
Chapter 4

Numerical solution of highly

non-linear fractional order reaction

advection diffusion equation using

cubic B-spline collocation method

4.1 Introduction

In recent years during the literature survey, the intensive study on fractional differential

equations are found due to its major applications in physical, biological, geological, and

financial systems. For example, a random walk model is successfully modeled by Gorenflo

and Mainardi [134], Del-Castillo-Negrete et al. [135] have modeled fractional diffusion

equation to describe non-diffusive transport in plasma turbulence and Gerolymatou and

[136] have developed a non-linear fractional diffusion model for capillary flow through

porous media. The mathematical descriptions of the diffusion equation have a long history.

The fractional-order diffusion model of a particular phenomenon depends on various terms,

viz., a phenomenological model is based on conservation of mass and constitutive law;

the probabilistic model is based on a random walk and central limit theorem, etc. The

fractional diffusion model in porous media has significant applications in ground water

contamination problem. Several examples of porous media in the form of fractional order

diffusion model can be found in literature like Deans [137] has developed a mathematical

model for dispersion in the direction of flow in porous media. Mualem [111] have given

a model for predicting the hydraulic conductivity of unsaturated porous media, Feng
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[138] developed a model on compressible miscible displacement in porous media, Khaled

and Vafai [139] have given a porous media model for flow and heat transfer in biological

tissues. Choquet [140] have developed a model on compressible displacement in porous

media. Fractional order reaction advection diffusion equation(FRADE) is mainly of the

following form

C
0 D

α
t u =

∂

∂x

(
A(u)

∂u

∂x

)
+B(u)

∂u

∂x
+ C(u), 0 < α < 1,

where, A(u), B(u), C(u) are smooth functions. This model helps to describe various type

of physical, biological and ecological processes [141, 142, 143, 144, 145]. In this chapter,

the author will deal with the FRADE as

C
0 D

α
t u(x, t) =

∂

∂x
{ul(x, t)∂u(x, t)

∂x
} − v

∂u(x, t)

∂x
+Ku(x, t)(1− u(x, t)), 0 < α < 1, (4.1)

where
C
0 D

α
t f(t) =

1

Γ (n− α)

∫ t

0
(t− τ)(n−α−1)f (n)(τ)dτ, α > 0, τ > 0,

is the Caputo fractional-order derivative of f(t) [41] for 0 < α < 1, v is the advection

coefficient, K is the reaction coefficient and l ∈ I+ is the degree of nonlinearity in diffusive

term. u(x, t) denotes the concentration of solute in the fluid at time t, and at a distance x,

v represents the velocity of the fluid. For conservative system the reaction term coefficient

K = 0 and for non-conservative system K ̸= 0. The equation (4.1) is solved using the

following prescribed initial and boundary conditions given as

u(x, 0) = g1(x) 0 ≤ x ≤ 1,

u(0, t) = g2(t) 0 < t ≤ 1,

u(1, t) = g3(t) 0 < t ≤ 1.

(4.2)

The above diffusive model can physically be represented as the solute is getting diffused

in any kind of fluid to the lower concentration like salt in water etc.

As analytic solutions of the FRADEs are available only for few simple cases, therefore

developing very accurate and efficient numerical methods is of great interest. Many nu-

merical methods have been developed to solve differential equations of fractional order, for

example, finite difference method(FDM) [79], finite element method(FEM) [146], and ho-

motopy perturbation method(HPM) [117] to solve fractional order diffusion equation. Rose

[147] have solved the diffusion equation with compact finite volume method, Zhang and

Chen [148] solved the diffusion equation with weak Galerkin finite element method, Zhang

et al. [149] developed an approximate scheme to solve diffusion equation, Polyanin [150]
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have solved the diffusion equation with variable coefficient and Fairweather et al. [151]

have used an orthogonal spline collocation method to solve the two-dimensional fractional

diffusion-wave equation. Hajipour et al. [152] have solved the variable order diffusion

equation with accurate discretization. Kanwal et al. [153] have solved fractional diffusion

wave equation and fractional Klein–Gordon equation with the help of two-dimensional

Genocchi polynomials. Zhang et al. [154] have solved the fourth order diffusion equation

with the help of spline collocation method. In the present chapter, Cubic B-spline col-

location method has been used to solve the proposed model. Spline functions especially

B-Spline functions are very powerful tools to approximate the numerical solution of partial

differential equations [155, 156] because those are piecewise continuous with small com-

pact support. During the literature survey the author have gone through the numerical

schemes given in [157, 158, 159, 160, 161, 162].

Crank-Nicolson scheme has been developed with the help of a cubic B-spline function to

solve the proposed model. The Crank-Nicolson scheme is the combination of the forward

Euler method at n and the backward Euler method at (n + 1) points. The main aim of

this chapter is to discuss the variations of the solute concentration due to the effect of the

increase in the degree of non-linearity in diffusive term and also due to the variations of

fractional order time derivative.

In order to obtain the numerical solution of the proposed method we need a finite scheme

for the fractional-order time derivative of solute concentration. L1 formula is derived to

discretize the Caputo’s derivative. Now dividing the time domain in N equal parts as

tn = n∆t for 0 ≤ n ≤ N − 1. As fractional-order time derivative α of model (4.1) is

bounded between (0, 1), hence Caputo fractional-order derivative can be written as

C
0 D

α
t f(t) =

1

Γ(1− α)

∫ t

0
(t− η)α

df(η)

dη
dη

=
1

Γ(1− α)

∫ t

0

1

ηα
df(t− η)

dη
dη

C
0 D

α
t f(t)

∣∣
tn

=
1

Γ(1− α)

n−1∑
k=0

∫ (k+1)∆t

k∆t

1

ηα
d

dη
f(tm − η)dη

=
1

Γ(1− α)

n−1∑
k=0

f(tm − k∆t)− f(tm − (k + 1)∆t)

∆t

∫ (k+1)∆t

k∆t

1

ηα
dη

C
0 D

α
t f(t)

∣∣
tn

=
(∆t)−α

Γ (2− α)

n−1∑
k=0

bαk [f(tn−k)− f(tn−1−k)] + o((∆t)2−α), (4.3)

where

bαk = (k + 1)1−α − k1−α.
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The remaining portions of the chapter are given as follows. Section (4.2) consists of basic

definitions. In section (4.3), the numerical scheme has been developed with the help

of Cubic B-spline. The stability and convergence of the scheme have been discussed in

sections (4.5) and (4.6), respectively. In section (4.7), the derived scheme is applied in

four particular cases of the proposed model and compared their analytical and numerical

results through l2-norm and l∞-norm. In section (4.8), the proposed method has been

applied on the considered mathematical model and the effects on solute profile due to

increase in the non-linearity in diffusive term for different fractional-order time derivatives

are discussed. Overall work is concluded in section (4.9).

4.2 Description of the Cubic B-spline function

To solve the proposed model (4.1) with the initial and boundary conditions (4.2), it is

needed to define the cubic B-spline base functions. The interval [a, b] has been partitioned

in N finite equal lengths having knots xm, m = 0, 1, 2, ..., N s. t. a = x0 < x1 < x2 <

... < xN = b with h = xm+1 − xm. Cubic B-spline function ψm(x) is defined below at the

knots xm over the interval [a, b] as

ψm =
1

h3



(x− xm−2)
3, x ∈ [xm−2, xm−1],

h3 + 3h2(x− xm−1) + 3h(x− xm−1)
2 − 3(x− xm−1), x ∈ [xm−1, xm],

h3 + 3h2(xm+1 − x) + 3h(xm+1 − x)2 − 3(xm+1 − x)3, x ∈ [xm, xm+1]

(xm+2 − x)3, x ∈ [xm+1, xm+2],

0, otherwise.

The set of spline functions {ψ−1(x), ψ0(x), ψ1(x), ..., ψN+1(x)} form a basis for the function

defined over [a, b]. Now the approximate solution UN (x, t) of the problem can be expressed

in terms of basis function as

UN (x, t) =

N+1∑
m=−1

δm(t)ψm(x), (4.4)

where δm’s are the time dependent unknown quantities which are to be determined. Each

cubic B-spline covers four elements, so that an element is covered by four cubic B-splines

and each cubic B-spline vanishes outside the interval [xm−2, xm+2]. Using the above ap-

proximations, the values of Um, U ′
m and U ′′

m i.e., the values of the solution of U(x, t) at



Chapter 4. Numerical solution of highly non-linear fractional order reaction advection
diffusion equation using cubic B-spline collocation method 56

the node xm will be

Um = U(xm) = δm−1(t) + 4δm(t) + δm+1(t),

U ′
m = U ′(xm) =

3

h
(−δm−1(t) + δm+1(t)),

U ′′
m = U ′′(xm) =

6

h2
(δm−1(t)− 2δm(t) + δm+1(t)).

(4.5)

4.3 Description of the method

In this section, an unconditionally stable scheme is developed for the considered model

(4.1) with the help of Cubic B-spline method which is used to solve the considered problem

together with the initial and boundary conditions (4.2). As the problem is non-linear, so

during use of Crank-Nicolson formula, let us linearize the non-linear terms by using Taylor’s

series. Now on discretizing the equation (4.1) and using Crank-Nicolson formula, we get

(
C
0 D

α
t u(x, t)

)n+1

m
=
Fn+1
m + Fn

m

2
,

where Fn
m = (

∂

∂x
{ul(x, t)∂u(x, t)

∂x
} − v

∂u(x, t)

∂x
+Ku(x, t)(1− u(x, t)))nm,

(4.6)

(ul)n+1
m (uxx)

n+1
m = l(ul−1)nm(uxx)

n
m(u)n+1

m + (ul)nm(uxx)
n+1
m − l(ul)nm(uxx)

n
m

(ul−1)n+1
m (u2x)

n+1
m = (l − 1)(ul−2)nm(u2x)

n
mu

n+1
m + 2(ul−1)nm(ux)

n
m(ux)

n+1
m

− l(ul−1)n+1
m (u2x)

n+1
m ,

(u2)n+1
m = 2unmu

n+1
m − (u2)nm.

(4.7)

Equation (4.6) with the use of equation (4.7) gives

a1δ
n+1
m−1 + a2δ

n+1
m + a3δ

n+1
m+1 = ρnm (4.8)

At every time level for the values of m = 0, 1, 2, ..., N , we get a system of linear algebraic

(N + 1) equations with (N + 3) unknowns. Now to obtain the unique solution we need

two more equations. We can use boundary conditions (4.2) to get the extra equations as

follows

δn+1
−1 + 4δn+1

0 + δn+1
1 = g2[(n+ 1)∆t],

δn+1
N−1 + 4δn+1

N + δn+1
N+1 = g3[(n+ 1)∆t].

(4.9)

With the aid of above two equations we will have the (N + 3) algebraic equations with

(N +3) unknowns. On representing these equations in terms of coefficient matrix, we will
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get a matrix A of (N + 3)× (N + 3) order so that

AC = ρ, (4.10)

where

A =



1 4 1 0 0 · · · 0 0 0

a1 a2 a3 0 0 · · · 0 0 0

0 a1 a2 a3 0 · · · 0 0 0
...

...
...

...
...
. . .

...
...

...

0 0 0 0 0 · · · a1 a2 a3

0 0 0 0 0 · · · 1 4 1


(N+3)×(N+3)

,

and

C = (δn+1
−1 , δn+1

0 , δn+1
1 , ..., δn+1

N+1)
T ,

ρ = (g2[(n+ 1)∆t], ρn0 , ρ
n
1 , ...ρ

n
N , g3[(1 + n)∆t])T ,

with

a1 = [2B − 6l

h2
(δnm−1 + 4δnm + δnm+1)

l−1(δnm−1 − 2δnm + δnm+1)−
6

h2
(δnm−1 + 4δnm + δnm+1)

l

− 9l(l − 1)

h2
(δnm−1 + 4δnm + δnm+1)

l−2(−δnm−1 + δnm+1)
2 +

18l

h2
(δnm−1 + 4δnm + δnm+1)

l−1(−δnm−1 + δnm+1)

− 3v

h
−K − 2K(δnm−1 + 4δnm + δnm+1)],

a2 = [8B − 24l

h2
(δnm−1 + 4δnm + δnm+1)

l−1(δnm−1 − 2δnm + δnm+1) +
12

h2
(δnm−1 + 4δnm + δnm+1)

l

36l(l − 1)

h2
(δnm−1 + 4δnm + δnm+1)

l−2(−δnm−1 + δnm+1)
2 − 4K + 8K(δnm−1 + 4δnm + δnm+1)],

a3 = [2B − 6l

h2
(δnm−1 + 4δnm + δnm+1)

l−1(δnm−1 − 2δnm + δnm+1)−
6

h2
(δnm−1 + 4δnm + δnm+1)

l

− 9l(l − 1)

h2
(δnm−1 + 4δnm + δnm+1)

l−2(−δnm−1 + δnm+1)
2 − 18

h2
(δnm−1 + 4δnm + δnm+1)

l−1(−δnm−1 + δnm+1)

+
3v

h
−K + 2K(δnm−1 + 4δnm + δnm+1)],

ρnm = 2l(δnm−1 + 4δnm + δnm+1) +
6(1− l)

h2
(δnm−1 + 4δnm + δnm+1)

l(δnm−1 − 2δnm + δnm+1)

+
9l(1− l)

h2
(δnm−1 + 4δnm + δnm+1)

l−1(−δnm−1 ++δnm+1)
2 − 3v

h
(−δnm−1 + δnm+1)

+K(δnm−1 + 4δnm + δnm+1)

− 2B
n∑

k=1

[(k + 1)1−α − k1−α](δn+1−k
m−1 − δn−k

m−1 + 4δn+1−k
m − 4δn−k

m + δn+1−k
m+1 − δn−k

m+1),
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and

B =
(∆t)−α

Γ (2− α)
.

From equations (4.9), we can say that unknown weights C depend on the unknown weights

of previous time levels. Hence we first need the values of unknown weights C at the initial

time level.

4.4 Initial State

In this section the values of unknown weights δ are found at the initial time level. The

initial vector c0 = (δ0−1, δ
0
0 , δ

0
1 , ..., δ

0
N+1) is determined by initial condition (4.2) and its

derivatives on initial and boundary points as

u(x, 0) = g1(x),

uxx(0, 0) =
d2g1(x)

dx2
|x=0,

uxx(1, 0) =
d2g1(x)

dx2
|x=1.

On discretizing above equations, we get

6

h2
(δ0m−1 + 4δ0m + δ0m+1) = g1(mh),

6

h2
(δ0−1 − 2δ00 + δ01) =

d2g1(x)

dx2
|x=0,

6

h2
(δ0N−1 − 2δ0N + δ0N+1) =

d2g1(x)

dx2
|x=1.

(4.11)

Since equation (4.10) contains (N+3)×(N+3) equations with (N+3)×(N+3) unknowns,

therefore we get

A0C0 = ρ0, (4.12)

where

A0 =



1 −2 1 0 · · · 0 0 0

1 4 1 0 · · · 0 0 0

0 1 4 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 1 4 1

0 0 0 0 · · · 1 −2 1
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and

C0 = (δ0−1, δ
0
0 , δ

0
1 , ..., δ

0
N+1)

T ,

ρ0 = (
d2g1(x)

dx2
|x=0, g1(0), g1(h), g1(2h), ..., g1(Nh),

d2g1(x)

dx2
|x=1)

T .

Hence from equations (4.9) and (4.11), the values of unknown weights are found at the

required time levels and after putting the values of these unknowns in the equation (4.4),

the approximate solution will be obtained.

4.5 Stability Analysis

In this section the Fourier method is discussed to investigate the stability of the scheme

(4.8). The concept of stability is associated with the concept of boundedness of computa-

tion errors. As the concerned FRADE is nonlinear, to investigate the stability of proposed

scheme by Fourier method, let us consider that the product term is locally constant as

ul=τ where τ is taken as local constant [163, 164]. The scheme (4.6) is described as

2
(
C
0 D

α
t u

)
= τ [(uxx)

n+1
m + (uxx)

n
m]− v[(ux)

n+1
m + (ux)

n
m] +K(1− τ)[un+1

m + unm]. (4.13)

Consider unm and ũnm be the exact and actual computed solutions of the problem respec-

tively. Then the error term is defined as

ηnm = unm − ũnm, where the vector ηn = {ηn0 , ηn1 , ..., ηnN}.

ηnm satisfies the scheme obtained by equation (4.13). Rewriting the equation (4.13) after

substituting ηnm = ξneimϕ, where ϕ=ωh, ω is a wave number, ξn is Fourier coefficient at

time level n and i =
√
−1, we finally get

ξn+1 =
p1
p2
ξn − 2B

p2

n∑
k=1

[(k + 1)1−α − (k)1−α][ξn+−k − ξn−k](2cosϕ+ 4), (4.14)

where

p1 = 2B(2cosϕ+ 4) +
6τ

h2
(2cosϕ) +K(1− τ)(2cosϕ+ 4)− 6vi

h
sinϕ,

p2 = 2B(2cosϕ+ 4)− 6τ

h2
(2cosϕ)−K(1− τ)(2cosϕ+ 4) +

6vi

h
sinϕ.
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Since the wave number ω = 2π/λ, where λ is the wave length, so ϕ=ωh= 2π/N for

0 < ϕ < N .

|p1| − |p2| =
−96Bτ

h2
(2cosϕ+ 4)sin2ϕ+ 8K(1− τ)B(2cosϕ+ 4)2 < 0 (4.15)

Hence from the above equation (4.15), we may conclude that |p1p2 | < 1.

4.5.1 Proposition

Suppose that ξn, n = 1, 2, ..., N + 1 is the solution of equation (4.14), then we have

|ξn| ≤ |ξ0|, n = 1, 2, .., N + 1. (4.16)

Proof: The mathematical induction is applied to verify inequality (4.16). If we put n = 0

in equation (4.14), we get

|ξ1| = |p1
p2

||ξ0| ≤ |ξ0|, as |p1
p2

| < 1.

Now suppose that |ξn| ≤ |ξ0| for n = 1, 2, ..., N . Then from equation (4.14), we get

|ξn+1| ≤ |p1
p2

||ξn|+ 2B(2cosϕ+ 4)bn
|p2|

|ξ0|+ 2B(2cosϕ+ 4)b1
|p2|

|ξn|

+
2B(2cosϕ+ 4)

|p2|
n−1∑
k=1

(bk − bk+1)|ξn−k|

≤ {|p1|+ 4Bb1(2cosϕ+ 4)

|p2|
}|ξ0|

≤ |ξ0|,

which shows the meaningful completion of the mathematical induction.

Theorem 1. The scheme (4.8) is unconditionally stable.

Proof:
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||un − ũn||2l2 = ||ηn||2l2 = h
N∑

m=0

|ξneimϕ|2

≤ h
N∑
k=0

|ξ0eimϕ|

i.e., ≤ ||η0||2l2
i.e., ≤ ||u0 − ũ0||2l2 .

Thus it is seen from above theorem that the error of this method at any time level n does

not grow and is bounded by the initial error. So the method is unconditionally stable.

The term unconditionally stable means that it is not necessary to impose any particular

restriction on the developed scheme to prove the stability of the scheme.

4.6 Convergence Analysis

In this section the convergence of proposed method is examined. Before starting the con-

vergence analysis we need certain results which are stated bellow.

Theorem 2. Suppose that f(x) ∈ C4[0, 1] and |f4(x)| ≤ L, ∀x ∈ [0, 1] and △ = {0 =

x0 < x1 < x2 < .... < xN = 1} be the equally spaced partition of [0, 1] with step size h.

If S△(x) is unique spline function that interpolates f(x) at nodes x0, x1, x2, ..., xN ∈ △,

then there exists a constant λj ≤ 2, such that

||f j(x)− Sj
△(x)||∞ ≤ λjLh

4−j , ∀x ∈ [0, 1], (4.17)

where j = 0, 1, 2, 3 and ||.||∞ is ∞-norm.

Proof. For the proof see, p.105 of [165].

4.6.1 Lemma

The B-splines ψ−1, ψ0, ..., ψN+1 satisfy the following inequality

|
N+1∑
m=−1

ψm| ≤ 10, 0 ≤ x ≤ 1. (4.18)
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The proof of the Lemma can be found in Kadalbajoo et al. [166].

Theorem 3. If U(x, t) is the cubic B-spline collocation approximation to the exact solu-

tion u(x, t), then

||u(x, tn)− U(x, tn)||∞ = ω + h2,

where k = △t and h = xi+1 − xi.

Proof: Consider u(x, t) be the exact solution of the proposed problem (4.1) with the con-

ditions (4.2) and U(x, t) =
∑N+1

m=−1 δmψm(x) be the B-spline collocation approximation of

u(x, t). Again consider Ũ(x, t) =
∑N+1

m=−1 δ̃mψm(x) is solution of the problem calculated

due to some computational errors. To estimate the error ||u(x, t)−U(x, t)||∞, we estimate

||u(x, t)− Ũ(x, t)||∞ and ||Ũ(x, t)−U(x, t)||∞ separately. From U(x, t) and Ũ(x, t), we get

AC = ρ and AC̃ = ρ̃. From these two equations we have A(C − C̃) = ρ− ρ̃. Now we will

estimate the bound for ||ρ− ρ̃||∞, where ρ̃ = (g2[(n+ 1)△t], ρ̃n0 , ρ̃n1 , ρ̃n3 ...ρ̃nN , g3[(n+ 1)△t])
and

ρ̃nm = 2BŨn
m + (1− l)(Ũ l)nm + (1− l)(Ũ l − 1)nm(Ũ2

x)
n
m − v(Ũx)

n
m

+KŨn
m − 2B

n∑
k=1

[(k + 1)α − kα](Ũn+1−k
m − Ũn−k

m ).

By using Theorem 2 and [167] (page 218), we obtain

||ρ− ρ̃||∞ ≤M(|U(x)− Ũ(x)|+ |U ′ − Ũ ′|+ |U ′′ − Ũ ′′|)
≤MLλ0h

4 +MLλ1h
3 +MLλ2h

2.

The above inequality can be written in the form

||ρ− ρ̃||∞ ≤M1h
2, (4.19)

where M1 = MLλ0h
2 +MLλ1h +MLλ2. Now on taking infinity norm on the equation

(C − C̃) = A−1(ρ− ρ̃) on both sides and using equation (4.19), we have

||C − C̃||∞ ≤ ||A−1||∞||ρ− ρ̃||∞ ≤M2h
2, (4.20)

where M2 =M1||A−1||∞. Now using the lemma 5.1, we get

||U(x)− Ũ(x)||∞ = ||
N+1∑
m=−1

(δm − δ̃m)ψm||∞ ≤ ||δm − δ̃m||∞|
N+1∑
k=−1

ψm| = 10M2h
2. (4.21)
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Now the error of this method will be

||u(x, tn)− U(x, tn)||∞ ≤ ||u(x, tn)− Ũ(x, tn)||∞ + ||Ũ(x, tn)− U(x, tn)||∞.

With the aid of equation (4.21) and Theorem 2, the above inequality is reduced to

||u(x, tn)− U(x, tn)||∞ ≤ λ0Lh
4 + 10M2h

2 = ωh2, (4.22)

where ω = λ0Lh
2 + 10M2. Hence order of convergence of our method is O(h2).

4.7 Numerical Examples

In this section, the proposed scheme given in section (4.3) is applied on four different

numerical problems, which are the particular cases of concerned mathematical model (4.1)

with the prescribed conditions (4.2) and compare the obtained numerical results with the

existing exact solutions. The computing errors are measured by l2 and l∞-norms as

||u(x, tn)− U(x, tn)||l2 =

√√√√h

N∑
m=0

|u(xm, tn)− U(xm, tn)|2,

||u(x, tn)− U(x, tn)||l∞ = max
0≤m≤N

|u(xm, tn)|.

In all examples discussed here, u(x, t) represents the exact solution of the example and

U(x, t) represents the numerical solution obtained by the proposed method. To estimate

the order of convergence of the method numerically, we use the following log ratio formula

as

p =
log(||e||∞(Ni+1))− log(||e||∞(N1))

log(Ni − log(Ni+1))
,

where ||e||∞(Ni) is error at the number of partitioning Ni.

Example 1.

Now to evaluate the accuracy and efficiency of the proposed numerical method, the numer-

ical solution obtained by the proposed method is compared with the exact solution of the

concerned problem for the integer order (α = 1). The exact solution of the mathematical

problem (4.1) with initial and boundary conditions (4.2) for l = 1, K = 0 and v = 0 i.e.,

in the absence of reaction and advection terms is u(x, t) = x + t [117]. After solving for
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h = 1
4 and ∆t = 1

4 , the absolute errors found for various values of x and t are given in

Table 4.1.

Table 4.1: Comparison of results for Example 1.

t x Approximate Solution Exact Solution Absolute Error

0.5 0.25 0.750 0.750 2.22045× 10−16

0.50 1.0 1.0 2.22045× 10−16

0.5 1.25 1.25 6.66134× 10−16

1.0 1.50 1.50 0.00

0.75 0.25 1.0 1.0 2.22045× 10−16

0.50 1.25 1.25 4.44089×10−16

0.75 1.50 1.50 1.11022×10−15

1.0 1.75 1.75 0.00

It is clear from the tabular representation that the proposed method is very efficient. For

very small values of h and ∆t, the absolute error is very less.

Example 2.

The proposed method is applied to a second problem and compare the results with exact

solution. On choosing l = 0, v = 1 and K = 0 in the integer order (α=1) form of the

proposed model (4.1), it is seen that the problem with prescribed initial and Drichlet

boundary conditions, has the exact solution given as [168].

u(x, t) =
1√

1 + 200t
exp[

−50(x− t)2

1 + 200t
]. (4.23)

The l2 and l∞ errors between numerical values and the exact values are depicted in Table

4.2 for N = 10 at t = 0.5.
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Table 4.2: Calculated error of approximate solution in l2 and l∞-norms for Example 2.

∆t ||u− uN ||l2 Convergence ||u− uN ||l∞ Convergence

rate rate

1/12 0.0156791 - 0.0400588 -

1/24 0.0036972 2.08434 0.0079132 2.33979

1/48 0.0001341 4.78419 0.0002476 4.99783

1/96 0.0000244 2.4591 0.0000351 2.81799

Example 3.

The considered mathematical model (4.1) after taking l = 0, v = 0 and α = 1 is reduced

to
∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
+Ku(x, t)(1− u(x, t)),

which has exact solution u(x, t) =
[
1 + exp(

√
K
6 x− 5K

6 t)
]−2

[169], with prescribed initial

and boundary conditions which can be extracted from the exact solution. The problem

has been solved with the proposed method for N = 5 and ∆t = 0.01.
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Figure 4.1: Plot of absolute error vs. x for different values of K at t = 1.

From the above Fig. 4.1, it is observed that proposed method is performing very efficiently

even for very less temporal and spatial discretizations. Jebreen [169] has also solved this
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problem for K = 6 and end-up with the best error of order e − 5, which clearly exhibits

the better performance of our proposed method.

Example 4.

In the present example the proposed method is applied to solve the fractional order

diffusion problem. Now taking l = 0, v = 1, K = 0 and adding one force term in the

considered model (4.1), the problem will be transformed into the following form

C
0 D

α
t u(x, t) =

∂2u(x, t)

∂x2
− ∂u(x, t)

∂x
+

2t2−α

Γ(3− α)
+ 2x− 2, 0 < α ≤ 1.

With the prescribed initial and Drichlet Boundary conditions, the above problem has the

exact solution as u(x, t) = x2 + t2 [170].
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Figure 4.2: Plot of absolute error vs. x for different values of α at t = 1.

Table 4.3: Comparison of error obtained from Example 3 at α = 0.5.

Method [170] Present Method

at N = 51, ∆t = 0.01 at N = 3, ∆t = 0.01

t L∞ L2 L∞ L2

0.1 6.086e-2 2.613e-1 6.080e-5 4.723e-5

0.5 2.958e-2 1.277e-1 1.610e-4 1.249e-4

1.0 2.114e-2 9.134e-2 2.372e-4 1.839e-4

1.5 1.732e-2 7.485e-2 2.959e-4 2.294e-4

2.0 1.503e-2 6.494e-2 3.454e-4 2.678e-4
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From the above Table 4.3 it clear that the proposed method is performing better as

compared to the method discussed in [170] in fractional order system. Fig. 4.2 shows the

variations of the absolute error obtained for different values of α at t = 1.

Thus using the proposed numerical method on the four particular cases of the proposed

model under the prescribed initial and boundary conditions, it may be concluded that

the proposed method is very much accurate with a higher rate of convergence. After its

validation, the derived scheme has been used to solve the FRADE (4.1).

4.8 Solution of the proposed FRADE model

In this section, the proposed mathematical model is solved with the following prescribed

initial and boundary conditions as

u(x, 0) = 0,

u(0, t) = 0.2,

u(1, t) = 0,

(4.24)

and determined the variations of the solute concentration u(x, t) at t = 0.5 with the

variations in nonlinearity terms exist in the diffusive term in the presence of the reaction

term at different fractional order time derivative. The conditions (4.24) can be physically

expressed as, the model is considered for a finite strip with initial value of the concentration

of solute in the fluid is zero. At x = 0 there is a certain amount of solute present and at

x = 1 it is zero in the fluid for a given time t.
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Figure 4.3: Plots of solute concentration vs. x for K = 0.2, v = 0.2, l = 0 at t = 0.5.
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Figure 4.4: Plots of solute concentration vs. x for K = 0.2, v = 0.2, l = 1 at t = 0.5.
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Figure 4.5: Plots of solute concentration vs. x for K = 0.2, v = 0.2, l = 2 at t = 0.5.
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Figure 4.6: Plots of solute concentration vs. x for α = 0.25, K = 0.2, v = 0.2, at
t = 0.5.
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Figure 4.7: Plots of solute vs. x concentration for α = 0.5, K = 0.2, v = 0.2, at t = 0.5.
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Figure 4.8: Plots of solute concentration vs. x for α = 0.75, K = 0.2, v = 0.2, at
t = 0.5.
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Figure 4.9: Plots of solute concentration vs. x for α = 1.0, K = 0.2, v = 0.2, at t = 0.5.

Figs. 4.3-4.5 depict the effect on solute profile due to an increase in the order of rate of

change of solute concentration with time for different values of l. From Fig. 4.3, it is

observed that the solute profile increases with the increase in the order of time derivative.

Figs 4.4 and 4.5 are drawn for l = 1 and l = 2, respectively. From these two figures, it

is observed that there is a quick change in solute profile due to increase in the order of

non-linearity of the diffusive term. It is also seen from the figures that the concentration

increases in the positive sense due to a decrease in α. The negative solute concentration

actually represents the back diffusion, which means the concentration of the solute is less

than the concentration of the fluid. It is seen that as non-linearity increases, the nature of

the solute profile is opposite, and the back diffusion will be higher. From Figs. 4.3-4.5, it is

clear that solute concentration is decreasing to zero at the boundary of the domain x = 1

because we have considered in boundary condition that the solute concentration is zero

at x = 1. On adding non-linearity in the diffusive term, we can observe a bulk increment

in solute concentration rather than tending to zero, as in the case of l = 0. In order to

observe the behavior of solute concentration due to the increase in the non-linearity in

diffusive term, Figs. 4.6-4.9 have been plotted. These figures clearly show that as the

non-linearity increases, overshoots of the concentration will be higher, and the curvature

of the solute profile decreases.

4.9 Conclusion

In this chapter, a new scheme is developed to solve the FRADE with prescribed initial

and boundary conditions based on cubic B-spline. It is shown that the derived scheme is



Chapter 4. Numerical solution of highly non-linear fractional order reaction advection
diffusion equation using cubic B-spline collocation method 71

unconditionally stable and convergent. The developed scheme is applied in three particular

cases of the proposed mathematical model in the integer-order system and one for fractional

order system to validate the efficiency and accuracy of the scheme. The scheme is even

accurate for fewer divisions of time and space domains. The salient feature of the chapter

is to develop an efficient method, and observe the variations of solute concentration due

to the effect of the order of non-linearity of the dispersion term in the presence of reaction

term when the system approaches from integer-order to fractional order.


