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PREFACE

In this thesis, the numerical study of fractional diffusion equation has been done

which has applications in porous media and tumor analyses. Chapter 1 contains

the introduction part of the thesis. In this chapter, firstly the history of fractional

calculus with evolution has been discussed. The definition of different types of

fractional order derivatives like Caputo, Riemann-Liouville, and Atangana-Baleanu

derivatives with constant and variable order is given which will be used through the

article. In the last, the background, derivation of the fractional diffusion equation

and its applications in different fields with a list of numerical methods dealing with

it are incorporated in this chapter.

Chapter 2 contains the analysis of the one-dimensional reaction-diffusion equation.

The Genocchi operational matrix of differentiation with collocation method has been

used in solving the model. The validation of the method is shown by solving the

particular cases of the reaction-diffusion model. For accuracy of the method, the

error table has been incorporated and results are compared with the existing nu-

merical results from previous literature. In the end, the application of this model in

the groundwater contamination problem has been presented.

The two-dimensional version of the previous reaction-diffusion model along with

Neumann boundary conditions has been studied in Chapter 3. The Genocchi oper-

ational matrix with collocation method has been used for solving this model. The

validation and accuracy of the method are depicted through error tables and also

from the plots between the exact and numerical solution.

In chapter 4, two models have been considered, out of which one is variable order non-

linear reaction-diffusion model and another one variable order advection-diffusion

xii



model. Here, the operational matrix of the ultraspherical wavelet is used in finding

the numerical solutions of aforementioned models. The validation of the method is

shown by solving the numerical examples for the particular cases of both models.

The effect of reaction term on solution profile is depicted through figures.

In chapter 5, the applications of diffusion equation are shown in the tumor anal-

ysis with the absence and presence of chemotherapeutic treatment. A model of

four coupled diffusion equations is considered with exponential kernel non-singular

fractional order derivative for the analysis of the behavior of tumor cells, normal

cells, and immune cells. The spectral method based on the Chebyshev polynomials

is used for the investigation of the model. The results for tumor cells’behavior in

presence of chemotherapeutic treatment and the dynamic behavior of all types of

cells concerning different fractional order are shown with the help of figures. In the

end, the response of the immune system against tumor cells has been depicted.
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