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5.1 Introduction

Nowadays fractional calculus is getting attention due to its fascinating applications in

modeling of a variety of scientific and engineering fields, such as plasma turbulence model

[171], heat conduction [38], optimal control [172], porous media [173] etc. Due to its great

applications in various fields it attracts the attention of many researchers while solving

the various fractional order differential models. Ali Akgül and Mahmut Modanli [174]

have used Crank-Nicholson difference method to solve third order fractional differential

equation. Ali Akgül and Esra Karatas [175] developed a method to solve generalized

fractional derivative differential equations. There are several articles found during liter-

ature survey on fractional differentiation [176, 177, 178, 179, 180]. The fractional type

diffusion in a specific type of the field named as porous media has a lot of applications

[181, 182]. Transport of solute through porous medium is of greater interest to the sci-

entists including them who know the importance of ground water flow and variety of
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tertiary oil recovery process. Generally the Fickian diffusive process [110] is considered

as the transport of solute through porous medium. But in the recent years many mod-

els have been developed by researches to describe the transport of solute through porous

medium. Alamri et al. [183] have given a model to describe Poiseuille flow of nanofluid

through porous medium with slip. Rusinque and Brenner [184] have given model to de-

scribe the mass transport in porous media at the micro-and nanoscale. All these transports

of solute through porous medium cause the diffusion in flow medium. Many researchers

have solved various types of diffusion equations with different methods, e.g., Cartalade et

al.[185] developed multiple-Relaxation-Time Lattice Boltzmann scheme to solve reaction-

diffusion equations. Xiao et al.[186] solved the reaction-diffusion equations on implicit

surfaces with lifted local Galerkin method. Yuste et al. [187] used the finite difference

method with non-uniform time steps to solve the diffusion equation, Atangana [188, 189]

gave the analytical solution of the groundwater flow equation and gave the stability and

convergence of time-fractional variable order telegraph equation. Pandey et al.[190] have

given the approximate solution of the coupled Burger fractional diffusion equation. Dur-

ing modeling of any physical phenomenon, non-linearity of the system plays an important

role, e.g., Fitzhugh-Nagumo(F-N) equation, Burger equation, Fisher equation, etc. In

this chapter, the following fractional-order extended Burger-Fisher- Fitzhugh-Nagumo has

been considered.

∂u(x, t)

∂t
= r(x)

(
C
0 D

β
xu(x, t)

)
− λuq

∂u(x, t)

∂x
+ ku(x, t){1− uq(x, t)}{au(x, t)− ρ}+ f(x, t),

(5.1)

subject to the initial condition

u(x, 0) = u0(x), 0 < x < L, (5.2)

and the boundary conditions

u(0, t) = g1(t), u(L, t) = g2(t), 0 < t ≤ T, (5.3)

where r(x) is the diffusion coefficient, λuq is advection coefficient representing the veloc-

ity of the flow medium, k is reaction term and f(x, t) represents the forced term which

accelerates
/
decelerates the diffusion process. If k = 0, the system is called conservative

system and if k ̸= 0, the system is called non-conservative. If k < 0 is called the sink term

while k > 0 is source term.

Taking a = 0 and ρ = −1, the equation (5.1) becomes the Burger-Fisher equation, which

has been solved by many researchers for the case of integer order system. Javidi et al.
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[191] have solved the Burger-Fisher equation with spectral collocation method. Zhu et

el.[192] have solved the equation with the help of cubic B-spline. Rashidi et al. [193] have

solved with homotopy perturbation. Burger-Fisher equation arises in field of financial

mathematics, gas dynamics and traffic flow. This equation shows the interaction between

reaction mechanics, convection effect and diffusion transport. Taking a = 1, λ, k = 1 and

q = 1, the resultant equation is reduced to the Fitzhugh-Nagumo(F-N) equation. This

equation has its physical importance like, it is employed to describe the transmission of

nerve impulses [194, 195]. Many researches have solved the F-N equation and showed its

applications in various fields. For example, Li et al. [196] gave the exact solution of the

F-N equation. Shih et al. [197] investigated and showed its application in population

and circuit theory, Abbasbandy et al. [198] have solved the F-N equation with homotopy

method.

In this chapter, the non-standard finite difference(NSFD) and collocation method are used

to solve the mathematical model (5.1). Mickens [199] has shown that any ordinary differ-

ential equation with its exact solution can be matched exactly by difference equation with

sampled solution. He usually modifies the denominators according to the expected form of

solution. NSFD improves the standard finite difference scheme with higher accuracy and

efficiency. Many models have been solved with NSFD scheme viz., Mickens and Ronald

[200] have developed NSFD scheme for Lotka-Volterra system. Buckmire and Ron [201]

have used Mickens’s finite difference scheme to find the numerical solution of the cylindri-

cal Bratu-Gelfand problem. Pandey [202] has used NSFD scheme to solve linear Fredholm

integro-differential equations of second order.

The organization of the chapter is given as follows. Section 5.2 consists of a brief in-

troduction about no-standard finite difference method. In section 5.3, the formula has

been derived to obtain the fractional-order derivative of any function in terms of the Fi-

bonacci polynomial. To check the accuracy of the formula, it has been applied to obtain

a fractional-order derivative of x2 and compared with the existing results. Furthermore,

the non-standard finite difference scheme has been developed and discussed the method to

solve one-dimensional fraction order advection reaction-advection-diffusion equation. In

section 5.4, the stability of the method is shown by applying it on the linear and integer

order of the considered model. In section 5.5, the proposed method is applied to three

existing examples having exact solutions to obtain the accuracy of the method. The sec-

tion also contains the endeavor of showing the higher accuracy of the proposed method

compared to other existing methods through maximum error analysis. Solutions of the
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considered model under prescribed initial and boundary conditions and its discussions are

presented in section 5.6. The overall conclusion of the work is given in section 5.7.

5.2 Preliminaries

5.2.1 NSFD method

A NSFD scheme is used through discretization of the discrete model of differential equation

which can be constructed by many rules [203, 199, 204].

In general NSFD scheme of first-order derivative takes the form

du

dt
=
uk+1 − ψ(h)uk

ϕ(h)
,

where ψ(h) and ϕ(h) depend on h = δt with

ψ(h) = 1 + o(h) & ϕ(h) = h+ o(h2).

The functions ψ(h) and ϕ(h) may depend on various parameters appeared in differential

equations. Moreover ϕ(h) is a continuous function satisfying 0 < ϕ(h) < 1, h→ 0. There

are certain examples of the ϕ(h) satisfying these conditions which are given as [205]

ϕ(h) = h, ϕ(h) = sinh(h), ϕ(h) = exp(h)− 1, etc.

For the best choices of ϕ(h) and ψ(h) and to know more about nonstandard finite difference

method see [203, 199, 204].

A square integrable function f(x) in [0,1] can be expressed in terms of Fibonacci polyno-

mial as [45]

f(x) =
∑∞

k=1 ckFk ,

where

ck =

∞∑
j=0

k(−1)jf (2j+k−1)(0)

j!(j + k)!
. (5.4)
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In general above series can be approximated by finite sum of (n+1)-terms of Fibonacci

Polynomial as

fn(x) =
n+1∑
k=1

ckFk, (5.5)

where ck’s are the set of unknowns which are to be determined.

5.3 NSFD Scheme Construction

Theorem 1. Suppose fn(x) is approximated in terms of Fibonacci polynomial as in equa-

tion (5.5). Assume β > 0, then the fractional order derivative of the function fn(x) is

defined as

C
0 D

β
x [fn(x)] =

n+1∑
k=⌈β⌉+1

k∑
i=⌈β⌉

(i+k)=odd

ck
(k+i−1

2 )!

(k−i−1
2 )!Γ (i+ 1− β)

xi−β. (5.6)

Proof. As the Caputo fractional operator is linear given in 9th property of subsection

1.3.4, therefore

C
0 D

β
x [fn(x)] =

n+1∑
k=1

ck
(
C
0 D

β
x [Fk(x)]

)
. (5.7)

Now from equation (1.15), we have

C
0 D

β
xFk(x) =

k∑
i=1

(i+k)=odd

(k+i−1
2 )!

i!(k−i−1
2 )!

(
C
0 D

β
xx

i
)
.

using sixth property of sub-section 1.3.4 of Caputo fractional operator, we get

C
0 D

β
x [Fk(x)] = 0, i = 1, 2, 3..., ⌈β⌉, ⌈β⌉ > 0, (5.8)

C
0 D

β
x [Fk(x)] =

k∑
i=⌈β⌉

(i+k)=odd

(k+i−1
2 )!

(k−i−1
2 )!Γ (i+ 1− β)

xi−β. (5.9)

Now using equations (5.8) and (5.9) in equation (5.7), we get

C
0 D

β
x [fn(x)] =

n+1∑
k=⌈β⌉+1

k∑
i=⌈β⌉

(i+k)=odd

ck
(k+i−1

2 )!

(k−i−1
2 )!Γ (i+ 1− β)

xi−β.
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Let the field variable of the considered nonlinear fractional order reaction diffusion equation

(5.1) with the prescribed initial and boundary conditions (5.2) and (5.3) are approximated

as

un(x, t) =
n+1∑
k=1

ck(t)Fk(x).

On discretizing above equation at time level m, we have

un(x, tm) =
n+1∑
k=1

cmk Fk(x). (5.10)

Now the equation (5.1) with the initial and boundary conditions (5.2) and (5.3) at the

time level m are expressed as

∂u(x, tm)

∂t
= r(x)

(
C
0 D

β
xu(x, tm)

)
− λuq(x, tm)

∂u(x, tm)

∂x

+ ku(x, tm){1− uq(x, tm)}{au(x, tm)− ρ}+ f(x, t).

(5.11)

Since it is quite difficult to solve a system of nonlinear equations, the nonlinear terms of

the equation (5.11) are linearised in the following forms

uq(x, tm)ux(x, tm) = quq−1(x, tm−1)ux(x, tm−1)u(x, tm) + uq(x, tm−1)ux(x, tm)

− qux(x, tm−1)u
q(x, tm−1),

(5.12)

u(x, tm)[1− uq(x, tm)][au(x, tm)− ρ] = u(x, tm)[1− uq(x, tm−1)][au(x, tm−1)− ρ]

− qu(x, tm−1)u
q−1(x, tm−1)[au(x, tm−1)− ρ]u(x, tm)

+ au(x, tm−1)[1− uq(x, tm−1)]u(x, tm) + quq+1(x, tm−1)[au(x, tm−1)− ρ]

− au2(x, tn−1)[1− uq(x, tm−1)].

(5.13)

Now using equations (5.12) and (5.13) in equation (5.11), we get

∂u(x, tm)

∂t
= r(x)

(
C
0 D

β
xu(x, tm)

)
−Rm(x), (5.14)
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where

Rm(x) = λ{quq−1(x, tm−1)ux(x, tm−1)u(x, tm)

+ uq(x, tm−1)ux(x, tm)− qux(x, tm−1)u
q(x, tm−1)}

+ k{u(x, tm)[1− uq(x, tm−1)][au(x, tm−1)

− ρ]− qu(x, tm−1)u
q−1(x, tm−1)[au(x, tm−1)− ρ]u(x, tm)

+ au(x, tm−1)[1− uq(x, tm−1)]u(x, tm) + quq+1(x, tm−1)[au(x, tm−1)− ρ]

− au2(x, tn−1)[1− uq(x, tm−1)]}+ f(x, tn).

Again using equations (5.6) and (5.10) in equation (5.14), we obtain

n+1∑
k=1

dcmk
dt

Fk(x) = r(x)

n+1∑
k=⌈β⌉

k∑
i=⌈β⌉

(i+k)=odd

cmk
(k+i−1

2 )!

(k−i−1
2 )!Γ (i+ 1− α)

xi−β −Rm(x),

n=1∑
k=1

cmk − cm−1
k

ϕ(h)
Fk(x) = r(x)

n+1∑
k=⌈β⌉

k∑
i=⌈β⌉

(i+k)=odd

cmk
(k+i−1

2 )!

(k−i−1
2 )!Γ (i+ 1− β)

xi−β −Rm(x). (5.15)

It is necessary to calculate the values c′ks at the initial time level to obtain the values of

c′ks at further time levels. To calculate these values we will use the initial and boundary

conditions as
n+1∑
k=1

c0kFk(x) = u0(x), (5.16)

n+1∑
k=1

cmk Fk(0) = g1(tm),
n+1∑
k=1

cmk Fk(1) = g2(tm). (5.17)

From equation (5.15), it is found that at each time level, (n + 1) unknowns have to be

obtained. In order to achieve the unknowns we need (n + 1) equations. So the equation

(5.15) will be collocated at (n−1) collocation points i
n+1 , i = 1, 2, 3, .., n−1, together with

boundary conditions (5.17). These linear equations can be solved easily and the desired

approximate solution of fractional order nonlinear diffusion equation can be computed.

Simple test: Now to test the derivative obtained by Theorem 1, consider f(x) = x2

for n = 3 and β = 1.4. Using 6th property of subsection 1.3.4 of Caputo fractional

operator, we obtain

D1.4x2 = 2.23835x0.6.
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Now derivative obtained by Theorem 1 is

D1.4[x2] =
4∑

k=3

k∑
i=2

(i+k)=odd

ck
(k+i−1

2 )!

(k−i−1
2 )!Γ (i− 0.4)

xi−1.4.

On putting the values of c3 and c4 from equation (5.4), we get D1.4x2 = 2.23835x0.6.

5.4 Stability Analysis

For simplicity, it will be shown that the developed scheme (5.14) is unconditionally stable

for homogeneous Dirichlet boundary conditions for integer order spatial derivative. Con-

sider the nonlinear terms present in considered model (5.1) are locally constants and as

the considered domain of the model is finite so taking maximum value of r(x), we get

∂u

∂t
= k1

∂2u

∂x2
− k2

∂u

∂x
+ k3u(x, t) + f(x, t),

which can be written in the discretized form for m as

um+1
n − umn

h
= k1(uxx)

m+1
n − k2(ux)

m+1
n + k3u

m+1
n + fm+1. (5.18)

Now multiplying the above equation by u(xj)
m+1
n and taking summation over each node

of xj , we get

j=N∑
j=0

{u(xj)m+1
n − u(xj)

m
n }u(xj)m+1

n =

j=N∑
j=0

{hk1(uxx(xj))m+1
n − hk2(ux(xj))

m+1
n

+ hk3u(xj)
m+1
n + hfm+1(xj)}u(xj)m+1

n∫ 1

0
{u(xj)m+1

n − u(xj)
m
n }u(xj)m+1

n dx = hk1

∫ 1

0
(uxx(x))

m+1
n u(x)m+1

n dx

− hk2

∫ 1

0
(ux(x))

m+1
n u(x)m+1

n dx+ hk3

∫ 1

0
u(x)m+1

n u(x)m+1
n dx

+ h

∫ 1

0
fm+1(x)u(x)m+1

n dx.

(5.19)
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Now∫ 1

0
(uxx(x))

m+1
n u(x)m+1

n dx = (ux(x))
m+1
n u(x)m+1

n

∣∣∣∣x=1

x=0

−
∫ 1

0
{(ux(x)m+1

n )}2dx

= −
∫ 1

0
{(ux(x)m+1

n )}2dx ≤ 0.

(5.20)

and ∫ 1

0
(ux(x))

m+1
n u(x)m+1

n =
1

2
{u(x)m+1

n }2
∣∣∣∣x=1

x=0

= 0. (5.21)

Now using equations (5.20) and (5.21) in equation (5.19), we get∣∣∣∣⟨um+1
n , um+1

n ⟩
∣∣∣∣ = ∣∣∣∣⟨um+1

n , umn ⟩ − h

∫ 1

0
{(ux)m+1

n }2dx+ hk3⟨um+1
n , um+1

n ⟩+ h⟨fm+1, um+1
n ⟩

∣∣∣∣,
≤

∣∣∣∣⟨um+1
n , umn ⟩

∣∣∣∣+ hk3

∣∣∣∣⟨um+1
n , um+1

n ⟩
∣∣∣∣+ h

∣∣∣∣⟨fm+1, um+1
n ⟩

∣∣∣∣,
||um+1

n || ≤ 1

1− hk3

{
||umn ||+ h||fm+1||

}
. (5.22)

Now by simple iteration on equation (5.22), one can easily get

||ukn|| ≤
1

(1− hk3)k
||u0n||+

j=k∑
j=1

h

(1− hk3)k+1−j
||fk||. (5.23)

Above equation (5.23) clearly shows that the proposed scheme is unconditionally stable.

5.5 Illustrative Examples

In this section, particular cases of the considered mathematical model has been solved by

using the proposed nonstandard finite difference Fibonacci collocation method. Next the

obtained numerical results have been compared with the exact analytical solutions. The

maximum error is defined by

L∞ = |U(x, tm)− un(x, tm)|∞ = Max
0≤x≤1

|U(x, tm)− un(x, tm)|,

where the U(x, t) is the exact solution and un(x, t) is the approximate solution.

Example 1. Consider the space time fractional order diffusion problem

∂u(x, t)

∂t
= r(x)

(
C
0 D

1.8
x u(x, t)

)
+ q(x, t), 0 ≤ x ≤ 1, t ≥ 0, (5.24)
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which can be obtained from the considered model (5.1) by taking λ = 0 and k = 0. For

r(x) = Γ(1.2)x1.8 and q(x, t) = 3x2(2x − 1)e−t, the equation (5.24) with initial condition

u(x, 0) = x2(1−x) and zero Drichlet boundary conditions has the exact solution u(x, t) =

x2(1−x)e−t. Now the problem is solved by using the proposed numerical method, discussed

in section 3 for n = 3 and ϕ(h) = exp(h) − 1. Comparison of the errors obtained by

discussed method and the existing results obtained in [206, 207] are displayed in Tables

5.1-5.3 for different values of t. Using equation (5.10) in equation (5.24), we have

4∑
k=1

dcmk
dt

Fk(x) = r(x){2.17825x0.2cm3 + 5.44562x1.2cm4 }+ q(x, t). (5.25)

with the initial condition
4∑

k=1

c0kFk(x) = x2(1− x) (5.26)

and the boundary conditions

cm1 + cm3 = 0,

cm1 + cm2 + cm3 + 3cm4 = 0.
(5.27)

Equation (5.25) has four unknowns at each time levels, which is to be determined. Now on

collocating equations (5.25) and (5.26) at points x = 1/4, 1/2 we will have two equations

at zero and any time level m. Hence diffusion equation (5.24) will be reduced in to set

of differential equations. Now using nonstandard finite difference method and with the

help of boundary conditions (5.27), we have the required values of ck’s at each time level.

Hence from equation (5.25), we obtain

4∑
k=1

cmk − cm−1
k

exp(h)− 1
Fk(1/4) = r(1/4){1.6508cm3 + 1.03175cm4 }+ q(1/4,mh),

4∑
k=1

cmk − cm−1
k

exp(h)− 1
Fk(1/2) = r(1/2){1.89628cm3 + 2.37034cm4 }+ q(1/2,mh),

(5.28)

and from initial condition, we get

c01 + 0.25c02 + 1.0625c03 + 0.5156c04 = 0.0468,

c01 + 0.5c02 + 1.125c04 = 0.125.
(5.29)

It is clear from above equations (5.28) and (5.29) that two equations are there at zero time

level and at time level m. On solving equations for ck’s at desired time level and putting

it in to the equation (5.10), we get the required solution.
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Table 5.1: Comparison of absolute errors among our method and the methods given in
[206, 207] at t = 1 for Example 1.

x [206] with n = 3 [207] with n=3 Our method with n = 3

0 0 4.16e-17 0.

0.1 5.46e-6 1.94e-8 1.72085e-15

0.2 8.51e-6 2.69e-8 5.10703e-15

0.3 9.60e-6 2.53e-8 9.35363e-15

0.4 9.18e-6 1.74e-8 1.38223e-14

0.5 7.69e–6 6.18e-9 1.7597e-14

0.6 5.60e-6 6.56e-9 1.99216e-14

0.7 3.33e-6 1.49e-9 2.01783e-14

0.8 1.34e-6 1.90e-8 1.7597e-14

0.9 8.39e-6 1.50e-8 1.11022e-14

1.0 0 0 2.22045e-16

Table 5.2: Comparison of absolute errors among our method and the methods given in
[206, 207] at t = 2 for Example 1.

x [206] with n = 3 [207] with n = 3 Our method with n = 3

0 0 8.70e-19 0.

0.1 3.336e-6 7.92e-8 2.65066e-15

0.2 5.65e-6 1.23e-8 5.50948e-15

0.3 7.05e-6 1.39e-6 8.27116e-15

0.4 7.64e-6 1.32e-6 1.06581e-14

0.5 7.52e–6 1.11e-6 1.23096e-14

0.6 6.80e-6 8.07e-7 1.29896e-14

0.7 5.59e-6 4.78e-7 1.24206e-14

0.8 3.98e-6 1.90e-7 1.02696e-14

0.9 2.08e-6 9.32e-9 6.27276e-15

1.0 0 8.70e-19 2.77556e-17
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Table 5.3: Comparison of absolute errors among our method and the methods given in
[206, 207] at t = 10 for Example 1.

x [206] for n = 7 [207] for n = 3 Our method for n = 3

0 0 1.05e-21 0.

0.2 2.34e-8 2.64e-10 6.84403e-19

0.4 4.78e-9 2.85e-10 1.83806e-18

0.6 7.30e-9 1.73e-10 2.63935e-18

0.8 2.84e-8 4.08e-11 2.31748e-18

1.0 0 1.05e-21 1.35525e-20

Figure 5.1: The behavior of exact solution and approximate solution at n = 3 for
Example 1.

From Tables 5.1-5.3, it is clear that our proposed method is more accurate and efficient as

compared to the existing methods. Fig 5.1 depicts the exactness of the numerical solution

of the considered example obtained by using our proposed method.

Example 2. Consider the following fractional diffusion equation as

∂u(x, t)

∂t
= r(x)

(
C
0 D

1.8
x u(x, t)

)
+ q(x, t) 0 ≤ x ≤ 1, (5.30)

which can be obtained from considered model (5.1) by taking λ = 0 and k = 0. For r(x) =
Γ(2.2)

6 x2.8 and q(x, t) = −(1 + x)x3e−t with initial condition u(x, 0) = x3 and Drichlet

boundary conditions u(0, t) = 0, u(1, t) = e−t, the equation (5.30) has the exact solution

u(x, t) = x3e−t. This problem has been solved for n = 3 and ϕ(h) = exp(h) − 1 with

the proposed numerical scheme and compare the numerical results obtained by previous
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methods [208, 207, 206] through finding maximum absolute error which are given in Table

5.4.

Table 5.4: Comparison of maximum errors among different methods and our proposed
method for Example 2.

Max error [208] Max error [208] Max error [206] Max error [207] Max error our method

6.84895e-4 2.82750e-5 8.3830e-10 1.3772e-9 4.37428e-14

Figure 5.2: The behavior of exact solution and approximate solution at n = 3 for
Example 2.

Table 5.4 shows that the maximum absolute errors obtained between the exact results and

approximate result obtained by proposed numerical method is more accurate compared

to errors obtained by using the other existing numerical methods [206, 207, 208]. The

exactness of the given example for proposed method is displayed through Fig. 5.2.

Example 3. Taking a = 0, ρ = −1, the diffusion coefficient r(x) = 1 and the forced

function f(x, t) = 0, the considered model (5.1) is reduced to

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
− αuq(x, t)

∂u(x, t)

∂x
+ ku(x, t){1− uq(x, t)}. (5.31)

The initial condition and drichlet boundary conditions can be obtained through the exact

solution of the problem (5.31), which is given bellow [192, 209]

u(x, t) =

(
1

2
+

1

2
tanh

[ −αq
2(q + 1)

[
x−

( α

q + 1
+
k(q + 1)

α

)
t
]]) 1

q

.
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The L∞ norm error for the considered problem (5.31) for λ = 0.1 and k = −0.0025

and comparison of the numerical results obtained by proposed method with the results

obtained by the other existing numerical methods [209, 192], are given in Table 5.5.

Table 5.5: Maximum absolute error for n = 5, ϕ = h and δ t = 0.0001.

Time(t) Proposed method [209] [192]

q=1 0.1 1.33227e-15 1.08646e-12 1.32396e-11

0.2 1.33227e-15 1.24456e-13 1.78026e-11

0.3 1.33227e-15 1:24456e-13 1.94258e-11

0.4 1.33227e-15 1:24456e-13 2.00083e-11

0.5 1.33227e-15 1:24456e-13 2.02158e-11

q=2 0.1 1.35758e-12 2.17542e-11 2.84700e-10

0.2 1.91058e-12 3.02457e-11 3.87950e-10

0.3 2.11819e-12 3.33861e-11 4.24646e-10

0.4 2.18958e-12 3.45414e-11 4.37589e-10

0.5 2.21734e-12 3.49593e-11 4.02050e-10

q=4 0.1 1.06114e-11 3.12324 e-11 3.99168 e-10

0.2 1.48941e-11 4.34227 e-11 5.43802 e-10

0.3 1.64713e-11 4.79300 e-11 5.95169 e-10

0.4 1.70429e-11 4.95853 e-11 6.13233 e-10

0.5 1.72410e-11 5.01746 e-11 6.19407 e-10

It is seen from the Table 5.5 that the results obtained by proposed method are much

superior than the existing methods [209, 192] even for less number of spatial and temporal

partitions.

5.6 Numerical Solution of Proposed ARDE and discussion

After validating the efficiency and accuracy of the proposed numerical method, an en-

daviour has been made to find the solution of considered problem (5.1) for different values

of parameters as q, ρ = 1, a = 1, r(x) = 1, λ = 1, k = 1, f(x, t) = 0 under the prescribed
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initial and boundary conditions as

u(x, 0) =
1

2
− 1

2
tanh

[
1

4

(
x

)]
,

u(0, t) =
1

2
+

1

2
tanh

[
1

4

(
t

2

)]
,

u(1, t) =
1

2
− 1

2
tanh

[
1

4

(
1− t

2

)]
.

Figs. 5.3-5.6 represent the solute concentration profile of the considered model after solving

it using our proposed method. Figs 5.3-5.5 are drawn for solute profile versus x at t = 0.5

for various spatial order derivatives at q = 1, 2 and 3. The figures show the effects on

solute profiles due to increase in order of spatial derivative, i.e., from fractional order to

integer order. From these three figures it is found that the behavior of solute profile is

same in every case, which justify the correctness of the solution of the model obtained by

the proposed method. Fig 5.6 is drawn for different values of q for β = 2 at time t = 0.5.

From Fig 5.6, one can easily observe that with the increase in the non-linearity in the

model, the curvature of the solute profile decreases.

Figure 5.3: Plots of solute profile vs. x for various values of β at q = 1 at t = 0.5.
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Figure 5.4: Plots of solute profile vs. x for various values of β at q = 2 at t = 0.5.

Figure 5.5: Plots of solute profile vs. x for various values of β at q = 4 at t = 0.5.

Figure 5.6: Variations of solute concentration for different values of q at β = 2, t = 0.5.
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5.7 Conclusion

In the present chapter, an effective method has been developed to obtain the approximate

solution of fractional order nonlinear reaction-advection-diffusion equation. While devel-

oping the method, the model is approximated firstly with Fibonacci polynomial to reduce

the considered diffusion equation to the set of ordinary differential equations, which have

been solved by using the finite difference scheme. To validate the higher efficiency and

accuracy of the proposed algorithm a comparative study through error analysis between

the numerical results and analytical results with other existing methods have been done

for two linear and one nonlinear cases of the considered model. The most important part

of the study is the graphical exhibition of the effect of the solute profile due to increase in

the order of the non-linearity in both advection and reaction terms.


