Chapter 1

Introduction

“The great elegance that can be secured by the proper use of fractional operators and
the power they have in simplifying the solution of complicated functional equations

should more than justify a more general recognition and use.”
-Herold T. Davis [1]

This chapter provides the introduction of the thesis. Section 1.1 discusses the back-
ground of fractional calculus and fractional partial differential equations. In Section
1.2, basic definitions that are being used throughout this thesis are collectively pro-
vided. Section 1.3 presents the survey and recent works on FPDEs. The challenges
and motivation behind the topic are explained in Section 1.4. Section 1.5 defines
the problem statement and lists the thesis objectives. The outline of the thesis is

given in Section 1.6.
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1.1 Background

1.1.1 Fractional calculus

Calculus is a powerful tool of mathematics which builds an interdisciplinary bridge
to almost all the other fields of science, engineering, economics, demography, rhe-
ology, etc. It provides the enormous applications of mathematics by solving many
problems real-world such as Newton’s second law of motion, Einstein’s theory of
general relativity, determination of radioactive decay, etc. [2]. However, there are
some phenomena in nature having memory effect such as human behaviour, business,

viscoelasticity, etc. which can not be modelled with the help of classical calculus [3].

Fractional calculus came into the picture by the end of 17*" century, but at that time,
most of the scientists and researchers related to this field were more focused on the
classical calculus. So, this part of mathematics was left as less interested. Abel’s
tautochrone (isochrone) problem [4] was the first known problem represented in term
of fractional operators. Euler, Lagrange, Laplace, Lacroix, Fourier were among
those scientists who had worked in this area. Oldham and Spanier’s book titled
“The fractional calculus theory and applications of differentiation and integration to

arbitrary order” [5] is the first book entirely dedicated to the fractional operators.

1.1.2 Fractional partial differential equation

Partial differential equations (PDEs) are used to formulate the physical and other
problems involving function of several variables mathematically, such as the prop-

agation of heat or sound, fluid flow, elasticity, electrostatics, electrodynamics, etc.

[6]
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A fractional partial differential equation (FPDE) is a PDE that involves derivatives
of non-integer order, i.e., fractional derivatives. The non-locality of a fractional
derivative is the main advantage over the integer-order derivative. The former pro-
vides a mechanism for the internalization of memory and hereditary properties of
various phenomena. FPDEs are widely used in fluid mechanics, optical fibres, elec-
trochemistry, plasma physics, mathematical biology, and viscoelasticity [3]. The
following FPDEs are the base of this thesis and help in the study of other FPDEs

as well:

1.1.2.1 Fractional advection-diffusion equation

An advection-diffusion equation (ADE) simulates mass or energy transportation by
the fluid in a movement. This type of equation occurs in the problems of physics,
chemistry, and biology involving diffusion or dispersion [7, 8, 9, 10, 11, 12].

A standard ADE is given by

ou(z,t)

Py +a(z,t)——— = v —F5—, (1.1)

where v > 0 is real parameter. Eq. (1.1) appears in describing solute transport
in aquifers, and u represents the solute concentration. The parameters a and v

represent the average fluid velocity and dispersion coefficient, respectively [13].

Fractional advection-diffusion equation (FADE) is obtained by making some or all
derivatives of an ADE arbitrary order. Fractional generalization of the diffusion
equation is introduced to describe anomalous kinetics of a simple dynamical system
with chaotic motion. FADE is used in groundwater hydrology to model the transport

of passive tracers carried by fluid flow in a porous medium [11]. FADE, in which
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time derivative is of fractional order, arises from power-law particle residence time

distribution and describes particle motion with memory in time [14].

1.1.2.2 Fractional telegraph equation

The telegraph equation (TE), also known as telegrapher’s equation, was first studied
by Kirchhoff in 1857, and then by Heaviside. It was brought to attention by Poincaré
in 1893. The original form of the equation is as follows:

0%u ou 0%u

where u is electric potential or current, L is self-inductance, K is electrostatic ca-
pacity, R is resistance, and S is leakage conductance [15]. To investigate the TE
connecting with the diffusion equation, Eq. (1.2) is considered without leakage in

the following form:

Pu Ou 0%

where \ and ¢ are positive constants.

A TE is used in the field of dynamics of population and hydrology [16], heat transfer
theory in thermodynamics [17, 18], signal analysis [19], wave propagation [20], trans-
portation charged particles [21], diffusion process of chemicals [22, 23], etc. There
are some processes in nature that are governed by time-fractional telegraph equa-
tions (TFTE). Cascaval et al. [24] studied various aspects of the fractional telegraph

equations to understand the anomalous diffusion processes occurring in blood flow
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experiments. Orsingher and Beghin [25] discussed the following TFTE

0%y 0%u 0%
2\ =?
gr2a T g = g

0<a<l. (1.4)

1.1.2.3 Fractional Burgers equation

A Burgers equation is a non-linear PDE whose solution gives a travelling wave
containing front sharpening. This equation is a mathematical model of traffic flow
and provides non-linear propagation with diffusion effects. The Burgers equation in
1D is defined as follows:

ou ou 0%u

— — =V— L t<T 1.
8t+u8m V@a:Q’ O<ax<L, 0<t<T, (1.5)

where u is a vector of conserved quantity as mass, momentum or energy, and V'
is kinematic viscosity. It is the famous Navier Stokes equation for incompressible
flow with no pressure gradient. Burgers equation is generalized by some researchers
in different ways to describe the non-linear phenomena more accurately, which can
be seen as generalized Burger-Huxley equation, generalized Burgers-Fisher equa-
tion, etc. [26, 27]. Further, Wazwaz [28] developed a two-mode Burgers equation
and drove multiple kink solutions. In 2016, Momani [29] widespread the Burgers
equation by using space and time-fractional derivatives to model the unidirectional

propagation of non-linear acoustic waves through a pipe filled with gas.

1.2 Definitions of Fractional Derivatives

This section provides some definitions of fractional derivatives and integrals used

throughout this thesis. All the definitions given below are left-sided. A similar
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calculation can be done for right-sided definitions [3, 30, 31]. The integrals presented

here are assumed to be finite.

1.2.1 Basic definitions

Let [a,b] C R be a finite interval, and function f € L'[a, b].

e The Riemann-Liouville fractional integral of the function f of order o € R* is

defined as

1 [ -
)/a(t—s) f(s)ds, t> a. (1.6)

I3 f(t) = (o)

e The Riemann-Liouville fractional derivative of the function f of order @ € R™,

such that m — 1 < a < m, m € N is defined as

EDef(t) =IT7 D™ f(t) = ;) /t(t— syl (5)ds, t > a. (1.7)

['(m— «
e The Caputo fractional derivative of the function f of order o € R*, such that

m—1<a<m,m & N is defined as

DY f(t) =117 D™ f(t) = ! ) / t(t—s)m_"‘_lf(m)(s)ds, t>a. (1.8)

I'im—a

e The Caputo fractional derivative of order o € (0, 1) of the function f is defined

as

C N _ 1 ! f'(s) s a
“th(t)_l“(l—a)/a (t—s)ad’ t>a. (1.9)
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1.2.2 Atangana-Baleanu derivative

The definitions of fractional derivative, like Griinwald-Letnikov, Riemann-Liouville,
Caputo, Riesz, Hadamard, etc. [3, 30] have a prominent place in the field of frac-
tional calculus, but still, have limitations. They contain singular and local kernel,
which is a restriction in modelling the viscoelastic material’s behaviour, electromag-
netic systems, etc. To overcome such type of difficulties, Caputo and Fabrizio [32]

proposed a new definition of fractional derivative based on the exponential kernel.

e If a function f € H'(0,1) then, Caputo-Fabrizio derivative of Caputo type for
€ (0,1) is defined as

CFC Do f (1) — 1_a/ F(s exp[l_ (t—s)} ds, (1.10)
where M («) is a normalization function which satisfies M (0) = M(1) = 1.

Atangana and Baleanu [31] provided another definition for fractional derivative,
which generalized the Caputo-Fabrizio definition. Atangana-Baleanu derivative con-

tains the Mittag-LefHer function as a non-local and non-singular kernel.

o If a function f € H'(0,1) then, Atangana-Baleanu derivative of Caputo type
for a € (0,1) is defined as

ABC pa ) 1_@/ s { (t_s)a} ds, (L.11)

where E,(z) is the Mittag-Leffler function defined as

=3 (112

k=0
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1.2.3 Generalized fractional derivative

Generalized fractional derivatives contain a scale function z(¢) and a weight function

w(t) which are described in following ways [33, 34]:

Left /forward generalized fractional integral of order > 0 of a function f on

[a, b] with respect to scale function z(t) and weight w(t) is defined as

t>a. (1.13)

oy O [T () ()£ (5)
B! =210 | ot

Left /forward generalized fractional derivative of order m is defined as

Diled® = 0] [(550) @), 1>a @y

0

where m — 1 < o < m, and D, = d/dt.

Left /forward generalized derivative of type 1 of order a > 0 of a function f is

defined as

D7 P ) = WDy (7200 F) () (1.15)

Left/forward generalized derivative of type 2 of order o > 0 is defined as
iDtof(z,w)f(t) = GIZT{;?U) (CLDZL(z,w)f> (t> (116)

The generalized derivative of type 1 (Eq. (1.15)) may be referred as generalized

Riemann derivative, and generalized derivative of type 2 (Eq. (1.16)) as generalized

Caputo derivative, then the notations used for them are éDf‘(z w) = tho‘(z ) and
2 _c
aDiew) = a Dhawy-
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The functions z(¢) and w(t) are ‘good enough’. The scale function z(t) allows the
change in the considered domain. There are some cases where the results appear for
a few seconds only, in that situation the stretching scale function is used. On the
other hand, there are also cases where the process takes several decades, and here
contracting scale function is required. The weight function w(t) allows extension in
the kernel in fractional operators, allowing a higher degree of flexibility in modelling.
In the case of modelling memory of some diffusion process, it may require a heavy-
weight at the current time point, whereas other diffusion processes may require more
weight on past events. A weight function can help with such tasks. Selecting a differ-
ent type of scale and weight function, one can obtain various generalized fractional
derivatives and integrals. These generalized fractional derivatives and integrals in

fractional differential equations make the model more attractive and useful [33, 34].

1.3 Literature Review

In last few decades, researchers and scientists contributed much to the area of frac-
tional calculus. Caputo, Griinwald, Liouville, Riemann, Riesz, Weyl, etc. put their
significant contribution to this field, especially in forming the definition of fractional
integrals and derivatives. Classification of fractional operators given by Baleanu and
Fernandez [35] would be helpful. Moshrefi-Torbati and Hammond [36] provided an
interpretation of fractional operators in the time domain. Many advances have been
observed as the applications of fractional operators such as in economic growth [37],
electrical circuits [38], chaos and statistics [39], Earth system dynamics [40], con-
trol theory [41], geo-hydrology [42, 43|, medical [44, 45], and more [46, 47, 48, 49].
Yildiz et al. [50] presented some aspects of fractional optimal control problems and

derived the optimality system for this problem. The role of fractional operators
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in modern mechanics is studied intensively by Xu and Tan [51]. Sun et al. [52]
presented a survey on applications of fractional calculus in various fields of science
and engineering. Machado et al. [53] analysed the evolution dedicated to the theory
and applications of fractional operations and their generalizations. Yang et al. [54]
discussed the role of fractional calculus in image processing. Comparative study of
an autonomous dynamical financial system using contemporary tools from fractional
calculus is provided by Yusuf et al. [55] Ionescu et al. [56] provided a review with
the latest scientific results of fractional calculus in modelling biological phenomena.
There are some other surveys [57, 58, 59] and reviews [60, 61, 62] throwing the light
on chronological developments in fractional calculus and its applications. Some text-
books (for reference [3, 30, 63, 64, 65, 66, 67, 68]) are also available for further and

deep studies.

1.3.1 Literature review on fractional partial differential equa-

tions

The research work on FPDEs has been the attraction for scientists and engineers
[69, 70, 71, 72]. Time-fractional diffusion equation with distributed order between 0
and 1 is investigated by Mainardi [73]. Momani and Odibat [74] discussed the linear
FPDEs arising in fluid mechanics. Jafari and Seifi [75] worked on a system of non-
linear FPDEs and provided solutions using homotopy analysis method. Purohit [76]
solved FPDEs of quantum mechanics. Bhrawy [77] studied some time-space FPDEs
with sub-diffusion and super-diffusion and provided spectral collocation algorithm
for solving them. Feng and Meng [78] presented an improved fractional Jacobi el-
liptic equation method to find the exact solutions of space-time FPDEs arising in

mathematical physics. The work of Ara et al. [79] on some FPDEs is considered as
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an application to financial modelling. Arqub [80] introduced the reproducing ker-
nel algorithm for time-fractional PDEs subject to Robin boundary conditions with
parameters derivative concurring in fluid flows, heat conduction and electric circuit
etc. Goswami et al. [81] studied time-fractional regularized long wave equations
which describe the nature of shallow water waves in oceans and ion-acoustic waves
in plasma. Wang and Zheng [82] derived the well-posedness and regularity of the
variable-order time-fractional partial differential equations with the applications in
modelling local and non-local dynamics of multi-physics phenomena. A survey paper
by Luchko and Yamamoto [83] discussed FPDEs generated by the general fractional
derivative introduced by A. Kochubei. Recently, Li and Chen [84] reviewed some
numerical methods for solving FPDEs. There is also a book by Guo et al. [85] for
the same. Some more recent work on different types of FPDEs can be found in

(86, 87, 88, 89, 90, 91, 92].

1.3.1.1 Literature review on fractional advection-diffusion equation

FADE is an important FPDE treated by several authors. This equation presents
an approach to describe the transport dynamics in complex systems governed by
anomalous diffusion [93]. Liu et al. [94, 95, 96] studied Lévy motion with a—stable
densities using a FADEs. Meerschaert et al. [97] developed practical numerical
methods for solving the space FADE with variable coefficients on a finite domain
and presented a practical application of the results in modelling a radial flow prob-
lem. Momani et al. [98] constructed a reliable algorithm using the Adomian de-
composition method to find the numerical solutions of the space-time FADE in the
form of a rapidly convergent series with easily computable components. Wang and
Wang [99] developed a fast characteristic finite difference method for the solution of

space-fractional transient ADEs. Parvizi et al. [100] studied FADE with non-linear
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source term. Fundamental solutions of ADE with time-fractional Caputo—Fabrizio
derivative are obtained by Mirza and Vieru [101]. Kundu [102] studied suspension
concentration distribution in turbulent flows using FADE. Chen et al. [103] de-
veloped a fully-discrete numerical scheme for multi-term time-space variable-order
FADE which describes transient dispersion observed at a field tracer test. McLean
et al. [104] established well-posedness of time-fractional advection-diffusion-reaction
equations with Riemann—Liouville fractional derivative. Tang [105] considered an
optimal control problem of an FADE with Caputo time-fractional derivative. Some
more work in which effective methods to solve FADE numerically is provided in

[106, 107, 108, 109, 110, 111] with applications to various areas.

1.3.1.2 Literature review on fractional Burgers equation

Fractional Burgers equation is a basic and important non-linear FPDE which is
studied by many authors [112, 113, 114, 115, 116, 117]. Miskinis [118] discussed the
relation between integer ordered Burgers equation and its properties of fractional
generalization. Earlier, Sugimoto [119] examined the initial-value problems asymp-
totically and numerically for the Burgers equation with fractional derivative. Yang et
al. [120] investigated the local fractional Burgers equation and its non-linear dynam-
ics arising in fractal flow. Esen et al. [121] studied fractional diffusion equation and
fractional Burgers-Fisher equation with Haar wavelet method where time-fractional
derivatives are Caputo type. Saad and Al-Sharif [122] computed variational iteration
method solutions for the fractional Burgers equation and shown the behaviour of the
solutions as the fractional derivative parameter changed. Yokus and Kaya [123] gave
an exact solution of time-fractional Burgers equation using the expansion method
and the Cole-Hopf transformation. Liu and Chang [124] solved a time-fractional

Burgers equation with unknown space-time-dependent source term. Torebek [125]
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obtained sufficient conditions for the non-existence of fractional Burgers equation’s
time-global solutions. Yang and Machado [126] considered the non-linear Burgers
equation engaging local fractional derivative with the use of travelling-wave trans-
formation and used results to describe the propagation of the acoustic signals in the
stratified fractal media. Akram et al. [127] used a finite difference scheme based
on an extended cubic B-spline for the second-order derivative to solve Caputo type
time-fractional Burgers equation. Recently, Li and Li [128] discussed Cole—Hopf
transformation and the method of separation of variables for the exact and numeri-

cal solutions of the fractional Burgers equation.

1.3.1.3 Literature review on fractional telegraph equation

Some major advances in solving fractional TE and its applications can be seen in
[129, 130, 131, 132, 133, 134, 135]. Orsingher and Beghin [25] examined the solu-
tions of Eq. (1.4) with f(z,t) = 0 and « € [0,1/2] using Fourier transform. They
also examined the Eq. (1.4) with special type of rational order [22]. Dehghan and
Shokri [23] proposed a numerical method to solve the hyperbolic TE using colloca-
tion points. Chen et al. [21] studied the analytical solution of time-FTE using the
concept of separating variables. Povstenko [136] considered generalized telegraph
equations with time-space fractional derivatives and formulated the corresponding
theories of thermal stresses. Space-FTE is studied by Kumar [137] using fractional
homotopy analysis transform method. Chen et al. [138] provided the unconditional
stable difference schemes for Riesz space FTE. Hesameddini and Asadolahifard [139]
discussed a novel spectral Galerkin method for dealing with the hyperbolic TE in
two dimension. Sharifi and Rashidinia [140] considered cubic B-spline collocation
method for the numerical solution of hyperbolic TE. Ferreira et al. [141] obtained the

fundamental solution of multidimensional time-FTE of Caputo type. Tawfik [142]
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solved the space-time FTE and space-time FADE analytically, which are mathemat-
ical models of energetic particle transport for both uniform and non-uniform large-
scale magnetic field. Madhukar et al. [143] studied the heat conduction in biological
materials whose mathematical modelling yield the time-FTE. Some recent work on
FTE includes: the numerical solutions of Caputo type FTE using Crank-Nicholson
difference schemes by Modanli and Akgiil [144]; the discussion of well-posedness and
regularity of the solutions of time-fractional damped wave equations including time-
FTEs by Zhou and He [145]; the numerical solution of time-FTE by a local meshless

method [146].

1.4 Challenges and Motivation

Unlike classical calculus, the definition of fractional derivatives are not clear. The-
oretical and experimental studies are being conducted for the last few decades
to provide the precise definition that satisfies the basic rules of derivatives. Ca-
puto derivative and Riemann-Liouville derivative are the most popular and pro-
foundly used definitions [30]. Some authors recently extended these definitions to
model some important physical phenomena like viscoelasticity, electromagnetic sys-
tems, etc. Katugampola [147, 148] presented new definitions to generalize the Rie-
mann-Liouville and Hadamard fractional integrals and derivatives into a single form.

Jarad et al. [149] proposed a generalized proportional fractional derivative.

Caputo and Fabrizio [32] discussed fractional derivative in which the kernel of the
integral contains an exponential term. Using the Mittag-Leffler function in place
of an exponential function, Atangana and Baleanu [31] modified this definition. As
the Atangana-Baleanu derivative is non-singular and non-local, it does not lead to

inclusion of artificial singularity into the mathematical model. Also, it has ability
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to describe two different waiting times distribution which is an ideal waiting time
distribution as observed in many biological phenomena such as in spread of cancer.
This definition has vast applications in many fields of science and engineering [150,
151, 152, 153, 154, 155, 156, 157, 158]. Atangana [72], Abdeljawad [159], Baleanu
[160], Gémez-Aguilar [69], etc. are among the authors who developed the analytical

and numerical theory for Atangana-Baleanu derivative.

Agrawal [33, 34] gave generalized definitions of fractional integrals and derivatives
in 2012. These new definitions were proposed using scale function and weight func-
tion. Agrawal and Xu [161, 162] worked on the fractional differential equations using
generalized derivatives. In their papers, they gave stable numerical schemes whose
order of convergence is estimated to one. Xu and Zheng [163] presented spectral
collocation method, Kumar et al. [164, 165] and Cao et al. [166] developed finite
difference schemes for the numerical solution of fractional differential/integral equa-
tions with generalized fractional operators. Ding and Wong [167] derived high order

schemes inspired by the classical result of the Griinwald-Letnikov formula.

Fractional partial differential equations with the new derivatives are the new pos-
sibilities in studying natural phenomena with memory effect more thoroughly and
accurately. The motivation behind the thesis is to understand the nature of different
types of FPDEs generated by the Atangana-Baleanu derivative and the generalized
fractional derivative proposed by Agrawal. The fractional advection-diffusion equa-
tion and fractional telegraph equation are the basic linear FPDEs, and the fractional
Burgers equation is a non-linear FPDE. These equations help in studying other com-
plex FPDEs. The presence of non-integer order derivatives makes the differential
equations too complex to be solved analytically, so numerical simulation is required.
It is a challenge to provide more accurate numerical results. Finite difference method

(FDM) [168, 106, 169], finite element method (FEM) [170, 171, 100], short memory
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principle [172, 173], homotopy analysis method [75, 174], meshless method of radial

basis functions [175] are some methods which are being used to solve FPDEs.

1.5 Problem Statement and Thesis Objective

FADE, fractional TE, and fractional Burgers equations are examples of linear and
non-linear fractional partial differential equations. Significant work has been done
when the fractional derivatives are of Riemann-Liouville and Caputo type. However,
numerical methods and analysis of newly proposed fractional derivatives are quite
limited. Also, the stability and convergence of a numerical scheme for FPDEs are

difficult to derive.

The aim of this research work is to develop some high order numerical schemes for
these types of equations using Atangana-Baleanu and generalized derivatives. FDM
is used to maintain the simplicity and to provide the accuracy of the scheme. For
achieving a high order of convergence, Taylor series expansion is used along with

FDM.
The objectives of the thesis are:
1. To develop high order convergence schemes for the generalized and Atangana-

Baleanu definitions of fractional derivative using FDM and Taylor series ex-

pansion.

2. To apply the schemes on FPDEs like the advection-diffusion equation, tele-

graph equation, and Burgers equation to get the approximate solutions.
3. To study the stability of numerical schemes developed for FPDEs.

4. To provide the experimental analysis for supporting the theoretical statements.
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1.6 Outline of the Thesis

The outline of the thesis is as follows:

Chapter 1 provides the introduction of the thesis. Basic definitions that are being
used throughout this thesis are collectively provided. It also presents the literature
survey and recent works on FPDEs. The motivation behind choosing the topic and

problem statement of the thesis are explained.

Chapter 2 presents numerical schemes for the Atangana-Baleanu Caputo derivative
in two ways and uses the same for solving the FADE, whose time derivative is
Atangana-Baleanu Caputo derivative. In the first method, FDM is used, and in
second method, the Taylor expansion series of the function is used along with FDM.
The stability of the schemes is established numerically. The convergence orders for
Method 1 and Method 2 are obtained as O(72 + h?) and O(7% + h?), respectively.

Numerical examples are provided to support the theory.

Chapter 3 is based on a numerical technique using an FDM to solve the fractional
Burgers equation whose time-derivative is Atangana-Baleanu fractional derivative.
Some examples are considered to perform numerical simulations. The stability of

the scheme is proved, and the order of convergence is estimated numerically, which

is O(t + h?).

Chapter 4 presents an approximation of generalized Caputo derivative of order
a € (0,1) using Taylor’s expansion. This approximation is used to develop a high
order numerical scheme for solving the generalized fractional advection-diffusion
equation, which is formed using the generalized Caputo derivative in respect of
time. Some examples are provided to show the effects of different parameters on the

diffusion process of the equation.



Chapter 1. Introduction 18

Chapter 5 discusses a FDM for the generalized time-fractional telegraph equation
(GTFTE) via generalized fractional derivative. It also presents the behaviour of
the solution of GTFTE by changing the weight and scale functions in the general-
ized fractional derivative. The convergence and the stability of the finite difference

scheme are also studied.

Chapter 6 concludes the thesis and explains possible future work in solving FPDEs

formed by using newly proposed derivatives.



