
Chapter 1

Introduction

“The great elegance that can be secured by the proper use of fractional operators and

the power they have in simplifying the solution of complicated functional equations

should more than justify a more general recognition and use.”

-Herold T. Davis [1]

This chapter provides the introduction of the thesis. Section 1.1 discusses the back-

ground of fractional calculus and fractional partial differential equations. In Section

1.2, basic definitions that are being used throughout this thesis are collectively pro-

vided. Section 1.3 presents the survey and recent works on FPDEs. The challenges

and motivation behind the topic are explained in Section 1.4. Section 1.5 defines

the problem statement and lists the thesis objectives. The outline of the thesis is

given in Section 1.6.
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1.1 Background

1.1.1 Fractional calculus

Calculus is a powerful tool of mathematics which builds an interdisciplinary bridge

to almost all the other fields of science, engineering, economics, demography, rhe-

ology, etc. It provides the enormous applications of mathematics by solving many

problems real-world such as Newton’s second law of motion, Einstein’s theory of

general relativity, determination of radioactive decay, etc. [2]. However, there are

some phenomena in nature having memory effect such as human behaviour, business,

viscoelasticity, etc. which can not be modelled with the help of classical calculus [3].

Fractional calculus came into the picture by the end of 17th century, but at that time,

most of the scientists and researchers related to this field were more focused on the

classical calculus. So, this part of mathematics was left as less interested. Abel’s

tautochrone (isochrone) problem [4] was the first known problem represented in term

of fractional operators. Euler, Lagrange, Laplace, Lacroix, Fourier were among

those scientists who had worked in this area. Oldham and Spanier’s book titled

“The fractional calculus theory and applications of differentiation and integration to

arbitrary order” [5] is the first book entirely dedicated to the fractional operators.

1.1.2 Fractional partial differential equation

Partial differential equations (PDEs) are used to formulate the physical and other

problems involving function of several variables mathematically, such as the prop-

agation of heat or sound, fluid flow, elasticity, electrostatics, electrodynamics, etc.

[6]
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A fractional partial differential equation (FPDE) is a PDE that involves derivatives

of non-integer order, i.e., fractional derivatives. The non-locality of a fractional

derivative is the main advantage over the integer-order derivative. The former pro-

vides a mechanism for the internalization of memory and hereditary properties of

various phenomena. FPDEs are widely used in fluid mechanics, optical fibres, elec-

trochemistry, plasma physics, mathematical biology, and viscoelasticity [3]. The

following FPDEs are the base of this thesis and help in the study of other FPDEs

as well:

1.1.2.1 Fractional advection-diffusion equation

An advection-diffusion equation (ADE) simulates mass or energy transportation by

the fluid in a movement. This type of equation occurs in the problems of physics,

chemistry, and biology involving diffusion or dispersion [7, 8, 9, 10, 11, 12].

A standard ADE is given by

∂u(x, t)

∂t
+ a(x, t)

∂u(x, t)

∂x
= v2∂

2u(x, t)

∂x2
, (1.1)

where v > 0 is real parameter. Eq. (1.1) appears in describing solute transport

in aquifers, and u represents the solute concentration. The parameters a and v

represent the average fluid velocity and dispersion coefficient, respectively [13].

Fractional advection-diffusion equation (FADE) is obtained by making some or all

derivatives of an ADE arbitrary order. Fractional generalization of the diffusion

equation is introduced to describe anomalous kinetics of a simple dynamical system

with chaotic motion. FADE is used in groundwater hydrology to model the transport

of passive tracers carried by fluid flow in a porous medium [11]. FADE, in which



Chapter 1. Introduction 4

time derivative is of fractional order, arises from power-law particle residence time

distribution and describes particle motion with memory in time [14].

1.1.2.2 Fractional telegraph equation

The telegraph equation (TE), also known as telegrapher’s equation, was first studied

by Kirchhoff in 1857, and then by Heaviside. It was brought to attention by Poincaré

in 1893. The original form of the equation is as follows:

KL
∂2u

∂t2
+ (RK + SL)

∂u

∂t
+RSu =

∂2u

∂x2
, (1.2)

where u is electric potential or current, L is self-inductance, K is electrostatic ca-

pacity, R is resistance, and S is leakage conductance [15]. To investigate the TE

connecting with the diffusion equation, Eq. (1.2) is considered without leakage in

the following form:

∂2u

∂t2
+ λ

∂u

∂t
= c2∂

2u

∂x2
, (1.3)

where λ and c are positive constants.

A TE is used in the field of dynamics of population and hydrology [16], heat transfer

theory in thermodynamics [17, 18], signal analysis [19], wave propagation [20], trans-

portation charged particles [21], diffusion process of chemicals [22, 23], etc. There

are some processes in nature that are governed by time-fractional telegraph equa-

tions (TFTE). Cascaval et al. [24] studied various aspects of the fractional telegraph

equations to understand the anomalous diffusion processes occurring in blood flow
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experiments. Orsingher and Beghin [25] discussed the following TFTE

∂2αu

∂t2α
+ 2λ

∂αu

∂tα
= c2∂

2u

∂x2
, 0 < α ≤ 1. (1.4)

1.1.2.3 Fractional Burgers equation

A Burgers equation is a non-linear PDE whose solution gives a travelling wave

containing front sharpening. This equation is a mathematical model of traffic flow

and provides non-linear propagation with diffusion effects. The Burgers equation in

1D is defined as follows:

∂u

∂t
+ u

∂u

∂x
= V

∂2u

∂x2
, 0 < x < L, 0 < t < T, (1.5)

where u is a vector of conserved quantity as mass, momentum or energy, and V

is kinematic viscosity. It is the famous Navier Stokes equation for incompressible

flow with no pressure gradient. Burgers equation is generalized by some researchers

in different ways to describe the non-linear phenomena more accurately, which can

be seen as generalized Burger-Huxley equation, generalized Burgers-Fisher equa-

tion, etc. [26, 27]. Further, Wazwaz [28] developed a two-mode Burgers equation

and drove multiple kink solutions. In 2016, Momani [29] widespread the Burgers

equation by using space and time-fractional derivatives to model the unidirectional

propagation of non-linear acoustic waves through a pipe filled with gas.

1.2 Definitions of Fractional Derivatives

This section provides some definitions of fractional derivatives and integrals used

throughout this thesis. All the definitions given below are left-sided. A similar
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calculation can be done for right-sided definitions [3, 30, 31]. The integrals presented

here are assumed to be finite.

1.2.1 Basic definitions

Let [a, b] ⊂ R be a finite interval, and function f ∈ L1[a, b].

• The Riemann-Liouville fractional integral of the function f of order α ∈ R+ is

defined as

Iαa+f(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, t > a. (1.6)

• The Riemann-Liouville fractional derivative of the function f of order α ∈ R+,

such that m− 1 < α < m, m ∈ N is defined as

R
aD

α
t f(t) = Im−αa+ Dmf(t) =

1

Γ(m− α)

∫ t

a

(t− s)m−α−1f (m)(s)ds, t > a. (1.7)

• The Caputo fractional derivative of the function f of order α ∈ R+, such that

m− 1 < α < m, m ∈ N is defined as

C
aD

α
t f(t) = Im−αa+ Dmf(t) =

1

Γ(m− α)

∫ t

a

(t− s)m−α−1f (m)(s)ds, t > a. (1.8)

• The Caputo fractional derivative of order α ∈ (0, 1) of the function f is defined

as

C
aD

α
t f(t) =

1

Γ(1− α)

∫ t

a

f ′(s)

(t− s)α
ds, t > a. (1.9)
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1.2.2 Atangana-Baleanu derivative

The definitions of fractional derivative, like Grünwald-Letnikov, Riemann-Liouville,

Caputo, Riesz, Hadamard, etc. [3, 30] have a prominent place in the field of frac-

tional calculus, but still, have limitations. They contain singular and local kernel,

which is a restriction in modelling the viscoelastic material’s behaviour, electromag-

netic systems, etc. To overcome such type of difficulties, Caputo and Fabrizio [32]

proposed a new definition of fractional derivative based on the exponential kernel.

• If a function f ∈ H1(0, 1) then, Caputo-Fabrizio derivative of Caputo type for

α ∈ (0, 1) is defined as

CFC
0D

α
t f(t) =

M(α)

1− α

∫ t

0

f ′(s) exp

[
−α

1− α
(t− s)

]
ds, (1.10)

where M(α) is a normalization function which satisfies M(0) = M(1) = 1.

Atangana and Baleanu [31] provided another definition for fractional derivative,

which generalized the Caputo-Fabrizio definition. Atangana-Baleanu derivative con-

tains the Mittag-Leffler function as a non-local and non-singular kernel.

• If a function f ∈ H1(0, 1) then, Atangana-Baleanu derivative of Caputo type

for α ∈ (0, 1) is defined as

ABC
0D

α
t f(t) =

M(α)

1− α

∫ t

0

f ′(s)Eα

[
−α

1− α
(t− s)α

]
ds, (1.11)

where Eα(z) is the Mittag-Leffler function defined as

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
. (1.12)
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1.2.3 Generalized fractional derivative

Generalized fractional derivatives contain a scale function z(t) and a weight function

w(t) which are described in following ways [33, 34]:

• Left/forward generalized fractional integral of order α > 0 of a function f on

[a, b] with respect to scale function z(t) and weight w(t) is defined as

aI
α
t,(z,w)f(t) =

[w(t)]−1

Γ(α)

∫ t

a

w(s)z′(s)f(s)

[z(t)− z(s)]1−α
ds, t > a. (1.13)

• Left/forward generalized fractional derivative of order m is defined as

aD
m
t,(z,w)f(t) = [w(t)]−1

[(
1

z′(t)
Dt

)m
(w(t)f(t))

]
, t > a, (1.14)

where m− 1 < α < m, and Dt = d/dt.

• Left/forward generalized derivative of type 1 of order α > 0 of a function f is

defined as

1
aD

α
t,(z,w)f(t) = aD

m
t,(z,w)

(
aI

m−α
t,(z,w)f

)
(t). (1.15)

• Left/forward generalized derivative of type 2 of order α > 0 is defined as

2
aD

α
t,(z,w)f(t) = aI

m−α
t,(z,w)

(
aD

m
t,(z,w)f

)
(t). (1.16)

The generalized derivative of type 1 (Eq. (1.15)) may be referred as generalized

Riemann derivative, and generalized derivative of type 2 (Eq. (1.16)) as generalized

Caputo derivative, then the notations used for them are 1
aD

α
t,(z,w) = R

aD
α
t,(z,w), and

2
aD

α
t,(z,w) = C

aD
α
t,(z,w).
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The functions z(t) and w(t) are ‘good enough’. The scale function z(t) allows the

change in the considered domain. There are some cases where the results appear for

a few seconds only, in that situation the stretching scale function is used. On the

other hand, there are also cases where the process takes several decades, and here

contracting scale function is required. The weight function w(t) allows extension in

the kernel in fractional operators, allowing a higher degree of flexibility in modelling.

In the case of modelling memory of some diffusion process, it may require a heavy-

weight at the current time point, whereas other diffusion processes may require more

weight on past events. A weight function can help with such tasks. Selecting a differ-

ent type of scale and weight function, one can obtain various generalized fractional

derivatives and integrals. These generalized fractional derivatives and integrals in

fractional differential equations make the model more attractive and useful [33, 34].

1.3 Literature Review

In last few decades, researchers and scientists contributed much to the area of frac-

tional calculus. Caputo, Grünwald, Liouville, Riemann, Riesz, Weyl, etc. put their

significant contribution to this field, especially in forming the definition of fractional

integrals and derivatives. Classification of fractional operators given by Baleanu and

Fernandez [35] would be helpful. Moshrefi-Torbati and Hammond [36] provided an

interpretation of fractional operators in the time domain. Many advances have been

observed as the applications of fractional operators such as in economic growth [37],

electrical circuits [38], chaos and statistics [39], Earth system dynamics [40], con-

trol theory [41], geo-hydrology [42, 43], medical [44, 45], and more [46, 47, 48, 49].

Yildiz et al. [50] presented some aspects of fractional optimal control problems and

derived the optimality system for this problem. The role of fractional operators
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in modern mechanics is studied intensively by Xu and Tan [51]. Sun et al. [52]

presented a survey on applications of fractional calculus in various fields of science

and engineering. Machado et al. [53] analysed the evolution dedicated to the theory

and applications of fractional operations and their generalizations. Yang et al. [54]

discussed the role of fractional calculus in image processing. Comparative study of

an autonomous dynamical financial system using contemporary tools from fractional

calculus is provided by Yusuf et al. [55] Ionescu et al. [56] provided a review with

the latest scientific results of fractional calculus in modelling biological phenomena.

There are some other surveys [57, 58, 59] and reviews [60, 61, 62] throwing the light

on chronological developments in fractional calculus and its applications. Some text-

books (for reference [3, 30, 63, 64, 65, 66, 67, 68]) are also available for further and

deep studies.

1.3.1 Literature review on fractional partial differential equa-

tions

The research work on FPDEs has been the attraction for scientists and engineers

[69, 70, 71, 72]. Time-fractional diffusion equation with distributed order between 0

and 1 is investigated by Mainardi [73]. Momani and Odibat [74] discussed the linear

FPDEs arising in fluid mechanics. Jafari and Seifi [75] worked on a system of non-

linear FPDEs and provided solutions using homotopy analysis method. Purohit [76]

solved FPDEs of quantum mechanics. Bhrawy [77] studied some time-space FPDEs

with sub-diffusion and super-diffusion and provided spectral collocation algorithm

for solving them. Feng and Meng [78] presented an improved fractional Jacobi el-

liptic equation method to find the exact solutions of space-time FPDEs arising in

mathematical physics. The work of Ara et al. [79] on some FPDEs is considered as
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an application to financial modelling. Arqub [80] introduced the reproducing ker-

nel algorithm for time-fractional PDEs subject to Robin boundary conditions with

parameters derivative concurring in fluid flows, heat conduction and electric circuit

etc. Goswami et al. [81] studied time-fractional regularized long wave equations

which describe the nature of shallow water waves in oceans and ion-acoustic waves

in plasma. Wang and Zheng [82] derived the well-posedness and regularity of the

variable-order time-fractional partial differential equations with the applications in

modelling local and non-local dynamics of multi-physics phenomena. A survey paper

by Luchko and Yamamoto [83] discussed FPDEs generated by the general fractional

derivative introduced by A. Kochubei. Recently, Li and Chen [84] reviewed some

numerical methods for solving FPDEs. There is also a book by Guo et al. [85] for

the same. Some more recent work on different types of FPDEs can be found in

[86, 87, 88, 89, 90, 91, 92].

1.3.1.1 Literature review on fractional advection-diffusion equation

FADE is an important FPDE treated by several authors. This equation presents

an approach to describe the transport dynamics in complex systems governed by

anomalous diffusion [93]. Liu et al. [94, 95, 96] studied Lévy motion with α−stable

densities using a FADEs. Meerschaert et al. [97] developed practical numerical

methods for solving the space FADE with variable coefficients on a finite domain

and presented a practical application of the results in modelling a radial flow prob-

lem. Momani et al. [98] constructed a reliable algorithm using the Adomian de-

composition method to find the numerical solutions of the space-time FADE in the

form of a rapidly convergent series with easily computable components. Wang and

Wang [99] developed a fast characteristic finite difference method for the solution of

space-fractional transient ADEs. Parvizi et al. [100] studied FADE with non-linear
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source term. Fundamental solutions of ADE with time-fractional Caputo–Fabrizio

derivative are obtained by Mirza and Vieru [101]. Kundu [102] studied suspension

concentration distribution in turbulent flows using FADE. Chen et al. [103] de-

veloped a fully-discrete numerical scheme for multi-term time-space variable-order

FADE which describes transient dispersion observed at a field tracer test. McLean

et al. [104] established well-posedness of time-fractional advection-diffusion-reaction

equations with Riemann–Liouville fractional derivative. Tang [105] considered an

optimal control problem of an FADE with Caputo time-fractional derivative. Some

more work in which effective methods to solve FADE numerically is provided in

[106, 107, 108, 109, 110, 111] with applications to various areas.

1.3.1.2 Literature review on fractional Burgers equation

Fractional Burgers equation is a basic and important non-linear FPDE which is

studied by many authors [112, 113, 114, 115, 116, 117]. Mǐskinis [118] discussed the

relation between integer ordered Burgers equation and its properties of fractional

generalization. Earlier, Sugimoto [119] examined the initial-value problems asymp-

totically and numerically for the Burgers equation with fractional derivative. Yang et

al. [120] investigated the local fractional Burgers equation and its non-linear dynam-

ics arising in fractal flow. Esen et al. [121] studied fractional diffusion equation and

fractional Burgers-Fisher equation with Haar wavelet method where time-fractional

derivatives are Caputo type. Saad and Al-Sharif [122] computed variational iteration

method solutions for the fractional Burgers equation and shown the behaviour of the

solutions as the fractional derivative parameter changed. Yokus and Kaya [123] gave

an exact solution of time-fractional Burgers equation using the expansion method

and the Cole-Hopf transformation. Liu and Chang [124] solved a time-fractional

Burgers equation with unknown space–time-dependent source term. Torebek [125]
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obtained sufficient conditions for the non-existence of fractional Burgers equation’s

time-global solutions. Yang and Machado [126] considered the non-linear Burgers

equation engaging local fractional derivative with the use of travelling-wave trans-

formation and used results to describe the propagation of the acoustic signals in the

stratified fractal media. Akram et al. [127] used a finite difference scheme based

on an extended cubic B-spline for the second-order derivative to solve Caputo type

time-fractional Burgers equation. Recently, Li and Li [128] discussed Cole–Hopf

transformation and the method of separation of variables for the exact and numeri-

cal solutions of the fractional Burgers equation.

1.3.1.3 Literature review on fractional telegraph equation

Some major advances in solving fractional TE and its applications can be seen in

[129, 130, 131, 132, 133, 134, 135]. Orsingher and Beghin [25] examined the solu-

tions of Eq. (1.4) with f(x, t) = 0 and α ∈ [0, 1/2] using Fourier transform. They

also examined the Eq. (1.4) with special type of rational order [22]. Dehghan and

Shokri [23] proposed a numerical method to solve the hyperbolic TE using colloca-

tion points. Chen et al. [21] studied the analytical solution of time-FTE using the

concept of separating variables. Povstenko [136] considered generalized telegraph

equations with time-space fractional derivatives and formulated the corresponding

theories of thermal stresses. Space-FTE is studied by Kumar [137] using fractional

homotopy analysis transform method. Chen et al. [138] provided the unconditional

stable difference schemes for Riesz space FTE. Hesameddini and Asadolahifard [139]

discussed a novel spectral Galerkin method for dealing with the hyperbolic TE in

two dimension. Sharifi and Rashidinia [140] considered cubic B-spline collocation

method for the numerical solution of hyperbolic TE. Ferreira et al. [141] obtained the

fundamental solution of multidimensional time-FTE of Caputo type. Tawfik [142]
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solved the space-time FTE and space-time FADE analytically, which are mathemat-

ical models of energetic particle transport for both uniform and non-uniform large-

scale magnetic field. Madhukar et al. [143] studied the heat conduction in biological

materials whose mathematical modelling yield the time-FTE. Some recent work on

FTE includes: the numerical solutions of Caputo type FTE using Crank-Nicholson

difference schemes by Modanli and Akgül [144]; the discussion of well-posedness and

regularity of the solutions of time-fractional damped wave equations including time-

FTEs by Zhou and He [145]; the numerical solution of time-FTE by a local meshless

method [146].

1.4 Challenges and Motivation

Unlike classical calculus, the definition of fractional derivatives are not clear. The-

oretical and experimental studies are being conducted for the last few decades

to provide the precise definition that satisfies the basic rules of derivatives. Ca-

puto derivative and Riemann-Liouville derivative are the most popular and pro-

foundly used definitions [30]. Some authors recently extended these definitions to

model some important physical phenomena like viscoelasticity, electromagnetic sys-

tems, etc. Katugampola [147, 148] presented new definitions to generalize the Rie-

mann–Liouville and Hadamard fractional integrals and derivatives into a single form.

Jarad et al. [149] proposed a generalized proportional fractional derivative.

Caputo and Fabrizio [32] discussed fractional derivative in which the kernel of the

integral contains an exponential term. Using the Mittag-Leffler function in place

of an exponential function, Atangana and Baleanu [31] modified this definition. As

the Atangana-Baleanu derivative is non-singular and non-local, it does not lead to

inclusion of artificial singularity into the mathematical model. Also, it has ability
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to describe two different waiting times distribution which is an ideal waiting time

distribution as observed in many biological phenomena such as in spread of cancer.

This definition has vast applications in many fields of science and engineering [150,

151, 152, 153, 154, 155, 156, 157, 158]. Atangana [72], Abdeljawad [159], Baleanu

[160], Gómez-Aguilar [69], etc. are among the authors who developed the analytical

and numerical theory for Atangana-Baleanu derivative.

Agrawal [33, 34] gave generalized definitions of fractional integrals and derivatives

in 2012. These new definitions were proposed using scale function and weight func-

tion. Agrawal and Xu [161, 162] worked on the fractional differential equations using

generalized derivatives. In their papers, they gave stable numerical schemes whose

order of convergence is estimated to one. Xu and Zheng [163] presented spectral

collocation method, Kumar et al. [164, 165] and Cao et al. [166] developed finite

difference schemes for the numerical solution of fractional differential/integral equa-

tions with generalized fractional operators. Ding and Wong [167] derived high order

schemes inspired by the classical result of the Grünwald-Letnikov formula.

Fractional partial differential equations with the new derivatives are the new pos-

sibilities in studying natural phenomena with memory effect more thoroughly and

accurately. The motivation behind the thesis is to understand the nature of different

types of FPDEs generated by the Atangana-Baleanu derivative and the generalized

fractional derivative proposed by Agrawal. The fractional advection-diffusion equa-

tion and fractional telegraph equation are the basic linear FPDEs, and the fractional

Burgers equation is a non-linear FPDE. These equations help in studying other com-

plex FPDEs. The presence of non-integer order derivatives makes the differential

equations too complex to be solved analytically, so numerical simulation is required.

It is a challenge to provide more accurate numerical results. Finite difference method

(FDM) [168, 106, 169], finite element method (FEM) [170, 171, 100], short memory
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principle [172, 173], homotopy analysis method [75, 174], meshless method of radial

basis functions [175] are some methods which are being used to solve FPDEs.

1.5 Problem Statement and Thesis Objective

FADE, fractional TE, and fractional Burgers equations are examples of linear and

non-linear fractional partial differential equations. Significant work has been done

when the fractional derivatives are of Riemann-Liouville and Caputo type. However,

numerical methods and analysis of newly proposed fractional derivatives are quite

limited. Also, the stability and convergence of a numerical scheme for FPDEs are

difficult to derive.

The aim of this research work is to develop some high order numerical schemes for

these types of equations using Atangana-Baleanu and generalized derivatives. FDM

is used to maintain the simplicity and to provide the accuracy of the scheme. For

achieving a high order of convergence, Taylor series expansion is used along with

FDM.

The objectives of the thesis are:

1. To develop high order convergence schemes for the generalized and Atangana-

Baleanu definitions of fractional derivative using FDM and Taylor series ex-

pansion.

2. To apply the schemes on FPDEs like the advection-diffusion equation, tele-

graph equation, and Burgers equation to get the approximate solutions.

3. To study the stability of numerical schemes developed for FPDEs.

4. To provide the experimental analysis for supporting the theoretical statements.
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1.6 Outline of the Thesis

The outline of the thesis is as follows:

Chapter 1 provides the introduction of the thesis. Basic definitions that are being

used throughout this thesis are collectively provided. It also presents the literature

survey and recent works on FPDEs. The motivation behind choosing the topic and

problem statement of the thesis are explained.

Chapter 2 presents numerical schemes for the Atangana-Baleanu Caputo derivative

in two ways and uses the same for solving the FADE, whose time derivative is

Atangana-Baleanu Caputo derivative. In the first method, FDM is used, and in

second method, the Taylor expansion series of the function is used along with FDM.

The stability of the schemes is established numerically. The convergence orders for

Method 1 and Method 2 are obtained as O(τ 2 + h2) and O(τ 3 + h2), respectively.

Numerical examples are provided to support the theory.

Chapter 3 is based on a numerical technique using an FDM to solve the fractional

Burgers equation whose time-derivative is Atangana-Baleanu fractional derivative.

Some examples are considered to perform numerical simulations. The stability of

the scheme is proved, and the order of convergence is estimated numerically, which

is O(τ + h2).

Chapter 4 presents an approximation of generalized Caputo derivative of order

α ∈ (0, 1) using Taylor’s expansion. This approximation is used to develop a high

order numerical scheme for solving the generalized fractional advection-diffusion

equation, which is formed using the generalized Caputo derivative in respect of

time. Some examples are provided to show the effects of different parameters on the

diffusion process of the equation.
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Chapter 5 discusses a FDM for the generalized time-fractional telegraph equation

(GTFTE) via generalized fractional derivative. It also presents the behaviour of

the solution of GTFTE by changing the weight and scale functions in the general-

ized fractional derivative. The convergence and the stability of the finite difference

scheme are also studied.

Chapter 6 concludes the thesis and explains possible future work in solving FPDEs

formed by using newly proposed derivatives.


