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Introduction

The partial diffusion equations describe many physical phenomena but finding their exact

solutions are not always possible, so developing the numerical method that can solve

those equations accurately is a significant challenge. From the thesis title “Behavior

of solute concentration in porous media”, it is very much clear that the work is

mainly focused on solving the diffusion equations arising in porous media and observe the

behavior of solute concentration due to change in different parameters of the diffusion

models. The author has not only focused on solving unsolved porous media models but

also on developing numerical methods that can perform better than previously existing

numerical methods. Before the starting of discussion about solving the diffusion model, it

needs to discuss some of the basic terms used in the thesis.

1.1 Porous Media

Porous media is nothing but a domain with partially occupied with solid matrix, and the

remaining parts of the domain are referred to as pore or void. The term ‘solid’ here repre-

sents the wider spectrum than its strict definition describes. Thus crystalline substance,

manufactured polymers, rubber, and organic materials, such as the tissue matrix of lungs

and kidneys, are also regarded as ‘solid’. The remaining part, i.e., the void space, is filled

with one or more fluid phases like gas or liquid. The solid phase and void space should be

uniformly distributed throughout the medium. This solid phase of the medium dedicates

the flow of fluid in the porous medium. At least some of the pores should be intercon-

nected and sometimes called as effective pore space. The unconnected pores may be taken

as part of the solid matrix. If we look around, we can observe that there are various types
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of porous media those are present around us, viz. sand, fissured rock, fractured porous

rock, cemented sandstone, and Karstic limestone, etc., are naturally accruing porous me-

dia. In the natural porous media, the distribution of pores with respect to shape and

size is irregular. Paper, ceramics, foam rubber, bread, and filter, etc., are manufactured

porous media, and bones, lungs and kidneys, etc., are organic porous media. From Figure

1.1, we can visualize some of the porous media. The porous media domain is used in a

large number of industrial and engineering disciplines, viz., paper and diaper industries,

petroleum reservoir engineering, hydrogeology, chemical engineering, and biomedical en-

gineering. Soil- water problem in civil engineering is described on the basis of the theory

of porous media.

Figure 1.1: Top: Examples of natural and organic porous materials: (a) beach sand,
(b) sandstone, (c) limestone, (d) rye bread, (e) wood, and (f) human lung. Bottom:
Granular porous materials used in the construction industry, 0.5-cm-diameter Liapor®

spheres (left), and 1-cm-size crushed limestone(right) [1]
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In the 18th and 19th centuries, the essential parts of porous media theory were formulated

viz. the geometry of porous bodies, fundamental principles of mechanics and volume frac-

tion concept, etc. It is worth to mention that Leonhard Euler in 1762 made a remark

on porous bodies in the published work ”Anleitung zur Naturlehre”. After that, Euler

did not contribute directly to porous media theory, but he was involved indirectly. Some

of the important axioms of continuum mechanics were created and formulated by Euler

viz. cut principle, the balance of mass, the balance of moment, the balance of moment

of momentum. Reinhard Woltman(1754-1837), who was an excellent engineer and scien-

tist, made an outstanding contribution to the porous media theory. He wrote his idea

on soil mechanics, and porous media in the third volume of “Beytrage zur Hydraulischen

Architektur” [2]. He further introduced the concept of volume friction. He was proba-

bly the first scientist to use this concept. Unfortunately, he did not continue his work

on porous bodies, but his concept of volume frictions related to volume elements of the

water-saturated porous body played a very important role in the development of porous

media theory. Delesse [3] in 1848, developed a concept related to the surface element of

a saturated porous body. He successfully proved that under certain conditions, surface

friction is equal to volume friction. At the beginning of the development of the theory

of porous media, the reflection principle of Delesse played an important role. In the 19th

century, the development of a second important branch of porous media theory started,

viz. the development of the mixture theory. In 1855, Fick [4], made the first attempt to

create the theory of mixture while studying the problem related to diffusion. Later, Stefan

[5] in the year 1871 successfully created the theory of mixture for two gases. Darcy [6]

in 1865, gave a result through an experiment by observing the loss of pressure and total

volume of running water through the saturated sand. His results are very essential for

mechanical treatment of the motion of liquid through porous media. Till the 19th century,

there was enough background materials to treat empty or fluid-saturated porous media

viz. main principles of mechanics by Euler, the concept of volume friction by R. Woltman,

some of the import laws by A. Delesse, A. Fick and Darcy, and mixture theory by Stefan.

Apart from them, many other scientists were contributed to the development of porous

media theory. Gibbs published many articles during the years 1876-1878 to interpret the

chemo-physical phenomenon with the help of thermodynamical methods and established

the entire field of physical chemistry, which is part of modern porous media approach.

Jaumann [7] in the year 1911, worked on continuum mechanics and mixture theory which

later become the pillars of the modern theory of porous media. Fillunger [8] in 1913,

published his first article related to buoyancy force in the gravity dams, which became a
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masterpiece when the problem is taken in two interacting continua soil and water. Un-

fortunately, there was a slight mistake in Fillunger’s concept, which was later pointed by

Terzaghi. Many scientists have continued the basic work done by Fillunger and Terzaghi

on porous media viz., Heinrich [9] in 1938, who follow the idea of Fillunger and published

work related to the settlement of clay layers. Biot [10, 11] in 1935 and 1941 published

his articles intuitively based treaties by following the basic ideas of Terzaghi, although he

became famous for his work in the years 1955 and 1956 [12, 13, 14]. Boer and Ehlers [15]

in 1988, published the reviewing the history of porous media firstly. R. D. Boer is also

known for recovering the lost article written by Heinrich and Desoyer [9, 16]. Modern era

of porous media theories is started when Truesdell-III entered in this field and brought

the Jaumann [7] work on continuum mechanics into light again. His works originated the

modern view on mixture theory, and continuum [17] and thermodynamics [18], but some of

the assumptions considered by Truesdell were wrong. Later Kelly [19] generalized Trues-

dell’s mixture theory in 1964. Adkins [20, 21, 22] and Green and Adkins [23] developed the

first mechanically motivated approach for single and mixture fluid and elastic solid, which

was literally based on Truesdell’s mixture theory. Bowen [24] in 1967, came up with own

version of constitutive equations of mixtures based on the tensor of chemical potential. He

believes that there are mistakes in the existing theories as those are based on partial stress

instead of chemical potential, and thus those describe only ideal mixtures. A. E. Green and

P. M. Naghadi showed that taking tensors of chemical potential instead of partial stress

would not lead us to a different theory which was later accepted by Bowen [25] in 1969.

Truesdell [17] in 1968 developed his own version of mixture theory which was later called

as Bowen-Truesdell form, because of the results of Bowen and Truesdell were identical.

Bowen [26, 27] published two models for incompressible and compressible porous media in

the years 1980 and 1982 respectively, which are based on his own famous theory of mixture

[28]. Porous media theories split into two different directions after Bowen’s article. One

was following the Terzaghi-Biot line, and another was following Bowen’s line. In the year

1989, a new concept related to the component of porous media was introduced by the

Ehlers [29] named phase separation to overcome the confusion related to the grading of

material. In recent times, the theory of porous media is being used in many fields viz. to

measure the stability behavior of partially and fully saturated soils and also to construct

the dams, embankments, electronics cooling, catalytic reactor, tissue engineering, nuclear

waste repository, etc.
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1.2 Fractional Calculus

We all are familiar with differential calculus and clearly understood the notation of nth

order derivative, that is, applying the differential operator n-times in succession. Later

in 1695, G. de L’Hospital and G. W. Leibniz discussed the possibility of n to be other

than integers through the letters. That was the day when fractional calculus was born.

From that day to date, the question raised by G. de L’Hospital and G. W. Leibniz became

the topic of research for many researchers. Many renowned mathematicians like Leonhard

Euler, Lagrange, Laplace, S.F. Lacroix, J. Fourier, N.H. Abel, J. Liouville, O. Heaviside,

B. Riemann, H. Weyl, G. Leibniz, A. K. Grunwald, and A.V. Letnikov have their valuable

contributions in the field of fractional calculus.

Although G. de L’Hospital and G. W. Leibniz discussed about fractional-order derivative

in 1695 but no literature is found from 17th-century to 18th-century related to arbitrary

order derivative. Leonhard Euler and Joseph Fourier mentioned about the derivative of

arbitrary order, but they did not consider it in their further work. In the second decade

of the 19-th-century, S. F. Lacroix defined the derivative of arbitrary order of xm in 1819

by using Gamma function as

Dαxm =
Γ(m)

Γ(m− α)
xm−α, (1.1)

where Γ(m) is the Gamma function defined by

Γ(m) =

∫ ∞

0
e−ttm−1dt.

In the book written by Ross [30], it is discussed that how the fractional calculus evolved and

how the researchers used the fractional calculus to solve their problem. It is mentioned

that N. H. Abel in 1823, used fractional derivative to solve the Tautochrone problem.

This attracts J. Liouville, and in 1832, he made the first major attempt to give the logical

definition of the fractional-order derivative of any arbitrary function by expanding it in

series of exponential. He started his theoretical development with the well-known result

of derivatives of integer order n as

Dn
x = aneax. (1.2)
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He generalized the above equation for non-integer order as

Dβ
x = aβeax. (1.3)

He wrote any arbitrary function f(x) in series form as

f(x) =
∞∑
n=0

cne
anx, (1.4)

and the derivative of f(x) on any arbitrary order β as

Dβf(x) =
∞∑
n=0

cna
β
ne

anx. (1.5)

This formula is known as Liouville’s first definition, and obviously, it had some disad-

vantages, but it was the first milestone in fractional calculus. To overcome with the

disadvantages, Liouville produced a second definition by transforming an integral to the

gamma function and derived the following formula for arbitrary order derivative

Dβ
xx

−α = (−1)β
Γ(β + α)

Γ(α)
x−α−β. (1.6)

Later, between the years 1835 to 1850, there were many controversies between the math-

ematicians regarding the definitions of fractional-order derivatives. The most useful ad-

vancement in the fractional calculus was due to the article written by G. F. Bernhard

Riemann during his student days when he was seeking to generalize a Taylor series in

1853. Riemann gave a different definition that involved the definite integral as

D−α
c f(x) =

1

Γ(α)

∫ x

c
(x− t)α−1f(t)dt+ ψ(x), (1.7)

where ψ(x) is the Riemann’s complementary function. He added a complementary func-

tion due to ambiguity in the lower limit of the integration. The present days’ definition of

fractional integration is the same as above but doesn’t contain a complementary function.

Since neither Riemann nor Liouville solved the problem of complementary function, it will

be of greater interest how today’s Riemann-Liouville finally looks like. In 1869, Sonin [31]

did the work which leads us to today’s Riemann-Liouville differentiation of arbitrary order.

Sonin started with Cauchy’s integral formula to define the differentiation with arbitrary

order. In a very short period of time, Letnikov [32] in the year 1872 extended the idea of

Sonin. Both tried to define fractional derivative by utilizing a closed contour, but we all

know that Cauchy’s integral formula contains a branch point, which means appropriate
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contour will be required for branch cut, which was not included in the work of Sonin and

Letnikov. Later, Laurent [33] has developed today’s Riemann-Liouville fractional integral

by using an open circuit instead of a closed circuit. Nearly simultaneously, Grunwald

and Letnikov [34] have provided another definition of fractional order derivative, which is

also frequently used today. Later in 1927, Marchaud [35] developed an integral version of

Grunwald and Letnikov’s definition. M. Caputo made the most significant contribution

to the fractional calculus in the modern era in 1967 to deal with the main drawback of

Riemann-Liouville’s definition of fractional derivative. In the next section, we will dis-

cuss various properties, drawbacks, and relation between Riemann-Liouville and Caputo

derivatives. The first conference on fractional calculus with the name ”The First Confer-

ence on Fractional Calculus and its Applications” was held in 1974 in New Haven. In the

same year, the first book on fractional calculus was published by Oldham and Spanier [36].

This seeks the attention of researchers from different background and they have published

a number of book on fractional calculus afterward viz., Nishimoto [37], Miller and Ross

[38], Kiryakova [39], Rubin [40], Podlubny [41], Hilfer [42], Kilbas et al. [43], etc.

1.3 Definitions of fractional order derivative and integral

There are various versions of the definition of fractional order derivative and integral. In

this section, the author has discussed only those definitions which have been used in the

forthcoming chapters.

1.3.1 Riemann-Liouville Arbitrary Order Integral

Let f(x) be the locally integrable function. The Riemann-Liouville integral of arbitrary

order β ≥ 0 is defined by

aD
−β
t f(x) =

f(x), β = 0,

1
Γ(β)

∫ t
c (t− τ)β−1f(τ)dτ, β > 0,

(1.8)

where t > c, t, c, β ∈ R and Γ(.) is the gamma function.
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1.3.2 Riemann-Liouville Arbitrary Order derivative

The Riemann-Liouville derivative of arbitrary order α ≥ 0 of the function f(x) is defined

by

aD
α
t f(x) =

f(x), α = 0,

1
Γ(k−α)

dk

dtk

∫ t
c (t− τ)k−α−1f(τ)dτ, α > 0,

(1.9)

where, t > a, t, a, α ∈ R, k − 1 ≤ α < k.

1.3.3 Caputo Arbitrary Order Derivative

The fractional order derivative of function f(x) in Caputo sense of order α is

C
aD

α
t =

f(t), α = 0,

1
Γ(α−n)

∫ t
a

f (n)(τ)
(t−τ)α+1−ndτ, α > 0,

(1.10)

where t > a, t, a, α ∈ R, k − 1 ≤ α < k.

1.3.4 Some properties of Fractional operators

1. aD
−α
t

(
aD

−β
t f(t)

)
= aD

−β
t

(
aD

−α
t f(t)

)
= aD

−α−β
t f(t),

2. aD
α
t

(
aD

β
t f(t)

)
= aD

β
t

(
aD

α
t f(t)

)
= aD

α+β
t f(t),

3. aD
α
t

(
aD

−α
t f(t)

)
= f(t),

4. aD
−α
t

(
aD

α
t f(t)

)
= f(t)−∑k

j=1

[
aD

α−j
t f(t)

]
t=a

(t−a)α−j

Γ(α−j+1) , k − 1 ≤ α < k,

5. aD
−α
t

(
(t− a)v

)
= Γ(1+v)

Γ(1+v−α)(t− a)v+α

6. aD
α
t

(
(t− a)v

)
= C

aD
α
t

(
(t− a)v

)
=

0, v ∈ 0, 1, 2, ..., ⌈α⌉ − 1,

Γ(1+v)
Γ(1+v−α)(t− a)v−α, v ≥ ⌈α⌉.

7. 0D
α
t A = At−α

Γ(1−α)

8. C
aD

α
t A = 0

9. C
aD

α
t (λf(x) + µg(x)) = λ

(
C
aD

α
t f(x)

)
+ µ

(
C
aD

α
t g(x)

)
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1.4 Fibonacci Polynomial

In almost every chapter of the thesis, the Fibonacci polynomial has been used to develop

the numerical method, so it will be fairly good to discuss something about it here. Fi-

bonacci polynomials are a natural extension of k-Fibonacci numbers. For any positive real

number k, the K-Fibonacci numbers are defined as

Fk,n+1 = kFk,n + Fk,n−1, for n ≥ 1, (1.11)

with initial conditions Fk,0 = 0 and Fk,1 = 1. Now if we consider k as the real variable x

then the Fibonacci polynomial will be defined as

Fn+1(x) =


1, if n = 0,

x, if n = 1,

xFn(x) + Fn−1(x), if n > 1.

(1.12)

Fibonacci polynomials are known for a long time but in recent years it has gained the

attention of researchers. From the above relation (1.12), the explicit form of the series is

obtained as

Fn(x) =

⌊n−1
2

⌋∑
r=0

(
n− r − 1

r

)
xn−2r−1 , (1.13)

where ⌊·⌋ denotes the floor function.

Furthermore, the polynomial xm in terms of Fibonacci polynomial is [44]

xm =

⌊m−1
2

⌋∑
i=0

(−1)i[

(
m

r

)
−
(

m

i− 1

)
]Fm−2i+1(x), m ≥ 0. (1.14)

Now equations (1.13) and (1.14) can be rewritten as

Fi(x) =

i∑
j=0

(j+i)=odd

( i+j−1
2 )!

j!( i−j−1
2 )!

xj , i ≥ 0 (1.15)

and

xm = m!
m+1∑
j=1

(j+m)=odd

(−1)
i+j−1

2 j

(m−j+1
2 )!(m+j+1

2 )!
Fj(x), m ≥ 0, (1.16)
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respectively.

A square integrable function f(x) can be expressed in terms of Fibonacci polynomial as

[45]

f(x) =
∞∑
k=1

ckFk, (1.17)

where

ck =
∑∞

j=0
k(−1)jf (2j+k−1)(0)

2(2j+k−1)j!(j+k)!
.

1.5 Advection Reaction-Diffusion Equation in Porous Me-

dia

The present work is focused on solving the advection-reaction-diffusion equations. Let us

talk about all the terms of the advection reaction-diffusion equation. The general form of

the equation for u(x, t) is written as

∂u

∂t
= ∇.(D∇u)−∇(vu) + ku. (1.18)

The above equation (1.18) governs the concentration of the solute particle u in the medium

(fluid). The first term from the right-hand side of the equation (1.18) represents the dif-

fusion term, and D is the diffusion coefficient. The second term from the right-hand side

of the equation (1.18) represents the advection term, and v represents the velocity of the

medium. The last term represents the reaction term. The value of k is dependent on

the medium and could be positive, negative, and zero for source, sink, and conservative

medium, respectively. The change in the concentration of the solute particle in the medium

mainly depends on transport and transformation. The two primary modes of transport

of solute particles are diffusion (the transport associated with the random motion of the

solute particle within the medium) and advection (transport associated with the flow of

the medium). Transformation refers to those processes that change a substance of interest

into another substance. The two primary modes of transformation are physical (transfor-

mations caused by physical laws, such as radioactive decay) and chemical (transformations

caused by chemical or biological reactions, such as dissolution). The transformation gov-

erns with the reaction term.
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The term Diffusion comes from the Latin language, which means “to spread out”. Diffusion

is a fundamental process that results from the random collision of solute molecules and

produces a flux of solute particles from areas of higher to lower solute concentration. One

can understand the diffusion process more accurately by an example, consider a bottle

of perfume is opened in an empty room and allowed to evaporate into the air, soon the

whole room will be scented. We also know from experience that the scent will be stronger

near the source and weaker as we move away, but fragrance molecules will have wondered

throughout the room due to random molecular and turbulent motions. Thus diffusion

has two primary properties, it is random in nature, and transport is from regions of high

concentration to low concentration, with an equilibrium state of uniform concentration.

If only the diffusion process is responsible for the movement of the solute particle, then

equation (1.18) is called a diffusion equation and will be reduced into the following form

∂u

∂t
= ∇.(D∇u). (1.19)

We all know the above equation (1.19) is drawn with the help of Fick’s first law. Now,

if in addition to diffusion, the solute particles are moving due to the flow of the medium,

then the resulting equation will be called an advection-diffusion equation, and the equation

(1.19) will be transformed into the following form

∂u

∂t
= ∇.(D∇u)−∇(vu). (1.20)

This added term is calculated with the help of Darcy’s law. Now, if the transformation

of the solute particles is caused by any other reason in the medium, then the additional

reaction term (R) will be added to the advection-diffusion equation and called advection

reaction-diffusion equation and will take the form

∂u

∂t
= ∇.(D∇u)−∇(vu) +R. (1.21)

When the concept of fractional order derivatives into the picture, this gives advantage

to the researchers to model any physical or chemical phenomenon more accurately, but

advantage comes with the complexity of the model. The fractional-order general form of

the above classical reaction-diffusion equation (1.21) in Caputo sense is of the form

C
0 D

α
t u = C

0 D
β
x

(
Du

)
−∇(vu) +R, (1.22)

where 0 < α ≤ 1 and 1 < β ≤ 2.
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Experimental evidences suggest that the classical integer order diffusion equation may not

accurately model many physical, biological phenomena, this is where the fractional type

diffusion model comes in to the picture. Within the last two decades, many phenomena

have been modeled with the help of fractional order diffusion equation viz. Baeumer et al.

[46] modeled the contaminant transport, Gorenflo et al. [47] gave random walk model in

the form of the fractional diffusion equation, Cartea and Negrete [48] developed a fractional

order diffusion model to predict the option prices in markets with jumps, Magin et al. [49]

modeled the porous biological tissues, Henry et al. [50] modeled the single processing in

neuronal dendrites. Many researchers have modeled the cancer tumor cells with the help

of fractional diffusion equation [51, 52, 53, 54, 55]. Although many phenomena can be

modeled with fractional diffusion equation but finding the solution of that model is not

always easy due to increase in complexity of the model. This becomes a challenging job

to the researchers to develop an efficient method that can perform better on that type of

complex model. Wang and Basu [56] developed a fast finite difference method to solve

the space fractional diffusion model. Hanert and Piret [57] developed a numerical method

with the help of Chebyshev polynomials and Galerkin method to solve temporal fractional

diffusion equation. Cheng [58] developed an efficient Eulerian–Lagrangian control volume

method to solve space-fractional diffusion equation. Li and Wu [59] have developed a

numerical technique to solve distributed order fractional diffusion equation with the help

of classical quadrature formula. Wei et al. [60] have used the local radial basis function

to develop a method to solve variable-order fractional diffusion equation for the two-

dimensional irregular domain. Zaky and Tenreiro [61] have developed a spectral tau scheme

with Legendre polynomial to solve multi-dimensional fractional diffusion equation. Verma

and Kumar [62] have solved the multi-dimensional fractional diffusion equation with two-

step Adomian decomposition method.

Many researchers have developed efficient methods to solve fractional diffusion models

related to some of the real-world phenomena. Jiang et al. [63] solved fractional diffusion

model for non-local transport flow with finite Hankel integral and Laplace transformation.

Jiang et al. [64] used the separation variables technique to solve the fractional diffusion

model for fast desorption of methane in coal. Obembe et al. [65] solved variable order

fractional diffusion model describing fluid flow in a heterogeneous porous medium with

control volume finite difference approximations. Daihong Gu et al. [66] used Laplace

transformation to solve the fractional diffusion model evaluating the performance of mul-

tiple fractured horizontal wells with stimulated reservoir volume in tight gas reservoirs.

Bai et al. [67] used the finite difference method with L2 formula to solve the fractional
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diffusion model to measure the volatile organic compound concentrations of dry build-

ing materials. Obembe [68] solved fractional diffusion model of single-phase, single-well

simulation in hydrocarbon reservoirs with block-centered finite-difference approximation

method.

This thesis is an effort to fully explore the fractional diffusion model and develop the

efficient and accurate numerical methods which perform better as compared to previously

existing methods, to observe the behavior of diffusion models due to changes in different

parameters of the models.


