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Preface

The thesis contains eight chapters. It is mainly focused on developing efficient and accurate

numerical methods to solve complicated unsolved fractional diffusion models, as finding

an exact solution is not always possible, and also focused on observing the behavior of

fractional diffusion models due to changes in various parameters.

Chapter 1 is an introductory chapter that contains some basic definitions and literature

review related to the field. This chapter begins by briefly introducing porous media as in

this thesis diffusion models are considered in porous media. Further, the author has given

a short introduction of the advection-reaction diffusion equation as the center of the work

is focused on solving this type of diffusion equation. Most of the methods are developed

with the help of Fibonacci polynomial, so a brief introduction about Fibonacci polynomial

and some of its important properties have been given here.

In chapter 2, the author has developed a numerical method to solve the one-dimensional

space-time fractional-order advection-reaction diffusion equation in a homogeneous medium

with the help of the Fibonacci operational matrix. After validation of the developed

method on three examples having exact solutions, it is used to solve a fractional-order

advection-reaction diffusion model. Furthermore, the effect on solute concentration is ob-

served due to change in various parameters viz., the order of time and space fractional

derivative, advection, and reaction terms.

In chapter 3, the author has taken one step ahead and has proposed the numerical method

to solve the two-dimensional space-time fractional-order advection-reaction diffusion equa-

tion in a homogeneous medium with the help of the Fibonacci operational matrix. Further,

it has been shown that the developed method works more efficiently than previously ex-

isting methods by applying it to certain two-dimensional diffusion models. In the last, the

method is used to solve an unsolved two-dimensional advection-reaction diffusion model

and observed the effect on solute concentration due to change in various parameters of the

model.

In the chapter 4, the approximate solution of the fractional-order reaction advection-

diffusion equation with the prescribed initial and boundary conditions is found with the

help of a cubic B-spline collocation method, which is unconditionally stable and convergent.

The accuracy of the scheme is validated by applying the method on four existing problems

having analytical solutions and through finding the absolute errors between numerical

results and the exact solutions for different particular cases. Applying the proposed method



to the last two numerical problems, it is shown that the method performs better than the

existing methods even for a very less number of spatial and temporal discretizations. The

main contribution of the chapter is to develop an efficient method to solve the proposed

fractional-order nonlinear problem and to find the effect on solute concentration graphically

due to increase in the non-linearity in the diffusion term for different particular values of

parameters.

In the chapter 5, a new nonstandard/standard finite difference scheme is introduced with

the help of Fibonacci polynomial. The considered nonlinear fractional diffusion equation is

reduced into a system linear ordinary differential equations, which are solved by using the

nonstandard/standard finite difference method. The developed schemes are uncondition-

ally stable, and the effectiveness and efficiency of the method are confirmed by applying

it in two linear and one nonlinear problem and through comparison of the obtained nu-

merical results with the existing analytical results. After validation of the efficiency of the

method, the proposed method is used to solve the highly nonlinear fractional order diffu-

sion equation. The stability of the method is also discussed. The graphical exhibitions of

the effects on the solute profiles due to increasing in non-linearity of the model and order

of the spatial derivative have been shown graphically for different particular cases.

In the chapter 6, the author has considered a multi-term variable-order fractional diffusion

model in the heterogeneous medium and has developed a new numerical technique with the

help of Fibonacci collocation and finite difference method to solve the considered model.

The higher accuracy of the developed method as compared to the existing methods is

also shown. After validation of the accuracy of the method, it has been used to solve the

considered model. The effects on the diffusion process due to various parameters in the

heterogeneous medium are shown graphically.

In the Chapter 7, overall work has been concluded and also the future scope of the related

works has been furnished.


