3.2 Geological Science [8]

The earth is made up of lithospheric plate or tectonic plate. According to the famous

plate tectonic theory, the crust of earth is combination of oceanic and continental

plates. The movements of these plates are either convergent or divergent. When two

plates converge the cooling effect between these plates are depicted by the diffusion

equation. Some other applications can also be seen in the erosion of faults which

are created due to divergence or convergence of tectonic plates.

1.3.3 Chemical Science [9]

The reaction between two substances causes by the mass transfer which is carried by

the diffusion process. Diffusion equation has a key role in performing chemical re-

actions and mass transfer. The transport of penetrant molecules through polymeric

membrane is done by the diffusion phenomena.

1.3.4 Physical Science [10]

The theories of current flow in semi-conductors are based upon the diffusion phe-

nomena. In a region with mobile carrier electrons and electric field has low intensity,

the current flow occurs due to diffusion phenomena. The diffusion of quantum waves

in quantum physics is studied with the help of diffusion equation. The core design of

pressurized water reactor in nuclear physics is based upon the diffusion theory. The

nuclear fission is started with the bombarding of neutron on Uranium atom. The dis-

tribution of neutron flux in spatial direction in any diffusive medium is determined

with the help of diffusion equation.
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1.3.5 Ground water contamination problem [11]

Nowadays groundwater contamination is a concerning issue of many countries. The

availability of drinking water on the earth is less than 1% of whole water available

on earth. The main source of drinking water is ground water. But due to increasing

pollution, this water is contaminating day by day. The diffusion equation plays a

crucial role in studying this contamination diffusing in groundwater.

1.3.6 Economics [12]

The application of reaction-diffusion equation can be seen in lag-lead structure of

competing economic entities. The complex interdependence between the economy

of two countries which is a macro-economic variable is modeled by inter temporal

diffusion.

1.4 Numerical methods

Derivation of the solution of differential equation is a tough task from the earlier

time. The analytical methods have their own limitations as those are unable to find

out the solution of complex non-linear differential equation specially the fractional

one. This problem can be tackled by the numerical methods. These methods are

easy to apply and give better results even for complex fractional differential equation.

Many numerical methods have been developed till now. Some of those are as follows:

(i) Finite difference method [23, 24]

This is one of the oldest methods to find the numerical solutions of differential

equations. After discretization of computation domain, the derivatives involve
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in differential equation are replaced by difference formulas. This gives the

recursive algorithm and solution can be obtained by applying any of forward

Euler scheme, backward Euler scheme and Crank-Nicolson scheme.

(ii) Finite element method [25]

In this method, firstly the domain is divided into sub-domains referred as ele-

ments. The interpolation functions are selected to approximate the unknown

function. The Ritz variational or Galerkin method is used to formulate a

system of equations. After solving such system, the solution can be obtained.

(iii) Operational matrix method based upon polynomials [26, 27]

A matrix of differentiation or integration is derived by using any polynomial.

The approximation of all derivatives and unknown functions in terms of matrix

are placed in given differential equation. In the end, the solution is obtained

by collocating previous equation at nodes of that polynomial.

(iv) Operational matrix method based upon wavelets [28, 29]

This method is same as previous one. Here operational matrix is derived by

using wavelet function.

(v) Reproducing kernel method [30]

A reproducing kernel space is defined in this method which depends upon

the differential equation. In this space every member function satisfies the

boundary condition. The unknown function is approximated with the help

of functions belonging to that reproducing kernel space. The solution can

be found out after determining the value of unknowns with the help of inner

product.

(vi) Homotopy perturbation method [31]

An auxiliary operator L and initial approximation are chosen according to the
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given problem and a homotopy equation is determined. With the help of this

homotopy equation, a series of successive solution is derived.

(vii) Neural network method [32]

In this method, feedforward networks are used for finding numerical solution.

It uses the fact that these networks with linear output having no bias can be

used in approximation of arbitrary functions and its applications.

(viii) B-spline method [33]

B-spline or basis spline functions are used for curve-fitting or fitting of nu-

merical data. In B-spline method, unknown functions and its derivatives are

approximated with help of these functions in collocation step.

***********


