
Chapter 6

Finite difference with collocation

method to solve multi term

variable-order fractional

reaction-advection-diffusion

equation in heterogeneous medium

6.1 Introduction

Partial differential equations (PDEs) with fractional derivative have gained considerable

popularity and importance due to its capability of modeling many anomalous phenomena

and complex system in natural science and engineering fields [210, 211, 212, 213, 214,

215]. In modeling the real process and phenomenon, fractional derivatives gives a more

accurate model than integer order derivatives [216, 217, 218, 219]. In particular, modeling

of anomalous diffusion in a specific type of porous media is one of the most significant

applications of fractional derivatives [43, 220]. In this chapter, a attention has been made to

solve a class of fractional advection-diffusion equation (FADE) in a heterogeneous medium.

Many models have been developed in heterogeneous medium by various researchers viz.

[221, 222, 223, 224]. Diffusion in the heterogeneous medium does not obey the laws of

standard diffusion in fundamental ways generally. In recent years, variable-order fractional

diffusion equations(VOFDE) becomes a useful tool to describe mathematical models in
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various fields but finding an analytical solution to VOFDE is quite difficult. Generally,

the numerical method with sufficient accuracy is acceptable in finding the highly accurate

solution of VOFDE. There are few numerical methods for solving VOFDEs which can be

found [225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241].

In this chapter, the following multi-term variable fractional order reaction advection dif-

fusion (MTV-FRADE) in heterogeneous medium has been solved.

Pα1,α2,...αp(
C
0 Dt)(u(x, t)) = A

(
1

2
+
q

2

)
aD

β(x,t)
x u(x, t) +A

(
1

2
− q

2

)
xD

β(x,t)
b u(x, t)

− v
∂u(x, t)

∂x
+ ku(x, t) + f(x, t),

(6.1)

with initial and boundary conditions

u(x, 0) = ψ0(x), a ≤ x ≤ b,

u(0, t) = ψ1(t), 0 ≤ t ≤ T,

u(t, t) = ψ2(t), 0 ≤ t ≤ T,

(6.2)

where

Pα1,α2,...αp(
c
0Dt)(u(x, t)) =

p∑
i=1

di
C
0 D

αi(x,t)
t u(x, t), (6.3)

0 ≤ αi(x, t) ≤ 1, for i = 1, 2, .., p, p ∈ N, C
0 D

αi(x,t)
t is left Caputo derivative. 1 < β(x, t) ≤

2, aD
β(x,t)
x and xD

β(x,t)
b left and right Riemann-Liouville(RL) variable-order fractional

derivatives, respectively. A > 0 is fractional dispersion coefficient which generally controls

the rate of spreading of solute, −1 ≤ q ≤ 1 is the skewness parameter. If q = 1, then the

considered MTV-FRADE will be positively skewed while for q = −1 the solution will be

negatively skewed. If q = 0, the solution will be symmetrical.

This chapter consists of the MTV-FRADE which allows for modeling the transient disper-

sion. An accurate numerical method has been developed to find solutions of this type of

models. This technique is based on Fibonacci collocation method in conjunction with the

standard finite difference method. Firstly, the solution is approximated with a series of

Fibonacci polynomials in space with unknown coefficients in time. Using the introduced

technique the MTV-FARDE is converted into the system of variable-order differential

equations which can easily be translated in the system of algebraic equations. This system

of algebraic equations can easily be solved with the help of any iteration methods.

This chapter is arranged as follows. In section 6.2, contains necessary definitions of the

variable-order derivatives in Caputo and left and right RL senses. The certain properties
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of Fibonacci polynomial are also discussed here. Section 6.3 consists of certain theorems

which help to develop the finite difference scheme. This section also contains the develop-

ment of the proposed numerical technique. In section 6.4, the accuracy of the developed

numerical technique is verified through comparing the solutions of the particular cases of

considered MTV-FRADE equation (6.1) with the previously existing results which clearly

predict that the proposed numerical method is more accurate than the existing methods.

In section 6.5, the considered model (6.1) has been solved with the proposed method and

discussed the effect on solute profile due to various parameters through graphical presen-

tations. Overall work of the chapter is concluded in the section 6.6.

6.2 Preliminaries

This section includes some definitions of various types of variable-order derivatives which

are necessary for the subsequent sections.

6.2.1 Caputo variable order fractional derivative

For the function u(x, t) in the interval [a, b], the expression

C
0 D

α(x,t)
t u(x, t) =

1

Γ (n− α(x, t))

∫ t

0
(t− η)n−1−α(x,t)∂

nu(x, η)

∂ηn
dη, n− 1 < α(x, t) ≤ n,

(6.4)

is called the Caputo time-variable fractional derivative of order α(x, t), where Γ (.) denotes

the Gamma function.

6.2.2 Riemann-Liouville left and right variable fractional derivatives

The left and right variable fractional derivatives of order m− 1 < β(x, t) ≤ m of function

u(x, t) with respect to x in the domain [a, b] of Riemann-Liouville type are defined as

aD
β(x,t)
x =

1

Γ (m− β(x, t))

∂m

∂xm

∫ x

a
(x− η)m−1−β(x,t)u(η, t)dη,

xD
β(x,t)
b =

(−1)m

Γ (m− β(x, t))

∂m

∂xm

∫ b

x
(η − x)m−1−β(x,t)u(η, t)dη,
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From the definition of variable fractional order Riemann-Liouville derivative, it is easily

concluded that [212]

aD
β(x,t)
x (x− a)γ =

Γ (γ + 1)

Γ (γ + 1− β(x, t))
(x− a)γ−β(x,t), γ > −1,

xD
β(x,t)
b (x− b)γ =

(−1)γΓ (γ + 1)

Γ (γ + 1− β(x, t))
(b− x)γ−β(x,t), γ > −1.

(6.5)

The Fibonacci polynomial (1.15) can be rewritten around (x− a) with the help of Taylor

series expansion as

Fn(x) =
n∑

i=0

1

i!

{ n∑
j=i

(j+n)=odd

(n+j−1
2 )!

(n−j−1
2 )!(j − i)!

aj−i

}
(x− a)i. (6.6)

A square integrable function f(x) in [0,1] can be expressed in terms of Fibonacci polynomial

as the equation (5.4). In general the series can be approximated by finite sum of (n+1)-

terms of Fibonacci polynomial as given in equation (5.5).

6.3 Construction of finite difference scheme

In this section, some necessary theorems are provided to develop the numerical technique

that will convert the considered model (6.1) in the set of algebraic equations which can be

solved with the help of appropriate numerical technique.

Theorem 2.1. Suppose fn(x) is approximated in terms of Fibonacci polynomial. Then

for any integer l > 0 ,

dl

dxl
fn(x) =

n+1∑
k=l+1

ck

k∑
i=l

(i+k)=odd

(k+i−1
2 )!

(k−i−1
2 )!(i− l)!

xi−l. (6.7)

Proof. As the differential operator is linear, therefore

dl

dxl
fn(x) =

n+1∑
k=0

ck
dl

dxl
Fk(x). (6.8)
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Now from equation (1.18), we have

dl

dxl
Fk(x) =

k∑
i=0

(i+k)=odd

(k+i−1
2 )!

i!(k−i−1
2 )!

dlxi

dxl
,

=

k∑
i=0

(i+k)=odd

(k+i−1
2 )!

(k−i−1
2 )!(i− l)!

xi−l.

(6.9)

With the help of above equation (6.9), one can easily conclude that

dl

dxlFk(x) = 0, for k = 1, 2, 3, ..., l,

dl

dxlFk(x) =
∑k

i=0
(i+k)=odd

( k+i−1
2

)!

( k−i−1
2

)!(i−l)!
xi−l, for k ≥ l + 1.

(6.10)

Now using equation (6.10) in equation (6.8), we have

dl

dxl
fn(x) =

n+1∑
k=l+1

ck

k∑
i=l

(i+k)=odd

(k+i−1
2 )!

(k−i−1
2 )!(i− l)!

xi−l.

Theorem 2.2. Suppose fn(x) is approximated in terms of Fibonacci polynomial, then

Riemann-Liouville left and right derivatives of fn of order β(x, t) will be

aD
β(x,t)
x fn(x) =

n+1∑
k=m+1

ck

k∑
i=m

{ k∑
j=1

(j+k)=odd

(k+j−1
2 )!aj−i

(k−j−1
2 )!(j − i)!

}
(x− a)i−β(x,t)

Γ (i+ 1− β(x, t))
(6.11)

and

xD
β(x,t)
b fn(x) =

n+1∑
k=m+1

ck

k∑
i=m

{ k∑
j=1

(j+k)=odd

(k+j−1
2 )!aj−i

(k−j−1
2 )!(j − i)!

}
(−1)i(b− x)i−β(x,t)

Γ (i+ 1− β(x, t))
, (6.12)

where m− 1 < β(x, t) ≤ m.

Proof. On taking left R-L variable-order derivative of the function fn(x), we have

aD
β(x,t)
x fn(x) =

n+1∑
k=1

ckFk(x). (6.13)
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Now from equation (6.6) by using equation (6.5), we have

aD
β(x,t)
x Fk(x) =

k∑
i=0

1

i!

{ k∑
j=i

(j+k)=odd

(k+j−1
2 )!

(k−j−1
2 )!(j − i)!

aj−i

}
aD

β(x,t)
x (x− a)i

=

k∑
i=m

{ k∑
j=i

(j+k)=odd

(k+j−1
2 )!

(k−j−1
2 )!(j − i)!

aj−i

}
1

Γ (i+ 1− β(x, t))
(x− a)i−β(x,t).

(6.14)

From equation (6.14), one can easily say that

aD
β(x,t)
x Fk(x) = 0, for k = 0, 1, 2, ...,m.

aD
β(x,t)
x Fk(x) =

∑k
i=m

{ ∑k
j=i

(j+k)=odd

( k+j−1
2

)!

( k−j−1
2

)!(j−i)!
aj−i

}
1

Γ (i+1−β(x,t))(x− a)i−β(x,t),

for β(x, t) ≥ m+ 1.

(6.15)

Now using equation (6.15) in equation (6.13), we get the desired result as

aD
β(x,t)
x fn(x) =

n+1∑
k=m+1

ck

k∑
i=m

{ k∑
j=1

(j+k)=odd

(k+j−1
2 )!aj−i

(k−j−1
2 )!(j − i)!

}
(x− a)i−β(x,t)

Γ (i+ 1− β(x, t))
.

Similarly one can easily derive for right-hand derivative

xD
β(x,t)
b fn(x) =

n+1∑
k=m+1

ck

k∑
i=m

{ k∑
j=1

(j+k)=odd

(k+j−1
2 )!aj−i

(k−j−1
2 )!(j − i)!

}
(−1)i(b− x)i−β(x,t)

Γ (i+ 1− β(x, t))
.

Now approximating the numerical solution of considered model (6.1) with initial and

boundary conditions (6.2) in terms of the series Fibonacci polynomials in space and un-

known constants in time as

u(x, t) =
n+1∑
k=1

ck(t)Fk(x), (6.16)

where Fk(x) is k-th order Fibonacci polynomial and ck(t)’s are the unknowns which are

to be determined at time t. Now the proposed model (6.1) at the time level (m+1) using



Chapter 6. Finite difference
/
collocation method to solve multi term variable-order

fractional reaction-advection-diffusion equation in heterogeneous medium 95

the above approximation will be

n+1∑
k=1

Pα1,α2,...αp(
C
0 Dt)ck(t)Fk(x) = A

(
1

2
+
q

2

)
aD

β(x,t)
x

n+1∑
k=1

ck(t)Fk(x)

+A

(
1

2
− q

2

)
xD

β(x,t)
b

n+1∑
k=1

ck(t)Fk(x)

− v
∂

∂x

n+1∑
k=1

ck(t)Fk(x) + k
n+1∑
k=1

ck(t)Fk(x) + f(x, t).

(6.17)

The equation (6.17) with the aid of the equations (6.3) becomes

n+1∑
k=1

( p∑
i=1

di
C
0 D

αi(x,t)
t ck(t)

)
Fk(x) = A

(
1

2
+
q

2

)
aD

β(x,t)
x

n+1∑
k=1

ck(t)Fk(x)

+A

(
1

2
− q

2

)
xD

β(x,t)
b

n+1∑
k=1

ck(t)Fk(x)

− v
∂

∂x

n+1∑
k=1

ck(t)Fk(x) + k

n+1∑
k=1

ck(t)Fk(x) + f(x, t).

(6.18)

Now on dividing the time domain [0, T ] in M equal parts with equal interval of h = T/M

and tm = mh for 0 ≤ m ≤M , we obtain from equation (6.4) as

C
0 D

α(x,t)
t ck(t) =

1

Γ (1− α(x, t))

∫ t

0
(t− η)α(x,t)

dck(η)

dη
dη,

=
1

Γ (1− α(x, t))

∫ t

0

1

ηα(x,t)
dck(t− η)

dη
dη,

C
0 D

α(x,t)
t ck(tm+1) =

1

Γ (1− α(x, t))

m∑
j=0

∫ (j+1)h

jh

1

ηα(x,t)
dck(tm+1 − η)

dη
dη,

≈ 1

Γ (1− α(x, t))

m∑
j=0

ck(tm+1 − jh)− ck(t− (j + 1)h)

h

∫ (j+1)h

jh

1

ηα(x,t)
dη,

≈ h−α(x,t)

Γ (2− α(x, t))

m∑
j=0

{(j + 1)1−α(x,t) − j1−α(x,t)}(cm−j+1
k − cm−j

k ).

(6.19)
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Using Theorem 2.1 and Theorem 2.2 and the equation (6.19), the equation (6.18) at

time level (m+ 1) gives rise to

n+1∑
k=1

( p∑
i=1

di
h−αi(x,tm+1)

Γ (2− αi(x, tm+1))

m∑
j=0

{(j + 1)1−αi(x,tm+1) − j1−αi(x,tm+1)}(cm−j+1
k − cm−j

k )

)
Fk(x)

= A

(
1

2
+
q

2

) n+1∑
k=3

ck

k∑
i=2

{ k∑
j=1

(j+k)=odd

(k+j−1
2 )!aj−i

(k−j−1
2 )!(j − i)!

}
(x− a)i−β(x,tm+1)

Γ (i+ 1− β(x, tm+1))

+A

(
1

2
− q

2

) n+1∑
k=3

ck

k∑
i=2

{ k∑
j=1

(j+k)=odd

(k+j−1
2 )!aj−i

(k−j−1
2 )!(j − i)!

}
(−1)i(b− x)i−β(x,tm+1)

Γ (i+ 1− β(x, tm+1))

− v
n+1∑
k=2

cm+1
k

k∑
i=1

(i+k)=odd

(k+i−1
2 )!

(k−i−1
2 )!(i− 1)!

xi−1 + k
n+1∑
k=1

ck(t)Fk(x) + f(x, tm+1).

(6.20)

Equation (6.20) can be collocated at (n− 1) points xl as

n+1∑
k=1

( p∑
i=1

di
h−αi(xl,tm+1)

Γ (2− αi(xl, tm+1))

m∑
j=0

{(j + 1)1−αi(xl,tm+1) − j1−αi(xl,tm+1)}(cm−j+1
k − cm−j

k )

)
Fk(xl)

= A

(
1

2
+
q

2

) n+1∑
k=3

ck

k∑
i=2

{ k∑
j=1

(j+k)=odd

(k+j−1
2 )!aj−i

(k−j−1
2 )!(j − i)!

}
(xl − a)i−β(xl,tm+1)

Γ (i+ 1− β(xl, tm+1))

+A

(
1

2
− q

2

) n+1∑
k=3

ck

k∑
i=2

{ k∑
j=1

(j+k)=odd

(k+j−1
2 )!aj−i

(k−j−1
2 )!(j − i)!

}
(−1)i(b− xl)

i−β(xl,tm+1)

Γ (i+ 1− β(xl, tm+1))

− v

n+1∑
k=2

cm+1
k

k∑
i=1

(i+k)=odd

(k+i−1
2 )!

(k−i−1
2 )!(i− 1)!

xi−1
l + k

n+1∑
k=1

ck(t)Fk(xl) + f(xl, tm+1),

(6.21)

where the collocation points xl = l
n+1 , i = 1, 2, ..., n − 1. To obtain the unknown co-

efficients at initial state t = 0 we substitute the equation (6.16) in the initial condition

of equation (6.2). Moreover, to obtain two more equations we will use the boundary

conditions. Now from initial condition we have

n+1∑
k=1

c0kFk(xl) = ψ0(xl). (6.22)
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and from the boundary conditions we have

n+1∑
k=1

cm+1
k Fk(0) = ψ1(tm+1),

n+1∑
k=1

cm+1
k Fk(1) = ψ2(tm+1).

(6.23)

Here, equation (6.21) together with two equations of the boundary conditions (6.23) gener-

ate (n+1) system of ordinary differential equations which can be translated in to a system

of algebraic equations. This system of algebraic equations can be solved numerically using

any iteration method to gain the unknowns coefficients ci(i = 1, 2, ..., n+ 1) at each time

level. Hence, the desired approximated solution of the MTV-FRADE in heterogeneous

medium can be obtained.

6.4 Error Analysis

In this section, the proposed method has been applied on certain special cases of considered

model (6.1) having exact solutions and compared the numerical results with the existing

methods. Moreover, the order of convergence and CPU time to calculate the solution have

been calculated with the help of with the help of Mathematica software.

Maximum Absolute Error at time t is defined by En(t) = Max
0≤x≤1

|U(x, t)− un(x, t)|,
(6.24)

and order of convergence =
log(

En1 (t)

En2 (t)
)

log(n2
n1
)
. (6.25)

where U(x, t) is exact solution and un(x, t) is numerical solution of the problem with n as

degree of approximation.

Example 1. Consider the following variable-order fractional diffusion equation which

can be obtained by choosing appropriate values of di, αi(x, t), D, q, v and k as

d0
C
0 D

α
t (u(x, t)) + d1

C
0 D

α1
t (u(x, t)) + d2

C
0 D

α2
t (u(x, t)) =

1

2
0D

β(x,t)
x (u(x, t)) +

1

2
xD

β(x,t)
1 (u(x, t))

− ∂u(x, t)

∂x
+ f(x, t),

(6.26)
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with initial and boundary conditions

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, 0 ≤ t ≤ T,

u(1, t) = 0, 0 ≤ t ≤ T,

(6.27)

where 0 < α1 < α2 < α = 1, 1 < β(x, t) ≤ 2,. Taking β(x, t) = 1.5 + 0.4sin(0.5πx) and

f(x, t) = f1(x, t) + f2(x, t) + f3(x, t) + f4(x, t), where

f1(x, t) = 2x2(1− x)2
{
d0t+

d1t
2−α1

Γ (3− α1)
+

d1t
2−α2

Γ (3− α2)

}
,

f2(x, t) = 2t2x(1− x)(1− 2x),

f3(x, t) = − t2x2−β(x,t)

Γ (5− β(x, t))

{
12x2 − 6(4− β(x, t))x+ (3− β(x, t))(4− β(x, t))

}
,

f4(x, t) = − t
2(1− x)2−β(x,t)

Γ (5− β(x, t))

{
12(1− x)2 − 6(4− β(x, t))(1− x) + (3− β(x, t))(4− β(x, t))

}
.

The exact solution of the problem given as u(x, t) = t2x2(1− x)2 [242].

Table 6.1: Comparison of maximum absolute error of previous method with our pro-
posed

method when α1 = 0.15, α2 = 0.95, d0 = d1 = d3 = 1 at T = 1.5.

M Maximum error Maximum error Convergence rate CPU

with our method with [242] time(Sec)

100 1.5635e-4 2.3260e-3 - 2.984

200 7.6960e-5 1.1817e-3 1.02 7.391

400 3.7904e-5 5.9541e-4 1.02 23.03

800 1.8678e-5 2.9940e-4 1.02 77.61

Table 6.2: Comparison of maximum absolute error of previous method with our pro-
posed

method when α1 = 0.2, α2 = 0.8, d0 = 0, d1 = d3 = 1 at T = 1.5.

M Maximum error Maximum error Convergence rate CPU

with our method with [242] time(Sec)

100 2.9581e-5 1.0975e-3 - 2.953

200 1.2798e-5 4.8724e-4 1.02 7.422

400 5.5471e-6 2.1448e-4 1.02 23.06

800 2.4073e-6 9.3598e-4 1.02 78.68
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Table 6.3: Comparison of maximum absolute error of previous method with our pro-
posed

method when α1 = 0.2, α2 = 0.5, d0 = d1 = d3 = 1 at T = 1.5.

M Maximum error Maximum error Convergence rate CPU

with our method with [242] time(Sec)

100 9.0585e-5 1.3992e-2 - 2.938

200 4.4488e-5 7.2402e-3 1.02 7.407

400 2.1962e-5 3.6576e-3 1.01 23.07

800 1.0882e-5 1.8352e-4 1.01 79.79

Tables 6.1, 6.2 and 6.3 are formed on solving the considered example with the proposed

method for different particular cases for n = 5 degrees of approximation to validate the

accuracy, efficiency and effectiveness of the proposed method. It is clear from these tables

that the proposed method is much more accurate and takes less time to compute the

solution even for less degree of approximation.

6.5 Numerical results and discussions

After validation of the accuracy and effectiveness of the proposed method, an endeavour

has been made to solve the special form of the considered mathematical model (6.1) by

using the proposed method. In this section, the effects on solute concentration due to the

variations of different parameters have been discussed for a particular case of the model

(6.1).

∂u(x, t)

∂t
+ d1 0D

0.2t
t u(x, t)+d2 0D

0.8t
t u(x, t) = d

(
1

2
+
q

2

)
c
0D

β(x,t)
x u(x, t)

+ d

(
1

2
− q

2

)
c
xD

β(x,t)
1 u(x, t)− v

∂u(x, t)

∂x
+ ku(x, t) + f(x, t),

(6.28)

under the prescribed initial and boundary conditions as

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, 0 ≤ t ≤ 1,

u(t, t) = 0, 0 ≤ t ≤ 1,

(6.29)
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where v is average velocity of the plume, d is fractional dispersion coefficient, q is skewness

parameter, k is source term and f(x, t) = 5x2(1− x)2 is forced term.
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Figure 6.1: Plots of solute profile for q = 0, d = v = k = 1
and β(x, t) = 2 at t = 0.5.
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Figure 6.2: Plots of solute profile for d1 = d2 = v = k = 1, q = 0
and β(x, t) = 1.5 + 0.5sin(0.5πx) at t = 0.5.
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Figure 6.3: Plots of solute profile for d1 = d2 = d = v = k = 1, q = 0 at t = 0.5.
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Figure 6.4: Plots of solute profile for d1 = d2 = d = v = k = 1,
and β(x, t) = 1.5 + 0.5 sin(0.5πx) at t = 0.5.
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Figure 6.5: Plots of solute profile for d1 = d2 = d = k = 1, q = 0
and β(x, t) = 1.5 + 0.5 sin(0.5πx) at t = 0.5.
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Figure 6.6: Plots of solute profile for d1 = d2 = d = v = 1, q = 0
and β(x, t) = 1.5 + 0.5 sin(0.5πx) at t = 0.5.

Figures 6.1-6.6 are drawn after solving the model (6.28) with the initial and boundary

conditions given in equation (6.29) by using the proposed numerical method. Fig. 6.1 is

drawn to show the effect of increasing the multi terms on solute concentration. From the

figure one can easily observe that on increasing the number of multi-terms, it decelerates
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the diffusion in a heterogeneous medium. Fig. 6.2 is drawn to observe the effect on

diffusion in heterogeneous medium on increasing the value of dispersion coefficient, as one

can easily observe that on increasing in the value of dispersion coefficient, it decelerates the

diffusion. Fig. 6.3 is drawn to observe the effect on diffusion due to variable-order spatial

derivative. It is observed that spatial order β(x, t) = 1.5 and β(x, t) = 1.5+0.5 sin(0.5Πx)

have the similar shape and β(x, t) = 1.5 + 0.5 sin(0.5Πx) decelerates the diffusion. It is

also observed that for β(x, t) = 2.0 and β(x, t) = 2 − 0.5 sin(0.5πx) have the similar

shape though for β(x, t) = 2 − 0.5 sin(0.5πx) the diffusion is accelerated. It is clearly

seen from Fig. 6.4 that the nature of the solute profile for some fixed parameters are

positively skewed for q = 1, symmetric for q = 0 and negatively skewed for q = −1. Fig.

6.5 is drawn to observe the effect on solute concentration due to change in average plume

velocity and it is very much clear that on increase in the average plume velocity decelerates

the diffusion. Fig. 6.6 is drawn to observe the effect on diffusion due to reaction term,

i.e., for non-conservative (k ̸= 0) and conservative (k = 0) systems. It is seen that sink

and source terms respectively decelerate and accelerate the diffusion process as compared

to conservative system (k = 0).

6.6 Conclusion

In this chapter, a numerical method has been developed to solve the variable-order frac-

tional reaction-advection-diffusion equation in heterogeneous medium and also to show

that the developed method is much more efficient than the previously existing methods.

The salient feature of this scientific contribution is the discussion of the effect on diffu-

sion in the heterogeneous medium due to the presence of various parameters present in

the considered model. The beauty of the contribution is the graphical presentations of

deceleration and acceleration of the diffusion process due to the advection and reaction

terms.


