
Chapter 3

Numerical Approximation of

Fractional Burgers Equation with

Atangana-Baleanu Caputo

Derivative

This chapter describes another application of the approximated ABC derivative.

Brief introduction is provided in Section 3.1. The numerical scheme is proposed in

Section 3.2. Some essential results to prove the stability of the scheme are studied

in this section. Section 3.3 illustrates some numerical examples. The conclusion of

the chapter is given in Section 3.4.
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3.1 Introduction

Fractional derivatives depend on the previous values of the function i.e. they are

good enough to provide mechanism to incorporate the hereditary properties of many

physical phenomena. With these properties, fractional derivatives are found to be

useful in various fields such as physics [183], biology [184], control theory [177],

bioengineering [185], thermodynamics [186] and consequently fractional PDEs are

important as well [187, 188, 174].

A non-linear PDE Burgers equation models the traffic flow and contains non-linear

propagation with diffusion effects. The generalization of the Burgers equation is

proposed to describe the non-linear phenomena more accurately. After Momani

[29] generalized the Burgers equation by using space and time-fractional derivatives,

many other researchers have worked on fractional Burgers equation. Chen and An

[189] provided numerical solutions of coupled fractional Burgers equation using the

Adomian decomposition method. Bhrawy et al. [190] applied the Legendre spectral-

collocation method for the numerical approximation of fractional Burgers equation.

Inc [191] used a variational iteration method to approximate the solution of space

and time-fractional Burgers equation. Liu and Hou [192] solved fractional coupled

Burgers equation using a generalized differential transform method. Li et al. [193]

applied a finite difference scheme on the modified form of fractional Burgers equation.

This chapter provides a numerical scheme using the finite difference method to obtain

the solution of the fractional Burgers equation. The derivative in temporal direc-

tion is considered as Atangana-Baleanu fractional derivative in Caputo sense (ABC

derivative) [31]. Atangana and Koca showed the relationship of this derivative with

the other integral transform operators [72]. Gómez presented the Irving-Mullineux
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oscillator using the Atangana-Baleanu derivative, which modified the model to de-

scribe the memory without singularity [153]. A new formulation of fractional optimal

control problem was proposed by Baleanu et al. [151] involving this derivative. Some

other recent works with this definition can be found in [194, 80, 195, 196]

3.2 Formation of Numerical Scheme

Here, focus is on the fractional Burgers equation, whose time-derivative is ABC

derivative i.e.

ABC
0D

α
t u(x, t) + u(x, t)

∂u(x, t)

∂x
= V

∂2u(x, t)

∂x2
+ f(x, t), 0 ≤ x ≤ L, 0 ≤ t ≤ T,

(3.1)

with boundary conditions

u(0, t) = u(L, t) = 0, u(x, 0) = u0(x), (3.2)

where α ∈ (0, 1/2].

For discretization, the FDM is used. The derivatives are replaced by corresponding

difference equations using uniform mesh.

Let 0 = t0 < t1 < ... < tM = T , tk = kτ and 0 = x0 < x1 < ... < xN = L, xi = ih,

where τ = T
M

, and h = L
N

. The following calculation can be done similarly as in the
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previous chapter

ABC
0D

α
t f(t)|t=tk =

M(α)

1− α

∫ tk

0

f ′(s)Eα

[
−α

1− α
(tk − s)α

]
ds

=
M(α)

1− α

k−1∑
j=0

∫ tj+1

tj

f ′(s)Eα

[
−α

1− α
(tk − s)α

]
ds

=
M(α)

1− α

k−1∑
j=0

∫ tj+1

tj

f(tj+1)− f(tj)

τ
Eα

[
−α

1− α
(tk − s)α

]
ds+Rk

=
M(α)

1− α

k∑
j=0

Ck
j f(tj) +Rk, (3.3)

where, if Eα,2
[ −α

1−α(tk − ti)α
]

is written as Ek
i then the coefficients Ck

j are define as

Ck
j =


(k − 1)Ek

1 − kEk
0 , j = 0

(k − j + 1)Ek
j−1 − 2(k − j)Ek

j + (k − j − 1)Ek
j+1, 0 < j < k

Ek
k−1, j = k

, (3.4)

and, the truncation error Rk is

Rk = ABC
0D

α
t f(t)|t=tk −

M(α)

1− α

k∑
j=0

Ck
j f(tj)

≤ M(α)

1− α
τ 2

2

[
max

0≤t≤tk−1

f ′′(t)

]
c1, (3.5)

where c1 is a constant.

So, at point (xi, tk),

ABC
0D

α
t u(x, t)|(xi,tk) ≈

M(α)

1− α

k∑
j=0

Ck
j u

k
i ,
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where uki = u(xi, tj). The space derivatives at point (xi, tk) are approximated as

∂u

∂x

∣∣∣∣
(xi,tk)

= (uki )x̂ =
uki+1 − uki−1

2h
,

∂2u

∂x2

∣∣∣∣
(xi,tk)

= (uki )xx̄ =
uki+1 − 2uki + uki−1

h2
.

u∂u
∂x

can be written as 1
3
[u∂u

∂x
+ ∂u2

∂x
]. So for simplicity of calculation and proving the

boundedness and stability of the scheme, the non-linear term can be approximated

as

u
∂u

∂x

∣∣∣∣
(xi,tk)

=
1

3

[
uk−1
i

uki+1 − uki−1

2h
+
uk−1
i+1 u

k
i+1 − uk−1

i−1 u
k
i−1

2h

]
. (3.6)

Now, the numerical scheme for the fractional Burgers equation (3.1) is

M(α)

1− α

k∑
j=0

Ck
j u

j
i +

1

3

[
uk−1
i

uki+1 − uki−1

2h
+
uk−1
i+1 u

k
i+1 − uk−1

i−1 u
k
i−1

2h

]

= V

(
uki+1 − 2uki + uki−1

h2

)
+ fki , (3.7)

µCk
ku

k
i + µ

k−1∑
j=1

Ck
j u

j
i + µCk

0u
k
i +

1

3

[
uk−1
i (uki )x̂ + (uk−1

i uki )x̂
]

= V (uki )xx̄ + fki , (3.8)

where µ = M(α)
1−α and fki = f(xi, tk).

Lemma 3.2.1. If Rk
i be the local truncation error (LTE) of the numerical scheme

(3.8) then there exists a constant c2 such that

|Rk
i | ≤ c2(τ + h2). (3.9)
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Remark 1: The order of LTE has decreased from 2 to 1 in temporal direction since

here 1
3
[u∂u

∂x
+ ∂u2

∂x
] is used in place of u∂u

∂x
to make the method linear and convenient

[193].

Lemma 3.2.2. If, an = nEα,2
[ −α

1−α(nτ)α
]
−(n−1)Eα,2

[ −α
1−α((n− 1)τ)α

]
then ak, a1 ≥

0, and an is a decreasing function which implies Ck
j = ak−j+1− ak−j ≤ 0 ∀ 0 ≤ j ≤

k − 1.

Proof. As Eα,2 is an increasing function, so from the definition of ak−j, ak, a1 ≥ 0,

and

ak−j = (k − j)Eα,2
[
−α

1− α
(tk − tj)α

]
− (k − j − 1)Eα,2

[
−α

1− α
(tk − tj+1)α

]

= (k − j)
∞∑
i=0

(( −α
1−α)(kτ − jτ)α)i

Γ(αi+ 2)
− (k − j − 1)

∞∑
i=0

(( −α
1−α)(kτ − (j + 1)τ)α)i

Γ(αi+ 2)

=
1

τ

∞∑
i=0

( −α
1−α)i

Γ(αi+ 2)

[
(kτ − jτ)αi+1 − (kτ − (j + 1)τ)αi+1

]
,

differentiating with respect to j,

a′k−j =
∞∑
i=0

( −α
1−α)i

Γ(αi+ 1)

[
−(kτ − jτ)αi + (kτ − (j + 1)τ)αi

]

= Eα,1

[
−α

1− α
(tk − tj+1)α

]
− Eα,1

[
−α

1− α
(tk − tj)α

]
≥ 0,

as Eα,1 is an increasing function.
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3.2.1 Stability analysis of numerical scheme

To prove the stability of a numerical scheme, it is sufficient to establish the stability

of the original problem without source term. The numerical method for the modified

problem

ABC
0D

α
t u(x, t) + u(x, t)

∂u(x, t)

∂x
= V

∂2u(x, t)

∂x2
, (3.10)

becomes

µCk
ku

k
i + µ

k−1∑
j=1

Ck
j u

j
i + µCk

0u
k
i +

1

3

[
uk−1
i (uki )x̂ + (uk−1

i uki )x̂
]

= V (uki )xx̄. (3.11)

Now, to show that the numerical scheme (3.11) with the boundary conditions (3.2)

is stable.

Theorem 3.2.1. Let u0 ∈ H2
0 [0, L], then the solution of the proposed numerical

scheme (3.11) is bounded, i.e., there exists a constant K such that ‖uk‖ ≤ K, k =

1, 2, ...,M .

Proof. Multiplying (3.11) by huki and summing up for i from 1 to N − 1,

µCk
k‖uk‖2 + µ

k−1∑
j=1

Ck
j (uj, uk) + µCk

0 (u0, uk) +
h

3

N−1∑
i=0

(
uk−1
i (uki )x̂ + (uk−1

i uki )x̂
)
uki

= V (ukxx̄, u
k).
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Noting that (ukxx̄, u
k) = −((uk)x, (u

k)x) = −‖(uk)x‖, and

h

3

N−1∑
i=0

(
uk−1
i (uki )x̂ + (uk−1

i uki )x̂
)
uki

=
1

6

N−1∑
i=0

(
uk−1
i (uki+1 − uki−1) + (uk−1

i+1 u
k
i+1 − uk−1

i−1 u
k
i−1)
)
uki

=
1

6

N−1∑
i=0

(
uk−1
i uki u

k
i+1 − uki−1u

k−1
i uki + uki u

k−1
i+1 u

k
i+1 − uk−1

i−1 u
k
i−1u

k
i

)

=
1

6

(
−uk−1

0 uk0u
k
1 + ukN−1u

k−1
N+1u

k
N+1

)
= 0,

which implies,

µCk
k‖uk‖2 + V ‖(uk)x‖2 = µ

k−1∑
j=1

(−Ck
j )(uj, uk)− µCk

0 (u0, uk)

≤ 1

2
µ
k−1∑
j=1

(−Ck
j )(‖uj‖2 + ‖uk‖2) +

1

2
µ(−Ck

0 )(‖u0‖2 + ‖uk‖2)

=
1

2
µ
k−1∑
j=1

(−Ck
j )‖uj‖2 +

1

2
µ(−Ck

k )‖uk‖2 +
1

2
µ(−Ck

0 )‖u0‖2,

⇒ 1

2
µCk

k‖uk‖2 + V ‖(uk)x‖2 ≤ 1

2
µ
k−1∑
j=1

(−Ck
j )‖uj‖2 +

1

2
µ(−Ck

0 )‖u0‖2. (3.12)
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Since, ‖u1‖2 ≤ ‖u0‖2,

so, let ‖uj‖2 ≤ ‖u0‖2 holds for j < k then

1

2
µCk

k‖uk‖2 + V ‖(uk)x‖2 ≤ 1

2
µ
k−1∑
j=1

(−Ck
j )‖u0‖2 +

1

2
µ(−Ck

0 )‖u0‖2

=
1

2
µEk

k−1‖u0‖2. (3.13)

⇒ ‖uk‖2 +
2V

µ
‖(uk)x‖2 ≤ ‖u0‖2,

‖uk‖2 ≤ ‖u0‖2. (3.14)

Hence, by mathematical induction, ‖uk‖2 ≤ ‖u0‖2 ∀ k = 1, 2, ...,M .

Since, ∃ K > 0 such that K ≥ ‖u0‖2, which proves the theorem

‖uk‖ ≤ K.

Theorem 3.2.1 implies that the numerical solution of the considered problem (3.10)

with initial function u0(x) is bounded with respect to the time. Now, consider the

given problem with different initial condition ū0(x).

Definition: Let uk and ūk are the numerical solutions of the considered problem

with initial conditions as u0(x) and ū0(x), respectively, then a numerical scheme is

said to be stable globally if there exists a constant K such that

‖uk − ūk‖ ≤ K‖u0(x)− ū0(x)‖.
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Using the above definition and the boundedness of the numerical scheme (3.11)

(Lemma 3.2.2), it can be concluded directly that the scheme (3.11) is globally stable.

3.3 Numerical Examples

This section presents some numerical examples to validate the theoretical findings

discussed in the previous section. The maximum absolute errors (MAE) and the

convergence order (CO) of the scheme are calculated using the following formulas

MAE(j) = max
1≤i<N
1≤k≤M

(
U(xi, tk)− uki

)
, (3.15)

CO(j + 1) = log2

(
MAE(j)

MAE(j + 1)

)
, (3.16)

where U(x, t) is the exact solution of the problem, and j is the number of iterations.
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(a) Numerical solution
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(b) Analytical solution

Figure 3.1: A comparison between the solution obtained numerically by the
scheme to the exact solution of Example 3.3.1.
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Example 3.3.1. Consider the PDE (3.1) with 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, initial condition

u0(x) = 0 and source term, f(x, t) = 2
1−αt

2 sin(πx)Eα,3
[ −α

1−αt
α
]
+πt4 cos(πx) sin(πx)+

2π2t2 sin(πx).

Let V = 2, M(α) = 1 and α ∈ (0, 0.5], then the solution U(x, t) = t2 sin(πx) satisfies

the Eq. (3.1) together with the initial and boundary conditions. The numerical

scheme (3.8) is successfully applied to the above problem. The Figure 3.1 shows the

similarity between the analytical solution and the numerical solution obtained by

the derived scheme at α = 0.25, h = τ = 0.01. The calculated MAE and CO of

Example 3.3.1 for different values of fractional order α are given in Table 3.1 and

Table 3.2. In Table 3.1, 1
τ

= M = 212 is fixed and 1
h

= N takes different values to

present the data in temporal direction, while in Table 3.2, N = 29 is fixed and M

changes to present the data in spatial direction.
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=0.4
=0.5

Figure 3.2: Numerical solution of Example 3.3.2 with fixed time t = 1.

Example 3.3.2. Consider the PDE (3.1) with 0 ≤ x ≤ 1, 0 ≤ t ≤ T , initial condition

u0(x) = sin(2πx), source term f(x, t) = 0, and let M(α) = 1.
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In this case, the exact solution to the problem is not known. So numerical solutions

are obtained by applying the proposed scheme. The solutions at V = 0.05, T = 5

are plotted in the Figure 3.2, and Figure 3.3 at different time and different fractional-

order α. The computational results are taken at τ = h = 0.01. The variation in

the solutions can be observed clearly from Figure 3.2, and Figure 3.3 as the value

of fractional order α changes. For calculating the errors and convergence orders,

V = 1, T = 1, α = 0.2, 0.3, and 0.5 are supposed values. For Table 3.3 and Table

3.4, let M = 212, N = 27 and M = 27, N = 211 as reference solutions, respectively.

It can be observed from tables that the scheme has first-order convergence in time

and second-order convergence in space, as stated in Lemma 3.2.1.
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Figure 3.3: Numerical solution of Example 3.3.2 with fixed time t = 5.

Example 3.3.3. Consider the PDE (3.1) with 0 ≤ x ≤ 1, 0 ≤ t ≤ T , initial condition

u0(x) = e(2−αx)x(1− x), source term f(x, t) = 0, and let M(α) = 1.

Another example with different initial condition is given here. Figure 3.4 and Figure

3.5 show that the decay is faster as α increases for the values of V = 0.05, T =

5, M = N = 100. The errors and the convergence orders are calculated at V =
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Figure 3.4: Numerical solution of Example 3.3.3 with fixed time t = 1.
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Figure 3.5: Numerical solution of Example 3.3.3 with fixed time t = 5.

1, T = 1 which are given in Table 3.5 and Table 3.6. The reference solutions for the

Tables 3.5 and Table 3.6 are the numerical solutions which are taken at M = 212

and N = 29 and M = 29 and N = 211, respectively.
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Table 3.1: MAE and CO of Example 3.3.1 in spatial direction with M = 212.

α N MAE CO

0.2

23 0.012401356 -

24 0.003127835 1.987262

25 0.000784221 1.995831

26 0.000199548 1.974526

27 5.47402E-05 1.866062

0.3

23 0.012374169 -

24 0.003121275 1.987124

25 0.000782583 1.995819

26 0.000199139 1.974472

27 5.46367E-05 1.865829

0.4

23 0.012335105 -

24 0.003111847 1.986927

25 0.000780229 1.995801

26 0.000198550 1.974394

27 5.44879E-05 1.865497

0.5

23 0.012282369 -

24 0.003099112 1.986662

25 0.000777049 1.995778

26 0.000197755 1.974291

27 5.42862E-05 1.865055
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Table 3.2: MAE and CO of Example 3.3.1 in temporal direction with N = 29.

α M MAE CO

0.2

23 0.004738484 -

24 0.002453112 0.949812

25 0.001248404 0.974528

26 0.000630558 0.985385

27 0.000317781 0.988597

0.3

23 0.004750034 -

24 0.002455055 0.952182

25 0.001248355 0.975728

26 0.000630264 0.985999

27 0.000317562 0.988917

0.4

23 0.004766887 -

24 0.002457806 0.955677

25 0.001248241 0.977474

26 0.000629823 0.986879

27 0.000317240 0.989371

0.5

23 0.004791947 -

24 0.002461967 0.960800

25 0.001248152 0.980017

26 0.000629224 0.988149

27 0.000316796 0.990020
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Table 3.3: MAE and CO of Example 3.3.2 in temporal direction with N = 29.

α M MAE CO

0.2

28 0.000143207

29 0.000120093 0.253959460

210 9.32020E-05 0.365715235

211 5.74102E-05 0.699052438

0.3

28 0.000256917

29 0.000202854 0.340859418

210 0.000147592 0.458824779

211 8.47863E-05 0.799716211

0.4

28 0.000521922

29 0.000360044 0.535660463

210 0.000227030 0.665289791

211 0.000111931 1.020273380
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Table 3.4: MAE and CO of Example 3.3.2 in spatial direction with M = 27.

α N MAE CO

0.2

27 5.32848E-06

28 1.31633E-06 2.017198

29 3.13407E-07 2.070420

210 6.26812E-08 2.321930

0.3

27 5.92483E-06

28 1.46366E-06 2.017197

29 3.48482E-07 2.070421

210 6.96961E-08 2.321935

0.4

27 8.00778E-06

28 1.97823E-06 2.017194

29 4.70997E-07 2.070417

210 9.41997E-08 2.321924
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Table 3.5: MAE and CO of Example 3.3.3 in temporal direction with N = 29.

α M MAE CO

0.2

28 0.0007898

29 0.0006530 0.274213064

210 0.0004951 0.399440086

211 0.0002919 0.762471581

0.3

28 0.0013487

29 0.0010504 0.360612016

210 0.0007480 0.489839581

211 0.0004069 0.878391001

0.4

28 0.0023406

29 0.0015866 0.560983413

210 0.0009730 0.705373909

211 0.0004493 1.114893116
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Table 3.6: MAE and CO of Example 3.3.3 in spatial direction with M = 29.

α M MAE CO

0.2

27 7.82116E-06

28 1.93229E-06 2.017072059

29 4.60058E-07 2.070423785

210 9.19991E-08 2.322122046

0.3

27 8.29842E-06

28 2.05021E-06 2.017063893

29 4.88142E-07 2.070400285

210 9.76219E-08 2.322023761

0.4

27 9.88088E-06

28 2.44118E-06 2.017059039

29 5.81225E-07 2.070410844

210 1.16239E-07 2.322007854
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3.4 Conclusion

A numerical scheme is presented here to solve fractional Burgers equation numeri-

cally, whose time derivative is ABC derivative of order α ∈ (0, 1/2]. The numerical

scheme is a linear and implicit finite difference scheme. It is often difficult to prove

the stability of a non-linear fractional problem, but the proposed method is estab-

lished to be unconditionally stable. Some examples are also given to validate the

theory presented here. The convergence order of the scheme is estimated numerically

as O(τ + h2).


