
Chapter 2

Numerical solution of nonlinear

space-time fractional order

advection-reaction-diffusion

equation

2.1 Introduction

In last few years, the fractional order differential equation (FDE) has attracted its atten-

tion by the researchers for its enormous applications in many areas of science, engineering

and economics. There are many physical phenomena like contamination in ground-water,

transportation in porous media which are discussed through fractional calculus. Another

reason behind its popularity among the researchers is its non-local behavior and the result-

ing memory effect on the system. This has given a mileage to the fractional order system

over the standard order system for which engineers apply it to various real life problems.

Fractional differential equation provides the exact description of a nonlinear phenomenon.

Due to the wide and important applications of FDEs, many researchers have developed

numerical algorithms to solve such types of equations. Hence, several analytical and nu-

merical methods are available in the literature such as domain decomposition method [69],

Wavelet operational method [71], homotopy analysis method [72], variational iterative

method [73], etc. Moreover, there are several numerical methods to solve different types

of fractional diffusion equations [74, 75, 76, 77, 78, 73, 79, 80, 81, 82], etc.
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The Fibonacci polynomial is an extension of Fibonacci numbers. The Fibonacci polyno-

mials can easily be generated by recurrence relation. Fibonacci numbers are known for a

long time, but the Fibonacci polynomials become important in the world of polynomials

very recently. Many methods have been developed by using the Fibonacci polynomials

viz., method used for solving ordinary BVP by Koç et al. [83] in the year 2013, a matrix

method used to solve generalized pantograph equation by the same authors [84] in the

year 2014, Fibonacci operational method is used to solve FDE by Abd-Elhameed et al.

[85] in the year 2016. In recent years, many operational matrices have been developed to

solve fractional order partial differential equation viz., Legendre operational matrix [86],

Bessel’s operational matrix [87], Chebyshev operational matrix [88], etc. The operational

matrix of Fibonacci polynomials gives much accurate result than orthogonal polynomials

[83]. The orthogonal polynomial takes a long time during computation as compared to

the Fibonacci polynomial. A large number of zeros in the operational matrix increases the

efficiency of the solution and makes calculation easier. In the proposed method, the integer

order power of variable is approximated keeping fractional power separately which gives

the accurate result of the derivative. While solving fractional order partial differential

equations (FPDEs), Fibonacci polynomial gives more accurate result than a correspond-

ing solution using orthogonal polynomial even on taking the small degree of the Fibonacci

polynomial. Therefore, from the literature survey, it is clear that the method is of scientific

interest over the other methods during the solutions of FPDEs.

It is known to us that water is one of the primary needs of the living body. Although

two
/
third of the earth’s surface is water, in which 97.5% is being salted water and 2.5% is

being fresh water. Only 0.3% is the liquid form of the fresh water on the surface. Surface

and ground waters both are getting polluted due to many reasons. The contamination

of the water bodies is called water pollution. The surface water contamination is caused

after the discharge of wastewater into the surface water. The groundwater contamination

is normally happens when the man-made products viz. gasoline, oil, road salt and chem-

ical are constantly diffused through the porous medium into the groundwater. Pesticides

and fertilizers are the examples which are diffused into groundwater. Road salt, a toxic

substance from mining site, may also seep into the groundwater.

The advection reaction diffusion equation (ARDE) is widely used in science and engineer-

ing as a mathematical model for computational purposes such as in oil reservoir simula-

tion, global weather prediction, transport of mass and energy, chemical transformation,

etc. The solute spreads within the fluid by molecular diffusion. The random collision of

the solute molecule with fluid molecule causes the diffusion and produces a flux from the
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higher concentrated areas to the lower concentrated areas. The advective term describes

the bulk movement of solute particles in the direction of fluid flow at the rate equal to

fluid velocity. In addition to advective transport, solute spreads within the fluid in the

porous medium by molecular diffusion. Bear and Bachmat [89] stated that the coefficient

of molecular diffusion in an isotropic medium is dependent on the diffusion coefficient of

the particular solute in water and the tortuosity of the medium. The rate of molecular

diffusion is independent of groundwater velocity and diffusion occurs even in the absence

of fluid movement.

Many models and methods for solving groundwater contamination problems have been

developed. In 2005, Younes [90] developed ELLAM method with moving grid to solve non-

linear ARDE in one dimension to show that contamination transfer of biological, chemical,

radioactive processes. Analytical solution of advection diffusion equation with variable co-

efficient which describes the transport of solute through the porous medium was given by

Ahmed et al. [91]. In 2009, Guerrero et al. [92] have developed a method with the help

of classic integral transform technique to find the analytic solution of MLCT subject to

sequential fractional order equation in the finite media.

In this chapter, an endeavor is made to solve the following nonlinear space-time fractional

order ARDE:

C
0 D

α
t u(x, t) = u(x, t)C0 D

β
xu(x, t)− v

∂u(x, t)

∂x
+ ku(x, t),

0 ≤ x ≤ 1, 0 < α ≤ 1 , 1 < β ≤ 2,

(2.1)

with initial and boundary conditions as

u(x, 0) = Ψ1(x), 0 ≤ x ≤ 1, (2.2)

u(0, t) = Ψ2(t), t > 0, (2.3)

u(1, t) = Ψ3(t) t > 0, (2.4)

where u(x, t) is concentration of the solute in fluid at finite distance x and at time t,

the parameters α and β represent time and space fractional order derivatives respectively,

v represents the uniform velocity of fluid in x-direction, k represents the coefficient of

source/sink term for the production or loss of solute within system, and Ψ1(x), Ψ2(t),

Ψ3(t) are known functions which represent the distribution of solute concentration initially

and concentration on the boundary points of the medium at any time t. If α = 1 and

β = 2, the frictional order ARDE is reduced to the classical ARDE with nonlinear diffusion
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term. The presence of the nonlinear diffusive term increases the solute concentration in

comparison to the linear diffusion equation in the fluid. The positive power of u(x, t)

in the diffusive term causes the slow diffusion in comparison to general linear diffusion

equation and will increase the solute concentration in the fluid. The physical phenomenon

like fast diffusion or slow diffusion is very much relevant for the porous media and thus the

nonlinear term in the diffusivity plays an important role from the physical point of view

as compared to a linear model. This has motivated me to solve a porous media problem

of nonlinear order in fractional order system.

In the above problem, the Dirichlet condition is considered during the solution of equation

(2.1), even though it can be solved with the well posed and ill posed Neumann and Cauchy

boundary conditions. Deng et al. [93] discussed about well posedness of boundary value

fractional diffusion model with various types of boundary conditions. It is found from

the literature that to solve the two-dimensional problem numerically, three versions of the

spectral methods are found viz., collocation, Galerkin and Tau methods. In the spectral

method, the solution is expressed as the series of polynomials like
∑
aijϕiϕj , where ϕ is a

set of the polynomials and the coefficients are obtained with the suitable spectral method.

In collocation method, the residue corresponding to partial differential equations (PDEs)

have to be zero at certain collocation points. In Tau method, the boundary conditions are

applied after expanding residual function in the form of series of polynomials. In Galerkin

method, we choose the basis function which satisfy initial and boundary conditions and af-

ter that the residual is made orthogonal with the considered basis functions [94, 95, 96, 97].

In the present endeavor, an attempt has been taken to solve the space-time fractional or-

der ARDE equation (1) using Fibonacci collocation method with its operational matrices.

The effect of reaction term on the solution profile for different parametric values of α and

β due to presence and absence of advection term is depicted through figures for different

particular cases.

The present chapter is arranged as fallows. Some preliminary definitions are given in

section 2.2. Section 2.3 consists of some information related to integer and fractional

order derivatives with Fibonacci operational matrix. Numerical method to solve FPDEs

has been discussed in the section 2.4. In the section 2.5, the discussed method is validated

by applying it on three existing examples. Finally the discussed method is used to solve the

considered model (2.1) and behavior of diffusion profile has been discussed in the section

2.6. Overall work is concluded in the section 2.7.
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2.2 Preliminaries

As it has been discussed in the chapter 1 that any square integrable function can be

approximated as series of Fibonacci polynomial, an approximation is considered as

f(x) ≃
n+1∑
k=1

ckFk = CTϕn(x), (2.5)

where CT = [c1, c2, c3......cn+1] and ϕn(x) = [F1, F2, F3....Fn+1]
T , which can be extended to

the function of two variables. For a function u(x, t) ∈ L2([0, 1]× [0, 1]) , the approximation

using Fibonacci polynomial can be obtained as

u(x, t) ∼=
n+1∑
i=i

n+1∑
j=1

CijFi(x)Fj(t) = ϕTn (x)Cϕn(t),

where

C =


c11 c12 · · · · · · c1n+1

c21 c22 · · · · · · c2n+1

...
...

. . .
...

cn+11 cn+12 · · · cn+1n+1


(n+1×n+1)

2.3 Generalization of Fibonacci Operational Matrix to frac-

tional order derivative

The derivative of ϕn(x) can be written as [85]

dϕn(x)

dx
=M1ϕn(x), (2.6)

whereM1 = (m1
ij) is the Fibonacci operational matrix of derivative of order (n+1)×(n+1)

with

m1
ij =

(−1)
i−j+3

3 j, if i ≥ j, (i+ j)odd

0, otherwise.

Taking n = 6, the operational matrix M1 becomes
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M1 =



0 0 0 0 0 0

1 0 0 0 0 0

0 2 0 0 0 0

−1 0 3 0 0 0

0 −2 0 4 0 0

1 0 −3 0 5 0


,

which is the operational matrix for integer order derivatives. The main aim is to generalize

the operational matrix of the integer order to the fractional order. The equation (2.6) can

be re-written as

dkϕn(x)
dkx

=Mkϕn(x) = (M1)kϕn(x),

where k is any positive integer.

The fractional order derivative of the Fibonacci polynomial vector ϕn(x) is written in the

form of Fibonacci operational matrix for any α > 0 as [85]

C
0 D

α
xϕn(x) = x−αMαϕn(x), (2.7)

where Mα = (mα
ij) is Fibonacci operational matrix of derivatives of order α, which is

defined as

Mα=



0 0 0 · · · 0
...

...
...

. . .
...

ξα(⌈α⌉, 1) ξα(⌈α⌉, ⌈α⌉) 0 · · · 0
...

...
...

. . .
...

ξα(i, 1) · · · ξ(i, i) · · · 0
...

...
...

. . .
...

ξα(n+ 1, 1) ξα(n+ 1, 2) ξα(n+ 1, 3) · · · ξα(n+ 1, n+ 1)


((n+1)×(n+1))

,

where

mα
ij =

ξα(i, j), i ≥ ⌈α⌉, i ≥ j;

0, otherwise.

with

ξα(i, j) =
i∑

k=⌈α⌉

(−1)
k−j+1

2 k!( i+k−1
2 )!

( i−k−1
2 )!(k−j+1

2 )!(k+j+1
2 )!Γ (k + 1− α)

For instant, if α = 0.5 and n = 4, we have
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M0.5 =



0 0 0 0 0

0 1.12838 0 0 0

−0.501502 0 1.50451 0 0

0 −0.150451 0 1.80541 0

−0.169794 0 −0.109614 0 2.06332



To validate the effectiveness of the chosen Fibonacci operational matrix for fractional order,

a comparison is shown with the existing Caputo fractional derivatives for t5 given in Table

2.1. It is clearly shown from the table that the results are identical. This concludes that

the fractional order derivative can be approximated by the Fibonacci operational matrix

of order (n+ 1)× (n+ 1).

Table 2.1: Absolute error of t5 for different fractional order derivatives.

α 0.5 1.5 2.5 3.5 4.5

For x=0.2 8.45678 10−16 9.09689 10−15 5.85532 10−13 1.61648 10−12 3.19886 10−11

For x=0.6 5.55112 10−16 1.42109 10−14 7.81597 10−14 9.9476 10−14 4.26326 10−14

For x=1.0 8.88178 10−16 1.42109 10−14 3.55271 10−14 9.9476 10−14 5.68434 10−14

2.4 Numerical method to solve the fractional order partial

differentiation equation

Consider the nonlinear FPDE with variable coefficient as

C
0 D

α
t u(x, t) = ω

(
C
0 D

β
xu(x, t), u(x, t), a(x)

)
, x ∈ (0, 1), α ∈ (q1, q1 + 1], β ∈ (q2, q2 + 1],

(2.8)

with initial conditions as

u(i)(x, 0) = ai, i = 0, 1, 2..., q1,

and boundary conditions as

u(j)(0, t) = bj , u
(j)(1, t) = cj ,

j = 0, 1, 2, ..., q2−1
2 , if q2 is odd,

u(j)(0, t) = dj , u
(j)(1, t) = ej , u

(
q2
2
)(0, t) = fj ,

j = 0, 1, 2..., q22 − 1, if q2 is even.

Let us approximate u(x, t) by Fibonacci polynomial as
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u(x, t) ∼= ϕTn (x)Cϕn(t).

Then the fractional order derivative of u(x, t) with the help of equation (2.7) is

C
0 D

α
t u(x, t)

∼= C
0 D

α
t

(
ϕTn (x)Cϕn(t)

)
= ϕTn (x)C

C
0 D

α
t ϕn(t)

= t(−α)ϕTn (x)CM
αϕn(t)

(2.9)

and

C
0 D

β
xu(x, t)

∼= C
0 D

β
x

(
ϕTn (x)Cϕn(t)

)
=

(
C
0 D

β
xϕn(x)

)T
Cϕn(t)

= (x−βMβϕn(x))
TCϕn(t)

= x−βϕTn (x)(M
β)TCϕn(t).

(2.10)

Hence with the help of equations (2.9) and (2.10), the Residual term of given nonlinear

FPDE is obtained as

R(x, t) = t(−α)ϕTn (x)CM
−αϕn(t)

− ω(x−βϕTnM
βCϕn(t), ϕ

T
n (x)Cϕn(t), a(x)).

From the above prescribed initial conditions, we get

ϕTn (x)((M
1)i)TCϕn(0) = ai i = 1, 2, 3..., q1,

and from the boundary conditions, we get

ϕTn (0)C(M
1)jϕn(t) = bj ,

ϕTn (1)C(M
1)jϕn(t) = cj , j = 0, 1, 2...,

q2 − 1

2
,

for the case when q2 is odd and

ϕTn (0)C(M
1)jϕn(t) = dj ,

ϕTn (1)C(M
1)jϕn(t) = ej ,

ϕn(0)CM
(
q2
2
)ϕn(t) = fj , j = 0, 1, 2...,

q2
2

− 1,

for the case when q2 is even.

To apply the Spectral collection method, it is required that R(x, t) must vanishes at certain
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collocation points

x = i
n+1 , i = 1, 2, 3..., (n− q2), and t =

j
n+1 , j = 1, 2, 3..., (n− q1).

Hence

R(
i

n+ 1
,

j

n+ 1
) = 0, i = 1, 2, 3..., (n− q2),

j = 1, 2, 3..., (n− q1)

(2.11)

and from boundary conditions either one can compare the coefficients or collocate the

initial and boundary conditions at the chosen collocation points including corner points

for boundary conditions. Hence from equation (2.11) and boundary conditions, one may

get (n+ 1)× (n+ 1) equations with (n+ 1)× (n+ 1) unknowns, which have been solved

by using Newton’s method.

2.5 Error Analysis

In this section, the proposed method is applied to three existing problems to validate the

efficiency, effectiveness and simplicity of the proposed method by calculating the maximum

absolute error and order of convergence of the proposed method by formulae given below

before applying it to the concerned space-time fractional order ARDE (2.1).

Maximum Absolute Error En(t) = Max
0≤x≤1

|U(x, t)− un(x, t)|,

and order of convergence =
log(

En1 (t)

En2 (t)
)

log(n2
n2
)
,

where U(x, t) be the exact and un(x, t) is approximate solutions for n degree of approxi-

mation at particular time t. The CPU time is also calculated for the purpose stated above.

Example 1. Let us consider following PDE

∂
1
2 u(x,t)

∂x
1
2

+ ∂
3
2 u(x,t)

∂t
3
2

= 4
√
tx+2

√
xt2√

π
,

with the initial and boundary conditions u(x, 0) = 0, u(x, 1) = x, u(0, t) = 0, u(1, t) = t2

whose exact solution [98] is given by u(x, t) = xt2. Now using equations (2.9) and (2.10)
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and solving for n = 2, we get the residual term as

R(x, t) =
2

(3
√
π)

{(6c13
√
t+

√
x(3c21 + 3c22t− 3t2

+ 3c23(1 + t2 + 2
√
t
√
x)− 6

√
t
√
x+ 4c31x+

4c32tx) + c33(4x
3/2 + 4t2x3/2 + 6

√
t(1 + x2))}.

The boundary conditions give

c11 + c13 + c21x+ c23x+ c31(1 + x2) + c33(1 + x2) = 0,

c11 + c12 − x+ c21x+ c22x+ c31(1 + x2) + c32(1 + x2) + 2(c13 + c23x+ c33(1 + x2)) = x,

c11 + c31 + (c12 + c32)t+ (c13 + c33)(1 + t2) = 0,

c11 + c21 + 2c31 + (c12 + c22 + 2c32)t− t2 + (c13 + c23 + 2c33)(1 + t2) = t2.

Finding the coefficients from above four equations and choosing x = 1
3 and t = 1

3 as

collation points for Residual, we get nine linear algebraic equations with nine unknowns.

On solving these equations, we get

u(x, t) = −2.9697910−17 + t2(−8.5209110−17 + x) ≈ xt2,

which implies that the approximate and exact solutions are similar.

Example 2. Consider the following Burger’s equation

∂u(x,t)
∂t + u(x, t)∂u(x,t)∂x = ∂2u(x,t)

∂x2 ,

with initial condition as

u(x, 0) = 2x, 0 ≤ x ≤ 1,

and boundary conditions as

u(0, t) = 0, ∂u(0,t)
∂x = 2

1+2t , t ≥ 0,
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whose exact solution is u(x, t) = 2x
1+2t [99].

Table 2.2 is drawn to show the maximum absolute error, order of convergence and time

taken to solve the Example 2 with the proposed method at different value of degree of

approximation for t = 0.5.

Table 2.2: Maximum absolute error at t = 0.5 for Example 2.

n Maximum Order of CPU time

Absolute error Convergence (sec)

3 0.014314 - 0.438

5 8.41549e-4 5.54 0.609

7 2.88222e-5 10.02 1.484

From above Table 2.2, one can easily say that for proposed method has higher order con-

vergence rate with very less computational time even for solving nonlinear problems and

also it is very much visible that on increasing the degree of approximation n, the absolute

error can further be reduced.

Example 3. Consider a non-linear PDE

∂u(x, t)

∂t
= (1 + u)

∂2u(x, t)

∂x2
− ∂u(x, t)

∂x
− u2 + u,

0 < x ≤ 0, t ≥ 0,

with the initial condition

u(x, 0) = ex,

and the boundary conditions

u(0, t) = et, u(1, t) = et+1.

The exact solution of this problem is exE1(t) [100], where E1(t) is Mittag–Leffler function.

Table 2.3 expresses the maximum absolute error, order of convergence and computational

time taken by the proposed method on applying it to Example 3.
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Table 2.3: Maximum absolute error at t = 0.5 for example 3.

n Maximum Order of CPU time

Absolute error Convergence (sec)

3 0.00844524 - 0.374

5 6.0358e-5 9.62 0.484

7 1.92246e-7 17.08 1.062

It is clearly found from the table that the accuracy of our proposed method is much higher

as compared to the method used in [100] while solving the same problem. The maximum

absolute error is 10−3 in [100] whereas in our case it is 10−3 for n = 3 and as the degree

of approximation increases it is rapidly decreases in less CPU time.

2.6 Solution of the space-time fractional order ARDE

After validation of the efficiency, effectiveness and accuracy of the proposed numerical

method in the previous section, it is used to get the solution of space-time fractional order

ARDE (2.1) under the initial condition

u(x, 0) = x(1− x),

and boundary conditions

u(0, t) = 0, u(1, t) = 0.

Now to solve the ARDE (2.1) using the proposed numerical method let us approximate

u(x, t) by Fibonacci polynomial as

u(x, t) ∼= ϕTn (x)Cϕn(t),

where

C =


c11 c12 · · · · · · c1n+1

c21 c22 · · · · · · c1n+1

...
...

. . .
...

cn1 cn2 · · · cn+1n+1


(n+1)×(n+1)
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Using equations (2.9) and (2.10), the residual term for the equation (2.1) will be

R(x, t) =t(−α)ϕTn (x)CM
αϕn(t)

− x−β(ϕTn (x)Cϕn(t))(ϕ
T
n (x)(M

β)TCϕn(t))

+ v(ϕTn (x)(M
1)TCϕn(t))− k(ϕTn (x)Cϕn(t)).

(2.12)

Using the prescribed initial and boundary conditions, we get

ϕTn (x)Cϕn(0) = x(1− x), (2.13)

ϕTn (0)Cϕn(t) = 0, (2.14)

ϕTn (0)Cϕn(t) = 0. (2.15)

Let us collocate the residual term at the collocation points x = k
n+1 , k = 1, 2, 3...(n − 1)

and t = h
n+1 ,h = 1, 2, 3...n. In addition to these points, x = 1 and t = 1 are to be included

to collocate the boundary conditions. Finally we get the system of (n + 1)2 numbers of

algebraic equations with (n + 1)2 number of unknowns, which are solved using Newton’s

method. The results are obtained numerically with the help of MATHEMATICA software

for n = 7.

2.7 Results and Discussion

In this section, the numerical values of solute concentration are displayed through Figs.

2.1-2.13 in presence/absence of advection and reaction terms with the variations of the

temporal parameter α keeping spatial parameter β fixed and also with variations of β for

fixed α.

β=1.4

β=1.6
β=1.8

β=2.0

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

x

u
(x
,t
)

Figure 2.1: Variations of u(x, t) vs. x for conservative system at t = 0.6 when v=0.2.
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Figure 2.2: Variations of u(x, t) vs. x for conservative system at t = 0.6 when v=0.
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Figure 2.3: Variations of u(x, t) vs. x for non-conservative system at t = 0.6 when v=0.
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Figure 2.4: Variations of u(x, t) vs. x for non-conservative system at t = 0.6 when
v=0.2.

The variations of u(x, t) vs. x at t = 0.6 are displayed through Figs. 2.1-2.2 and Figs.

2.3-2.4 for conservative system (k =0) and also for non-conservative system (k = −1)

respectively keeping α = 1 and β=1.4(0.2) 2.0, to show the effect of advection term. It is

seen that in both the cases in presence of advection term, u(x, t) decreases as β increases



Chapter 2. Numerical solution of nonlinear space-time fractional order
advection-reaction-diffusion equation 28

but afterwards the opposite nature occurs. It is also noticed that for non-conservative

system the damping occurs due to presence of sink term (k = −1). Again for conservative

and non-conservative systems the translations of the solute concentration are clearly visible

with the fluid velocity (v = 0.2) without the changes of the slopes of the curves.
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Figure 2.5: Variations of u(x, t) vs. x for conservative system at t = 0.6 when v=0.2.
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Figure 2.6: Variations of u(x, t) vs. x for conservative system at t = 0.6 when v=0.
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Figure 2.7: Variations of u(x, t) vs. x for non-conservative system at t = 0.6 when v=0.
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Figure 2.8: Variations of u(x, t) vs. x for non-conservative system at t = 0.6 when
v=0.2.
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Figure 2.9: Variations of u(x, t) vs. x for non-conservative system for different value of
t when v=0.2.

Figs. 2.5-2.6 and Figs. 2.7-2.8 are drawn to show the variations of u(x, t) with x at t = 0.6

for conservative and non-conservative systems taking β = 1 and α=0.4(0.2) 1.0. The na-

ture of figures is similar to previous cases except changes in overshoots. Fig. 2.9 is drawn

for u(x, t) vs. x for various values of t to observe the effect on solute concentration due

to increase in time. It is also observed that solute concentration is decreasing with the

increase in time.
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Figure 2.10: Variations of u(x, t) vs. x for linear diffusive term at α = 1, β = 1.8,
k = −1, v = 0.2 at t = 0.5.
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Figure 2.11: Variations of u(x, t) vs. x for non-linear diffusive term at α = 1, β = 1.8,
k = −1, v = 0.2 at t = 0.5.
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Figure 2.12: Numerical solution of u(x, t) vs. x for linear diffusive term at α = 0.8,
β = 2, k = −1, v = 0.2 at t = 0.5.
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Figure 2.13: Numerical solution of u(x, t) vs. x for non-linear diffusive term at α = 0.8,
β = 2, k = −1, v = 0.2 at t = 0.5.

Fig. 2.11 and Fig. 2.13 show the effects of non-linearity in diffusion term as compared to

Fig. 2.10 and Fig. 2.12 at t = 0.5, v = 0.2, k = −1 for the cases α = 1, β = 1.8, and

β = 2, α = 0.8 respectively. It is clear from the figures that there will be a lot of variations

in the solute concentration due to presence of non-linearity in diffusion term.

2.8 Conclusion

In the present chapter, the collocation method is applied through defining the Fibonacci

operational matrix in terms of Caputo fractional order derivatives during the solution

of one-dimensional space-time fractional order ARDE with nonlinearity in the diffusive

term. Numerical solutions are graphically presented for different particular cases keeping

α = 1 and varying spatial derivative β, and also varying temporal derivative α for β = 2.

The salient feature of the study is the effect of reaction term on the solute concentration

profile for both the cases in presence and absence of advection term. The decay rate of

the solute concentration due to the sink term (k = −1) confirms the damping nature of

the solution profile due to the presence of reaction term. The efficiency and effectiveness

of the proposed method are validated by comparing the numerical solutions and the exact

solutions of three existing problems through error analysis. The important feature of the

article is the exhibition of convergence rate for two existing problems when the proposed

method is applied. The effect of non-linearity in the diffusive term on the solution profile

for different particular cases is the significant part of the study. The author believes that

the present contribution will be beneficial for the researchers working in the field of the

nonlinear diffusion equation in both integer and fractional orders.


