Contents

List of Figures					ix	
Li	ist of	Tables				xi
Preface						xii
1	Intr	roduction				1
	1.1	Fractional Calculus				1
		1.1.1 Classical fractional derivative				2
		1.1.2 Fractional operator with non-singular kernel				5
		1.1.3 Variable order fractional derivative and integration [4].				5
	1.2	Diffusion Phenomena				7
		1.2.1 Derivation of diffusion equation [6]		•		7
	1.3	Application of diffusion equation				13
		1.3.1 Medical Science [7] \ldots		•		13
		1.3.2 Geological Science $[8] \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$		•		14
		1.3.3 Chemical Science $[9]$		•		14
		1.3.4 Physical Science [10] \ldots \ldots \ldots \ldots		•		14
		1.3.5 Ground water contamination problem [11] \ldots \ldots		•	•	15
		1.3.6 Economics [12] \ldots \ldots \ldots		•	•	15
	1.4	Numerical methods	• •	•	•	15
2	Ope	erational matrix method for solving nonlinear space-time	e f	fra	ıc-	
	tion	nal order reaction-diffusion equation based on Genocchi p	ol	yn	1 0-	
	mia	d d				18
	2.1	Introduction		•	•	18
	2.2	Preliminaries		•	•	23
		2.2.1 Genocchi polynomial and its properties [13, 14]		•	•	24
	2.3	Approximation of a arbitrary function		•	•	26
	2.4	Genocchi operational matrix of fractional derivative [15]		•	•	26
		2.4.1 Lemma		•	•	26

	2.5	Error bound and stability analysis	28		
	2.6	Solution of the problem	30		
	2.7	Results and discussion	32		
	2.8	Conclusion	39		
3	Numerical solution of two dimensional reaction-diffusion equation				
	usir	ng operational matrix method based on Genocchi polynomial	41		
	3.1	Introduction	41		
	3.2	Preliminaries	42		
		3.2.1 Kronecker product of two matrix	42		
		3.2.2 Approximation of an arbitrary function	43		
		3.2.3 Genocchi operational matrix of fractional derivative	43		
	3.3	Error bound and stability analysis	44		
	3.4	Solution of the problem	46		
	3.5	Results and discussion	49		
	3.6	Conclusion	55		
4	Geg	genbauer wavelet operational matrix method for solving variable			
	ord	er non-linear reaction-diffusion and Galilei invariant advection-			
	diff	usion equations	57		
	4.1	Introduction	57		
	4.2	Preliminaries	60		
		4.2.1 Variable-order derivatives of Type $1(V1)$ and Type $2(V2)$	60		
		4.2.2 Gegenbauer polynomial and Gegenbauer wavelet	61		
	4.3	Function Approximation	63		
	4.4	Error bound and stability analysis	64		
	4.5	Operational matrix of derivative	68		
		4.5.1 Gegenbauer wavelet operational matrix of variable-order frac-			
		${\rm tional\ derivative}\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	69		
	4.6	Proposed model	72		
	4.7	Description of proposed method	73		
	4.8	Results and discussion	75		
	4.9	Conclusion	85		
5	Ana	alysis of tumor cells in the absence and presence of chemother-			
	ape	utic treatment: The case of Caputo-Fabrizio time fractional	0.0		
	der	Ivative	86		
	5.1	Introduction	86		
	5.2	Derivation of C-F fractional differential operational matrix 5.2.1 Approximate expression of C-F derivative of simple polyno-	90		
		$mial \ function \ \ \ldots $	90		
		5.2.2 Chebyshev polynomials [16] $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	91		

5	.3	Descri	ption of model representing the chemotherapy effect on behav-	
		ior of	tumor cells	. 96
5	.4	Solutio	on of the problem	. 99
5	.5	Nume	rical simulation and results	. 101
		5.5.1	Variation of tumor cells when chemotherapy drug is not injecte	<mark>d</mark> 103
		5.5.2	Behavior of tumor cells after applying chemotherapeutic treat-	
			ment	. 104
		5.5.3	Discussion of the nature of model in fractional order system	
			and future scope	. 105
5	.6	Conclu	$sion \ldots \ldots$	107
	~			100
6		nclusic	on and scope of future work	109

Bibliography

112

List of Figures

1.1	Minion	9
2.1	Plots of $u(x, t)$ vs. x and t for $M = 3$ in case of approximate solution.	34
2.2	Plots of $u(x,t)$ vs. x and t for $M = 3$ in case of exact solution.	34
2.3	Plots of $u(x, t)$ vs. x for various α at t=1 when $\lambda = -1$. $\beta = 1$.	36
2.4	Plots of $\alpha(x, t)$ vs. x for various β at t=1 when $\lambda = -1$, $\alpha = 1$	36
2.5	Plots of $u(x,t)$ vs. x for different values of λ at t=1 when $\alpha = 1, \beta = 1$ $u(x,t) = 0$	38
26	Plots of $u(x, t) = 0$	00
2.0	$1, \psi(x, t) = x - xt^2. \dots \dots$	39
3.1	Plots of $u(x, y, t)$ vs. x and y for $M = 4$ in case of numerical and	
	exact solution for $t = 0.5$	51
3.2	Plots of $u(x, y, t)$ vs. x and y for $M = 4$ in case of numerical and exact solution for $t = 0.5$	52
3.3	Plots of $u(x, u, t)$ vs. x and y for various α at t=0.5 when $\kappa_3 = 1$.	
	$\beta = \gamma = 2. \dots $	53
3.4	Plots of $u(x, y, t)$ vs. x and y for various β at t=0.5 when $\kappa_3 = 1$,	
	$\alpha = 1, \gamma = 2. \dots $	54
3.5	Plots of $u(x, y, t)$ vs. x and y for various γ at t=0.5 when $\kappa_3 = 1$,	
	$\beta = 2, \alpha = 1.$	54
3.6	Plots of $u(x, y, t)$ vs. x and y for various β at t=0.5 when $\beta = 2$,	
	$\alpha = 1, \gamma = 2. \dots $	55
4.1	Plots of $u(x,t)$ for $\hat{m} = 4$ and $\lambda = 2$ in case of numerical and exact	
	solution for $t = 0.5$.	77
4.2	Plots of $u(x,t)$ for $\hat{m} = 4$ and $\lambda = 2$ in case of numerical and exact	
	solution for $t = 0.5$	78
4.3	Plots of $u(x,t)$ for $\hat{m} = 4$ and $\lambda = 2$ in case of numerical and exact	
	solution for $t = 0.5$	80
4.4	Plots of $u(x,t)$ for $\hat{m} = 4$ and $\lambda = 2$ in case of numerical and exact	
	solution for $t = 0.5$.	81
4.5	Behavior of $u(x,t)$ for $\hat{m} = 4$ and $\lambda = 2$ at $t = 0.5$	81
4.6	Behaviour of $u(x,t)$ for $\ddot{m} = 4$ and $\lambda = 2$ at $x = 0.5$	82

4.7	Behaviour of $u(x,t)$ for $\hat{m} = 4$ and $\lambda = 2$ at $x = 0.5$	82
4.8	Plots of $u(x,t)$ for $\hat{m} = 4$ and $\lambda = 2$ in case of numerical and exact	
	solution for $t = 0.5$	84
5.1	Growth of tumor cells at different time periods in absence of chemother-	
	apeutic (a) for integer order system ($\alpha = 1, \beta = 1, \gamma = 1, \zeta = 1$) (b)	
	for C-F fractional order system ($\alpha = 0.9, \beta = 0.9, \gamma = 0.9, \zeta = 0.9$).	104
5.2	Graphical representation of tumor cells in presence of chemothera-	
	peutic drug with different time intervals.	105
5.3	Plots of normal cells $N(x,t)$ for different values of α	106
5.4	Plots of tumor cells $T(x,t)$ at different values of β	106
5.5	Plots of Immune cells $I(x,t)$ for different values of γ	107
5.6	Plots of concentration of chemotherapeutic drug $U(x,t)$ for different	
	values ζ .	107
5.7	Dynamics of tumor cells at time $t = 0.5$ with different immune levels.	108