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problem for the é equation of probes,” in Proceedings of the International Congress

of Mathematicians, vol. 2, pp. 44–45, 1936.

[36] K. Oldham and J. Spanier, The fractional calculus theory and applications of differ-

entiation and integration to arbitrary order. Elsevier, 1974.

[37] K. Nishimoto, An Essence of Nishimoto’s Fractional Calculus (Calculus in the 21st

Century): Integrations and Differentiations of Arbitrary Order. Descartes Press

Company, 1991.

[38] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional

differential equations. Wiley, 1993.



Bibliography 108

[39] V. Kiryakova, “Generalized fractional calculus and applications, pitman res notes

math 301, longman scientific & technical: Harlow,” 1994.

[40] B. Rubin, Fractional integrals and potentials, vol. 82. CRC Press, 1996.

[41] I. Podlubny, Fractional differential equations: an introduction to fractional deriva-

tives, fractional differential equations, to methods of their solution and some of their

applications, vol. 198. Elsevier, 1998.

[42] H. Rudolf, Applications of fractional calculus in physics. world scientific, 2000.

[43] A. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of

fractional differential equations, vol. 204. Elsevier Science Limited, 2006.
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