
Chapter 5

Effects of infinite occurrence of hybrid impulses

on quasi-synchronization of parameter

mismatched neural networks

5.1 Introduction

This chapter investigate the effects of hybrid impulsive sequence on quasi synchro-

nization of two non identical neural networks with mixed time-varying delays. In

the real world’s problems, there exists an impulsive sequence in which impulses oc-

cur infinite number of times and the length of impulsive interval increases gradually.

Such type of impulses does not essentially adversely affect the synchronization of the

coupled neural networks. Inspired from this fact, different from the definitions of

average impulsive interval considered in previous chapters, authors in [108] proposed

two new concepts of average impulsive interval Ta = lim
t→∞

t−s
Nζ(t,s)

and average impul-

sive gain µ = lim
t→∞

|µ1|+|µ2|+...+|µNζ(t,s)|
Nζ(t,s)

, and derived the unified synchronization criteria

for an array of coupled neural networks with hybrid impulses. When the number

of impulsive points Nζ(t, s) will be infinite in the time span (s, t) then Ta = ∞,

otherwise Ta <∞.

Using the new concepts of average impulsive interval and average impulsive gain, we

have derived sufficient criteria for achieving synchronization between nonidentical
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neural networks with mixed time-varying delays. In the last of this chapter, we con-

sidered two numerical examples and elaborately discussed the efficiency of obtained

results for two different cases: one is Ta =∞ and another is Ta <∞.

5.2 Problem formulation and some preliminaries

Consider a neural network with mixed time-varying delays whose state equation is

described as follows:

ẋi(t) =− āixi(t) +
n∑
j=1

b̄ijf1j(xj(t)) +
n∑
j=1

c̄ijf2j(xj(t− σ1(t)))

+
n∑
j=1

d̄ij

∫ t

t−σ2(t)

f3j(xj(s)) ds + Ii,

xi(t) =φi(t) ∈ C([−σ, 0],R), i = 1, 2, ..., n. (5.1)

In a compact form it can be re-written as

ẋ(t) =− Āx(t) + B̄f1(x(t)) + C̄f2(x(t− σ1(t))) + D̄

∫ t

t−σ2(t)

f3(x(s))ds+ I,

x(t) =φ(t) ∈ C([−σ, 0], Rn), (5.2)

where n denotes the number of neurons in the network; x(t) = [x1(t), x2(t), ..., xn(t)]T ∈

Rn is the state vector associated with the neurons at time t; Ā = diag(ā1, ā2, ..., ān) >

0; B̄ = (b̄ij)n×n ∈ Rn×n is the connection weights matrix of the neurons at time t;

C̄ = (c̄ij)n×n ∈ Rn×n and D̄ = (d̄ij)n×n ∈ Rn×n are the matrices of weights of

connections among the neurons with and without delay, respectively; f1(x(t)) =

[f11(x1(t)), f12(x2(t)), ..., f1n(xn(t))]T ∈ Rn, f2(x(t− σ1(t))) = [f21(x1(t− σ1(t))), ...,

f2n(xn(t− σ1(t)))]T ∈ Rn and f3(x(t)) = [f31(x1(t)), f32(x3(t)), ..., f3n(xn(t))]T ∈ Rn



Chapter 5. Effects of infinite occurrence of hybrid impulses ... 121

are activation functions of the neurons at time t, t−σ1(t) and distributed time delay

t−σ2(t) respectively, such that f1(0) = 0, f2(0) = 0 and f3(0) = 0; σ = max{σ1, σ2},

where σ1 and σ2 are upper bounds of σ1(t) and σ2(t) respectively; the initial con-

dition of the equation (5.1) is φ(s) = [φ1(s), φ2(s), ..., φn(s)]T belongs to the set

of continuous functions C([−σ, 0], Rn); the external input value to the network is

denoted by I = [I1, I2, ..., In]T .

Now, we will consider some assumptions, lemmas, and definitions which will be used

throughout the article to achieve quasi-synchronization of neural networks under

hybrid impulses.

Assumption 5.1. For any u1, u2 ∈ R and i = 1, 2, ..., n, the continuous activation

functions f1(.), f2(.) and f3(.) satisfy the following conditions:

0 ≤ f1i(u1)− f1i(u2)

u1 − u2

≤ lf1i
,∀u1, u2 ∈ R ,

0 ≤ f2i(u1)− f2i(u2)

u1 − u2

≤ lf2i
,∀u1, u2 ∈ R ,

0 ≤ f3i(u1)− f3i(u2)

u1 − u2

≤ lf3i
,∀u1, u2 ∈ R ,

where Lf1 =diag(lf11 , lf12 , ..., lf1n) > 0, Lf2 =diag(lf21 , lf22 , ..., lf2n) > 0, and Lf3 =diag(lf31 ,

lf32 , ..., lf3n) > 0 are positive diagonal matrices.

Assumption 5.2. The trajectory of the equation (5.2) is bounded, i.e., there exists

M > 0 such that ‖x(t)‖ ≤M, ∀t ∈ [−σ,+∞].

Lemma 5.2.1. For any X, Y ∈ Rn, we have 2XTY ≤ XTX + Y TY .

Lemma 5.2.2. [109] For any positive constant matrix P ∈ Rn×n, P = P T , a scalar

value α > 0, and a vector valued function F : [0, α] → Rn, the following integral
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inequality is well-defined

(∫ α

0

F (s)ds

)T

P

(∫ α

0

F (s)ds

)
≤ α

∫ α

0

F T (s)PF (s)ds. (5.3)

To formulate the problem of this article, we need another state equation of neural

network whose connection weights matrices are different from the equation (5.2).

Consider the state equation of the slave system as

ẏ(t) =− Ãy(t) + B̃f1(y(t)) + C̃f2(y(t− σ1(t))) + D̃

∫ t

t−σ2(t)

f3(y(s))ds+ U(t) + J,

y(t) =ϕ(t) ∈ C([−σ, 0], Rn), (5.4)

where y(t) = [y1(t), y2(t), ..., yn(t)]T is the state vector of the networks’ neurons

with initial condition y(t) = ϕ(t) = [ϕ1(t), ϕ2(t), ..., ϕn(t)]T ∈ C([−σ, 0], Rn); Ã =

diag(ã1, ã2, ..., ãn) > 0; B̃ = (b̃ij)n×n ∈ Rn×n, C̃ = (c̃ij)n×n ∈ Rn×n and D̃ =

(d̃ij)n×n ∈ Rn×n are the connection weights matrices among the neurons of the

network without and with delays; J = [J1, J2, ..., Jn]T is column vector of external

input values to the network; U(t) is the hybrid impulsive control function which will

be discussed later.

In order to investigate the quasi-synchronization between the systems’ network, the

error neural network which is defined as e(t) = y(t) − x(t) has been constructed

by using equations (5.4) and (5.2). Derivative of the error neural network can be

written as

ė(t) =− Ãe(t) + B̃f̂1(e(t)) + C̃f̂2(e(t− σ1(t))) + D̃

∫ t

t−σ2(t)

f̂3(e(s))ds

+R(x(t), σ1(t), σ2(t)) + U(t), (5.5)
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where f̂1(e(t)) = f1(y(t)) − f1(x(t)), f̂2(e(t − σ1(t))) = f2(y(t − σ1(t))) − f2(x(t −

σ1(t))), f̂3(e(s)) = f3(y(s))− f3(x(s)), and

R(x(t), σ1(t), σ2(t)) =(−Ã+ Ā)x(t) + (B̃ − B̄)f1(x(t)) + (C̃ − C̄)f2(x(t− σ1(t)))

+ (D̃ − D̄)

∫ t

t−σ2(t)

f3(x(s))ds+ (J − I). (5.6)

From Assumption 5.1, we have

‖f1(x(t))‖ ≤
√
λmax(LTf1

Lf1)M, (5.7)

‖f2(x(t− σ1(t)))‖ ≤
√
λmax(LTf2

Lf2)M, (5.8)

‖f3(x(s))‖ ≤
√
λmax(LTf3

Lf3)M. (5.9)

Now, using Assumption 5.2 and taking norm ‖.‖ on both sides of the equality (5.6),

we get

‖R(x(t), σ1(t), σ2(t))‖ ≤‖Ā− Ã‖‖x(t)‖+ ‖B̃ − B̄‖‖f1(x(t))‖+ ‖C̃ − C̄‖

‖f2(x(t− σ2(t)))‖+ ‖D̃ − D̄‖
∫ t

t−σ2(t)

‖f3(x(s))‖ds+ ‖J − I‖

≤(‖Ā‖+ ‖Ã‖)M + (‖B̃‖+ ‖B̄‖)×
√
λmax(LTf1

Lf1)M

+ (‖C̃‖+ ‖C̄‖)
√
λmax(LTf2

Lf2)M + (‖D̃‖+ ‖D̄‖)

×
√
λmax(LTf3

Lf3)Mσ2 + ‖J‖+ ‖I‖. (5.10)

It is clear from the inequality (5.10) that ‖R(x(t), σ1(t), σ2(t))‖ is bounded ∀t ≥ −σ.

Suppose that Ξ = supt≥−σ ‖R(x(t), σ1(t), σ2(t))‖, where Ξ <∞.
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For achieving the quasi-synchronization between the systems (5.4) and (5.2), a hy-

brid impulsive controller is designed as

Ui(t) = −γiei(t) +
∞∑
k=1

(
µkei(t)− ei(t)

)
δ(t− tk), i = 1, 2, ..., n, (5.11)

where Γ = diag(γ1, γ2, ..., γn) ≥ 0 and µk is impulsive strength at point t = tk of

impulsive sequence ζ = {t1, t2, ..., tk}. The impulsive sequence is strictly increasing

and unbounded above, i.e., t1 < t2 < t3 < ... < tk−1 < tk < ... and limk→∞ tk = +∞.

The function δ(.) is the Dirac delta function.

Substituting the control function (5.11) into the error neural network (5.5), we obtain


ė(t) = −(Ã+ Γ)e(t) + B̃f̂1(e(t)) + C̃f̂2(e(t− σ1(t))) + D̃

∫ t
t−σ2(t)

f̂3(e(s))ds

+R(x(t), σ1(t), σ2(t)), t 6= tk,

e(t+k ) = µke(t
−
k ), t = tk, k = 1, 2, ...n.

(5.12)

The solution of impulsive delayed system (5.12) is assumed to be right-hand con-

tinuous and left-hand discontinuous at t = tk(k = 1, 2, ..., n), i.e., e(t+k ) = e(t) 6=

e(t−k ). This means that the solution of (5.12) exhibits jump kind of discontinuities

from the left side of t = tk. For simplicity, throughout the article we will write

R(x(t), σ1(t), σ2(t)) as R(.).

Due to the presence of parameter mismatches between the neural networks (5.4)

and (5.2), the equilibrium point of the impulsive differential equation (5.12) cannot

be zero. Therefore, the complete synchronization is not possible, but it is found

that the states of systems can be synchronized up to a small synchronization error
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bound by using effective controller. This type of synchronization is called quasi-

synchronization.

Definition 5.2.1. The synchronization between the systems (5.4) and (5.2) is said to

be quasi-synchronization with a small error bound ē > 0 if there exists a compact

set ∆ = {e ∈ Rn : ‖e(t)‖ ≤ ē} in to which the trajectory of the error system (5.12)

converges globally exponentially as time t→∞. Where ‖(.)‖ is an Euclidean norm

on finite dimensional normed space.

Definition 5.2.2. [110? ] (Average Impulsive Interval) The average impulsive interval

Ta of the impulsive sequence ζ = {t1, t2, t3, ...} is defined as

Ta = lim
t→∞

t− s
Nζ(t, s)

, (5.13)

where Nζ(t, s) is the number of impulsive instants of impulsive sequence ζ on the

interval (t, s).

Remark 5.2.1. The concept of average impulsive interval was first introduced in

[88] to deal with the occurrence of different types of impulses. Most of the results

published in the literature based on t−s
Ta
− N0 ≤ Nζ(s, t) ≤ t−s

Ta
+ N0 are restricted

to Ta <∞. the results of this chapter is extended to the case Ta =∞ by using the

new concept of average impulsive interval Ta = limt→∞
t−s

Nζ(t,s)
.

Definition 5.2.3. [110? ] (Average Impulsive Gain) The average impulsive gain of

all impulses {µ1, µ2, ...} is designed as

µ = lim
t→∞

|µ1|+ |µ2|+ ...+ |µNζ(t,s)|
Nζ(t, s)

> 0, (5.14)

where µk for all k = 1, 2, ..., n denotes impulsive gain at t = tk.
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Lemma 5.2.3. [89] If there exists a positive constant c such that


D+(u(t)) ≤ G(t, u(t), u(t− σ1(t))) + c

∫ t
t−σ2(t)

u(s)ds, t 6= tk,

u(tk) ≤ Ik(u(t−k )), k ∈ N
(5.15)

and 
D+(v(t)) > G(t, v(t), v(t− σ1(t))) + c

∫ t
t−σ2(t)

v(s)ds, t 6= tk,

v(tk) ≥ Ik(v(t−k )), k ∈ N,
(5.16)

where G(t, u, ū1) : R+×R×R→ R is non-decreasing in ū1 for any fixed (t, u) and

Ik(u) : R → R is non-decreasing in u. Then u(t) ≤ v(t), ∀t ∈ [−σ, 0] implies that

u(t) ≤ v(t) for t > 0, where D+(u(t)) = lim
h→0+

sup u(t+h)−u(t)
h

.

5.3 Main Results

In this section, we have studied the influence of hybrid impulses when Ta < ∞

on quasi-synchronization of neural networks (5.4) and (5.2) under hybrid impulsive

controller (5.11). Furthermore, we have considered the case of Ta =∞ and derived

sufficient criteria for quasi-synchronization.

5.3.1 Quasi-synchronization criteria for Ta <∞

Theorem 5.1. Suppose that the activation functions f1(.), f2(.) and f3(.) satisfy

Assumption 5.1. The controlled error neural network (5.12) converges globally expo-

nentially at the convergence rate λ
2
> 0 into a small compact domain ∆̄1 containing
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the origin if

ξ1 + 2
lnµ

Ta
+ δ + ξ2 + ξ3σ2 < 0, (5.17)

where ξ1 = λmax

{
2(−Ã−Γ)+B̃T B̃+C̃T C̃+D̃T D̃+LTf1

Lf1

}
, ξ2 = λmax

{
LTf2

Lf2

}
, ξ3 =

λmax

{
σ2L

T
f3
Lf3

}
and λ is a unique solution of equation λ+2 lnµ

Ta
+ξ1 +δ+ξ2e

λσ1(t) +

ξ3
eλσ2(t)−1

λ
= 0. The compact domain of convergence is

∆̄1 =

{
e(t) ∈ Rn : ‖e(t)‖ ≤ Ξ√

−
(
ξ1 + 2 lnµ

Ta

)
− ξ2 − δ − ξ3σ2

}
.

Proof. Suppose the Lyapunov function candidate is constructed as follows:

V (e(t)) = eT (t)e(t), t 6= tk, (5.18)

where e(t) = [e1(t), e2(t), ..., en(t)]T is the state vector of impulsive system (5.12).

The Dini derivative of equation (5.18) with respect to t along trajectories of the

controlled error neural network (5.12) could be written as

D+(V (e(t))) = 2eT (t)ė(t). (5.19)

From system (5.12), we have

D+(V (e(t))) =2eT (t)(−Ã− Γ)e(t) + 2eT (t)B̃f̂1(e(t)) + 2eT (t)C̃f̂2(e(t− σ1(t)))

+ 2eT (t)D̃

∫ t

t−σ2(t)

f̂3(e(s))ds+ 2eT (t)R(.). (5.20)
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Using Lemma 5.2.1, we could find these inequalities as

2eT (t)B̃f̂1(e(t)) ≤ eT (t)B̃T B̃e(t) + f̂T1 (e(t))f̂1(e(t)), (5.21)

2eT (t)C̃f̂2(e(t− σ1(t))) ≤ eT (t)C̃T C̃e(t) + f̂T2 (e(t− σ1(t)))× f̂2(e(t− σ1(t))),

(5.22)

2eT (t)D̃

∫ t

t−σ2(t)

f̂3(e(s))ds ≤ eT (t)D̃T D̃e(t) +

(∫ t

t−σ2(t)

f̂3(e(s))ds

)T(∫ t

t−σ2(t)

f̂3(e(s))ds

)
,

(5.23)

2eT (t)R(.) ≤ eT (t)e(t) +RT (.)R(.). (5.24)

Substituting the inequalities (5.21), (5.22), (5.23), and (5.24) in the equation (5.20),

we get

D+(V (e(t))) ≤2eT (t)(−Ã− Γ)e(t) + eT (t)B̃T B̃e(t) + f̂T1 (e(t))f̂1(e(t)) + eT (t)C̃T C̃e(t)

+ f̂T2 (e(t− σ1(t)))f̂2(e(t− σ1(t))) + eT (t)D̃T D̃e(t)

+

(∫ t

t−σ2(t)

f̂3(e(s))ds

)T(∫ t

t−σ2(t)

f̂3(e(s))ds

)
+ eT (t)e(t) +RT (.)R(.).

(5.25)

From Assumption 5.1 and Lemma 5.2.2, we have

D+(V (e(t))) ≤eT (t)2(−Ã− Γ)e(t) + eT (t)B̃T B̃e(t) + eT (t)LTf1
Lf1e(t) + eT (t)C̃T C̃e(t)

+ eT (t− σ1(t))LTf2
Lf2e(t− σ1(t)) + eT (t)D̃T D̃e(t)

+ σ2L
T
f3
Lf3

∫ t

t−σ2(t)

eT (s)e(s)ds+ ‖R(.)‖2 (5.26)

≤λmax
{

2(−Ã− Γ) + B̃T B̃ + C̃T C̃ + D̃T D̃ + LTf1
Lf1

}
V (e(t))

+ λmax

{
LTf2

Lf2

}
V (e(t− σ1(t))) + λmax

{
σ2L

T
f3
Lf3

}∫ t

t−σ2(t)

V (e(s))ds

+ ‖R(.)‖2. (5.27)
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Suppose that ξ1 = λmax

{
2(−Ã − Γ) + B̃T B̃ + C̃T C̃ + D̃T D̃ + LTf1

Lf1

}
, ξ2 =

λmax

{
LTf2

Lf2

}
and ξ3 = λmax

{
σ2L

T
f3
Lf3

}
. Then, we have

D+(V (e(t))) ≤ξ1V (e(t)) + ξ2V (e(t− σ1(t))) + ξ3

∫ t

t−σ2(t)

V (e(s))ds+ ‖R(.)‖2.

(5.28)

For t = tk, the Lyapunov function candidate will be

V (e(t+k )) =eT (t+k )e(t+k )

=µ2
ke
T (t−k )e(t−k )

V (e(t+k )) =µ2
kV (e(t−k )). (5.29)

Based on (5.28) and (5.29), the following impulsive system with distributed delay

can be derived by using the comparison principle as


ż(t) = ξ1z(t) + ξ2z(t− σ1(t)) + ξ3

∫ t
t−σ2(t)

z(s)ds+ ‖R(.)‖2 + ε, t 6= tk,

z(t+k ) = µ2
kz(t−k ), t = tk,

z(s) = ‖ϕ(s)− φ(s)‖2, − σ ≤ s ≤ 0,

(5.30)

where z(t) is a unique solution for all ε > 0. From Lemma 5.2.3, it is concluded

that V (t) ≤ z(t) for all t ≥ 0. By employing the extended formula for variation of

parameters, z(t) could be written as

z(t) = W (t, 0)z(0) +

∫ t

0

W (t, s)

[
ξ2z(s− σ1(s)) + ξ3

∫ s

s−σ2(s)

z(r)dr + ‖R(.)‖2 + ε

]
ds,

t ≥ 0, (5.31)
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where W (t, s) is the Cauchy matrix of the following linear impulsive system


ż(t) = ξ1z(t), t 6= tk,

z(t+k ) = µ2
kz(t−k ), t = tk, k = 1, 2, ..., n.

From the Definitions 5.2.2 and 5.2.3, the Cauchy matrix can be calculated as

W (t, s) =µ2
1µ

2
2...µ

2
Nζ(t,s)e

ξ1(t−s)

≤
( |µ1|+ |µ2|+ ...+ |µNζ(t,s)|

Nζ(t, s)

)2Nζ(t,s)

eξ1(t−s)

=e
2Nζ(t,s) ln

|µ1|+|µ2|+...+|µNζ(t,s)|

Nζ(t,s) eξ1(t−s)

=e

2 ln

|µ1|+|µ2|+...+|µNζ(t,s)|

Nζ(t,s)

t−s
Nζ(t,s)

(t−s)
eξ1(t−s).

From (5.13) and (5.14), we have lim
t→∞

2 ln
|µ1|+|µ2|+...+|µNζ(t,s)|

Nζ(t,s)

t−s
Nζ(t,s)

= 2 lnµ
Ta

. That is, for any

µ > 1 or µ = 1 or µ < 1, there exists a sufficiently large T > 0 for given δ > 0 such

that

W (t, s) ≤ e

(
2 lnµ
Ta

+δ+ξ1

)
(t−s)

, t > T. (5.32)

Substituting inequality (5.32) into the integral equation (5.31), we get

z(t) ≤ ‖ϕ(0)− φ(0)‖2e

(
2 lnµ
Ta

+δ+ξ1

)
t
+

∫ t

0

e

(
2 lnµ
Ta

+δ+ξ1

)
(t−s)

×

[
ξ2z(s− σ1(s)) + ξ3

∫ s

s−σ2(s)

z(r)dr + ‖R(.)‖2 + ε

]
ds

≤ηe

(
2 lnµ
Ta

+δ+ξ1

)
t
+

∫ t

0

e

(
2 lnµ
Ta

+δ+ξ1

)
(t−s)
×

[
ξ2z(s− σ1(s))

+ ξ3

∫ s

s−σ2(s)

z(r)dr + ‖R(.)‖2 + ε

]
ds, (5.33)
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where η = sup−σ≤s≤0 ‖ϕ(s)−φ(s)‖2. Define ψ(λ) = λ+ 2 lnµ
Ta

+δ+ξ1+ξ2e
λσ1+ξ3

eλσ2−1
λ

.

It is easy to verify that ψ(λ) is continuous function. Furthermore, ψ(0) = ξ1 +2 lnµ
Ta

+

δ + ξ2 + ξ3σ2 < 0, ψ(+∞) > 0 and ψ
′
(λ) = 1 + ξ2σ1e

λσ1 + ξ3
eλσ2 (λσ2−1)+1

λ2 > 0, this

implies that ψ(λ) = 0 has a unique solution λ > 0.

Since λ > 0, ε > 0 and −ξ1 − 2 lnµ
Ta
− δ − ξ2 − ξ3σ2 > 0, then we have

z(t) ≤ sup
−σ≤t≤0

‖ϕ(t)− φ(t)‖2, − σ ≤ t ≤ 0

<ηe−λt +
ε+ ‖R(.)‖2

−ξ1 − 2 lnµ
Ta
− δ − ξ2 − ξ3σ2

, − σ ≤ t ≤ 0. (5.34)

Using the mathematical principle: proof by contradiction, we will proceed to show

the inequality (5.34) is true for all t > 0. That is,

z(t) < ηe−λt +
ε+ ‖R(.)‖2

−ξ1 − 2 lnµ
Ta
− δ − ξ2 − ξ3σ2

, t > 0. (5.35)

Let the inequality (5.35) does not hold ∀t > 0, then there exist t∗ > 0 such that

z(t) ≥ ηe−λt
∗

+
ε+ ‖R(.)‖2

−ξ1 − 2 lnµ
Ta
− δ − ξ2 − ξ3σ2

. (5.36)

But the inequality (5.35) still holds as

z(t) < ηe−λt +
ε+ ‖R(.)‖2

−ξ1 − 2 lnµ
Ta
− δ − ξ2 − ξ3σ2

, t < t∗. (5.37)
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For the sake of simplicity assume ᾱ = 2 lnµ
Ta

+δ+ξ1 and Ω = −ξ1−2 lnµ
Ta
−δ−ξ2−ξ3σ2.

Further, considering the inequalities (5.33), (5.37) and equation ψ(λ) = 0, we have

z(t∗) <ηeᾱt
∗

+

∫ t∗

0

eᾱ(t∗−s)

[
ξ2

(
ηe−λ(s−σ1(s)) +

ε+ ‖R(.)‖2

Ω

)
+ ξ3

∫ s

s−σ2(s)

(
ηe−λr +

ε+ ‖R(.)‖2

Ω

)
dr + ‖R(.)‖2 + ε

]
ds

<eᾱt
∗

[
η +

ε+ ‖R(.)‖2

Ω
+ ξ2ηe

σ1

∫ t∗

0

e−(ᾱ+λ)sds+
ε+ ‖R(.)‖2

M

∫ t∗

0

ξ2e
−ᾱsds

+ ξ3η

∫ t∗

0

e−ᾱs
∫ s

s−σ2(s)

e−λrdrds+
ξ3(ε+ ‖R(.)‖2)

Ω

∫ t∗

0

e−ᾱs
∫ s

s−σ2(s)

drds

+ (‖R(.)‖2 + ε)

∫ t∗

0

e−ᾱsds

]

≤eᾱt∗
[
η +

ε+ ‖R(.)‖2

Ω
+

(
ξ2ηe

σ1 + ξ3η
eλσ2 − 1

λ

)(
1

ᾱ + λ
− e(ᾱ+λ)t∗

ᾱ + λ

)

+
ε+ ‖R(.)‖2

Ω

(
ξ2 + ξ3σ2 + Ω

)( 1

ᾱ
− e−ᾱt

∗

ᾱ

)]

≤ηeᾱt∗ + ηe−λt
∗

+
ε+ ‖R(.)‖2

Ω
− eᾱt∗

<ηe−λt
∗

+
ε+ ‖R(.)‖2

−ξ1 − 2 lnµ
Ta
− δ − ξ2 − ξ3σ2

. (5.38)

It is obvious that the inequality (5.38) is contradicting the assumption (5.36). Thus,

the inequality (5.38) is true for all t > 0. Let ε→ 0, then we have

V (e(t)) = eT (t)e(t) ≤ z(t) < ηe−λt +
‖R(.)‖2

−ξ1 − 2 lnµ
Ta
− δ − ξ2 − ξ3σ2

. (5.39)

Further, the inequality (5.39) could be written as

‖e(t)‖2 ≤ ηe−λt +
‖R(.)‖2

−ξ1 − 2 lnµ
Ta
− δ − ξ2 − ξ3σ2

, (5.40)
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which implies

‖e(t)‖ ≤ √ηe−
λ
2
t +

Ξ√
−ξ1 − 2 lnµ

Ta
− δ − ξ2 − ξ3σ2

. (5.41)

It is clear from (5.41) that trajectory of the impulsive system (5.12) converges

globally exponentially at the convergence rate λ
2

into a small compact set ∆̄1 ={
e(t) ∈ Rn : ‖e(t)‖ ≤ ē = Ξ√

−ξ1− 2 lnµ
Ta
−δ−ξ2−ξ3σ2

}
as t → ∞. That is, the quasi-

synchronization between the systems (5.2) and (5.4) is achieved with a small syn-

chronization error bound ē under the impulsive control (5.11) with the average im-

pulsive interval Ta <∞. This completes the proof.

Remark 5.3.1. The time delays in neural network affect the impulsive synchroniza-

tion negatively. If we do not consider distributed time-varying delay in neural net-

works (5.2) and (5.4), then for any fixed δ > 0, the inequality (5.17) becomes

ξ1 + 2 lnµ
Ta

+ δ+ ξ2 < 0. Furthermore, in the case of delay free systems, the inequality

(5.17) could be written as ξ1 + 2 lnµ
Ta

+ δ < 0. Compared the delay free case with the

delay case (5.17), it is seen that the less value of coupling strength γi in ξ1 and large

value of average impulsive interval Ta are required, that means the cost of control

in delay free case is lesser than the delayed case.

5.3.2 Quasi-synchronization criteria for Ta =∞

In this subsection, we will study the case Ta =∞ on quasi-synchronization of neural

networks. In fact, this situation will arise when Nζ(t, s) = [
√
t− s] in (5.13) which

implies that the impulses occur all the time but their density of occurrence decreases

as time goes to infinity. The study of this case on quasi-synchronization is the first

time in literature.
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Theorem 5.2. Suppose that Assumption 5.1 holds and Ta =∞. For the constants

ξ1 = λmax

{
2(−Ã− Γ) + B̃T B̃ + C̃T C̃ + D̃T D̃ + LTf1

Lf1

}
, ξ2 = λmax

{
LTf2

Lf2

}
, and

ξ3 = λmax

{
σ2L

T
f3
Lf3

}
, we have two cases as follows:

Case 1: For any δ
′
> 0 and µ > 1, the controlled error neural network (5.12) globally

exponentially converges at the convergence rate λ
′

2
> 0 into a small compact domain

containing the origin ∆̄2 =
{
e(t) ∈ Rn : ‖e(t)‖ ≤ Ξ√

− δ
′
2
−ξ1−ξ2−ξ3σ2

}
if

δ
′

2
+ ξ1 + ξ2 + ξ3σ2 < 0, (5.42)

where λ
′

is a unique root of the equation λ
′
+ δ

′

2
+ ξ1 + ξ2e

λ
′
σ1 + ξ3

eλ
′
σ2−1
λ′

= 0.

Case 2: For 0 < µ ≤ 1, the solution of the controlled impulsive system (5.12)

globally exponentially converges at the convergence rate λ
′′

2
> 0 into a small compact

domain containing the origin ∆̄3 =
{
e(t) ∈ Rn : ‖e(t)‖ ≤ Ξ√

−ξ1−ξ2−ξ3σ2

}
if

ξ1 + ξ2 + ξ3σ2 < 0, (5.43)

where λ
′′

is a unique root of the equation λ
′′

+ ξ1 + ξ2e
λ
′′
σ1 + ξ3

eλ
′′
σ2−1
λ′′

= 0.

Thus, in both cases, the quasi-synchronization between the neural networks (5.2.2)

and (5.4) is achieved with a small synchronization error bounds.

Proof. Following the similar proof as in Theorem 5.1, we get

W (t, s) =µ2
1µ

2
2...µ

2
Nζ(t,s)e

ξ1(t−s)

≤
( |µ1|+ |µ2|+ ...+ |µNζ(t,s)|

Nζ(t, s)

)2Nζ(t,s)

eξ1(t−s)

=e
2Nζ(t,s) ln

|µ1|+|µ2|+...+|µNζ(t,s)|

Nζ(t,s) eξ1(t−s)

=e

2 ln

|µ1|+|µ2|+...+|µNζ(t,s)|

Nζ(t,s)

t−s
Nζ(t−s)

(t−s)
eξ1(t−s). (5.44)
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Case 1: From Definition 5.2.3 and Ta =∞, when µ > 1, then we have

lim
t→∞

2 ln
|µ1|+|µ2|+...+|µNζ(t,s)|

Nζ(t,s)

t−s
Nζ(t−s)

= 0,

it means that for any δ
′
> 0 there exists a sufficiently large T > 0 such that

2 ln
|µ1|+|µ2|+...+|µNζ(t,s)|

Nζ(t,s)

t−s
Nζ(t−s)

≤ δ
′

2
, t > T. (5.45)

Using inequality (5.45) in (5.44), we get

W (t, s) ≤ e

(
δ
′

2
+ξ1

)
(t−s). (5.46)

Substituting inequality (5.46) into equation (5.31), we get

z(t) ≤ e

(
δ
′

2
+ξ1

)
tη +

∫ t

0

e

(
δ
′

2
+ξ1

)
(t−s)

[
ξ2z(s− σ1(s)) + ξ3

∫ s

s−σ2(s)

z(r)dr

+ ‖R(.)‖2 + ε

]
ds.

(5.47)

Define a continuous function ψ̄(λ
′
) = λ

′
+ δ

′

2
+ ξ1 + ξ2e

λ
′
σ1 + ξ3

eλ
′
σ2−1
λ′

. From (5.42),

we have ψ̄(0) < 0. It can be easily verified that ψ̄(+∞) > 0 and ψ̄
′
(λ
′
) > 0 for all

λ
′
> 0. Thus, ψ̄(λ

′
) = 0 must possess a unique positive real root λ

′
.

From now, following the similar proof as in Theorem 5.1, we obtain

‖e(t)‖ ≤ √ηe−
λ
′

2
t +

Ξ√
−ξ1 − δ′

2
− ξ2 − ξ3σ2

, t ≥ 0. (5.48)

It is concluded from inequality (5.48) that the solution of the impulsive system
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(5.12) is converging globally exponentially into a small compact domain containing

the origin ∆̄2 =
{
e(t) ∈ Rn : ‖e(t)‖ ≤ Ξ√

−ξ1− δ
′
2
−ξ2−ξ3σ2

}
with the convergence rate

λ
′

2
> 0 as t→∞. The proof of the first case is completed.

Case 2: For 0 < µ ≤ 1 and Ta =∞, from inequality (5.44), we can obtain

W (t, s) ≤ eξ1(t−s). (5.49)

Substituting the inequality (5.49) in equation (5.31), we get

z(t) ≤ eξ1tη +

∫ t

0

eξ1(t−s)

[
ξ2z(s− σ1(s)) + ξ3

∫ s

s−σ2(s)

z(r)dr + ‖R(.)‖2 + ε

]
ds.

(5.50)

Similar to Case 1, define a continuous function ψ̃(λ
′′
) = λ

′′
+ξ1 +ξ2e

λ
′′
σ1 +ξ3

eλ
′′
σ2−1
λ′′

.

From (5.43), ψ̃(0) < 0. It is easy to verify that ψ̃(+∞) > 0 and its derivative

ψ̃
′
(λ
′′
) > 0 for all λ

′′
> 0. This implies that the equation ψ̃(λ

′′
) = 0 has a unique

positive real root λ
′′
.

Again, if we follow the similar proof as in Theorem 5.1, then we get

‖e(t)‖ ≤ √ηe−
λ
′′

2
t +

Ξ√
−ξ1 − ξ2 − ξ3σ2

, t ≥ 0. (5.51)

As t→∞, it is clear from (5.51) that the trajectory of error neural network (5.12) is

converging globally exponentially into a small compact domain containing the origin

∆̄2 =
{
e(t) ∈ Rn : ‖e(t)‖ ≤ Ξ√

−ξ1−ξ2−ξ3σ2

}
at the convergence rate λ

′′

2
> 0. This

completes the proof of the second case.

Corollary 5.3.1. Suppose that the neural networks (5.2) and (5.4) are identical, i.e.,

Ā = Ã, B̄ = B̃, C̄ = C̃, D̄ = D̃ and I = J , then from equation (5.6), we get R(.) = 0

implies Ξ = 0. Under Assumption 5.1 and Ta <∞, the trajectory of the error neural
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network (5.12) converges globally exponentially to zero at the rate of convergence

λ
2
> 0 if

ξ1 + 2
lnµ

Ta
+ δ + ξ2 + ξ3σ2 < 0, (5.52)

where δ > 0, ξ1 = λmax

{
2(−Ã − Γ) + B̃T B̃ + C̃T C̃ + D̃T D̃ + LTf1

Lf1

}
, ξ2 =

λmax

{
LTf2

Lf2

}
, ξ3 = λmax

{
σ2L

T
f3
Lf3

}
and λ is a unique solution of the equation

λ+ 2 lnµ
Ta

+ ξ1 + δ + ξ2e
λσ1(t) + ξ3

eλσ2(t)−1
λ

= 0. That is, the complete synchronization

between the neural networks (5.2.2) and (5.4) is achieved under the hybrid impulsive

controller (5.11).

Corollary 5.3.2. Suppose that Assumption 5.1, Ta =∞ and R(.) = 0 hold.

Case 1: For any δ
′
> 0 and µ > 1, the solution of the impulsive system (5.12)

converges globally exponentially to zero at the rate of convergence λ
′

2
> 0 if

δ
′

2
+ ξ1 + ξ2 + ξ3σ2 < 0, (5.53)

where λ
′

is a unique root of the equation λ
′
+ δ

′

2
+ ξ1 + ξ2e

λ
′
σ1 + ξ3

eλ
′
σ2−1
λ′

= 0.

Case 2: For 0 < µ ≤ 1, the solution of the impulsive system (5.12) converges globally

exponentially to zero at the convergence rate λ
′′

2
> 0 if

ξ1 + ξ2 + ξ3σ2 < 0, (5.54)

where λ
′′

is a unique root of the equation λ
′′

+ ξ1 + ξ2e
λ
′′
σ1 + ξ3

eλ
′′
σ2−1
λ′′

= 0 and

ξ1 = λmax

{
2(−Ã− Γ) + B̃T B̃ + C̃T C̃ + D̃T D̃ + LTf1

Lf1

}
, ξ2 = λmax

{
LTf2

Lf2

}
, ξ3 =

λmax

{
σ2L

T
f3
Lf3

}
are constants. In both cases, the complete synchronization between

the systems (5.2.2) and (5.4) is achieved under the hybrid impulsive controller (5.11)

with hybrid impulses which occur infinitely but sparsely.
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Remark 5.3.2. It is worth to observe that, in Theorem 5.2, the convergence rates

λ
′

2
and λ

′′

2
are independent of average impulsive interval Ta. Theoretically, we have

shown that the infinite but sparse occurrence of impulses does not have a negative

impact on the quasi-synchronization of different neural networks with mixed time-

varying delays. Furthermore, since Ta = ∞, that is the length of the impulsive

interval is very large, which means the control cost for the synchronization of neural

networks is very less. Therefore, results obtained in Theorem 5.2 are effective for

reducing the cost of control.

Remark 5.3.3. In Theorem 5.2, the inequalities (5.42) and (5.43) are delay dependent

sufficient criteria to achieve quasi-synchronization. If σ2 is very large, then we can

adjust the value of coupling strength γi > 0 such that the inequalities δ
′

2
+ ξ1 + ξ2 +

ξ3σ2 < 0 and ξ1 + ξ2 + ξ3σ2 < 0 hold. That is, the linear feedback term −Γe(t)

in the controller (5.11) is playing a meaningful role for the case Ta = ∞. On the

other hand, the impulsive control without linear feedback term as designed in the

previous articles [111, 112, 113, 114, 115] will not work when time-delay is very large.

Therefore, the controller (5.11) is perfectly designed to deal with the case Ta =∞.

Remark 5.3.4. In Theorem 5.1 and Theorem 5.2, one can observe that the synchro-

nization error bounds can be reduced by increasing the coupling strength γi > 0

for i = 1, 2, ...n (provided other parameters are given) because ξ1 depends on the

diagonal matrix Γ. Moreover, assume that γi and other parameters except µ > 0

are fixed then the synchronization error bound in Theorem 5.1 can be reduced by

taking small value of the average impulsive gain µ. In contrast to Theorem 5.1, the

radii of the compact spheres ∆̄2 and ∆̄3 in Theorem 5.2,i.e., the synchronization

error bounds can not be reduced if the coupling strength γi is fixed. One more thing

is worth mentioning that the synchronization error bounds obtained in the theorems

can not be optimized to their minimum values, for the proof we refer to [116].
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5.4 Numerical simulation and discussions

In this section, two examples have been considered to validate the theoretical results

obtained in Theorem 5.1 and 5.2, where sufficient criteria of the quasi-synchronization

are derived for Ta <∞ and Ta =∞.

Example 5.4.1. Consider the neural network (5.2) with the parameters given as

Ā =

1 0

0 1

 , B̄ =

 2 −0.1

−5 4.5

 ,

C̄ =

−1.5 −0.1

−0.2 −4

 , D̄ =

−0.3 0.1

0.1 −0.2

 ,

f1(x(t)) = f2(x(t)) = f3(x(t)) =[tanhx1(t), tanhx2(t)]T with Lf1 = Lf2 = Lf3 =

diag(1, 1); σ1 = 1, σ2 = 0.2, and the external input vector I = [0, 0]T . The phase

portrait of chaotic attractors of the neural network (5.2) for its initial condition

x(s) = [0.01, 0.1]T ,−σ ≤ s ≤ 0 is shown in Fig. (5.2(a)).

Further, the parameters of the neural network (5.4) are given as

Ã =

1 0

0 1

 , B̃ =

 1.8 −0.15

−5.2 3.5

 ,

C̃ =

 −1.7 −0.12

−0.26 −2.5

 , D̃ =

0.6 0.15

−2 −0.12

 .

The activation functions and the time delays are f1(y(t)) = f2(y(t)) = f3(y(t)) =

[tanhy1(t), tanhy2(t)]T and σ1 = 1, σ2 = 0.2, respectively. The chaotic attractors of

the neural network (5.4) for its initial condition y(s) = [0.02, 0.01]T ,−σ ≤ s ≤ 0 and

the external input vector J = [0, 0]T can be observed from Fig.(5.2(b)). First we will
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Figure 5.1: Phase portrait of hybrid impulses with Ta = ∞ for Nζ(t, s) =
[ 3
√
t− s] in Example 5.4.2.
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Figure 5.2: Chaotic attractors of equations (5.2) and (5.4) are shown in (a) and
(b), respectively.
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Figure 5.3: Hybrid impulsive sequence with µ = 1.1 and the corresponding time
evolution of controlled error neural network (5.12) for Ta < ∞ are shown in (a)

and (b), respectively.
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verify the results for the case Ta < ∞. For this purpose, set the coupling strength

γi = 30, i = 1, 2. Using the given data of the parameters, we get ξ1 = −13.18, ξ2 = 1

and ξ3 = 0.2. Let the time-varying impulses are µ1 = 1.3 and µ2 = 0.9 with the

average impulsive gain µ = 1.1 and the average impulsive interval Ta = 0.25. Hence,

for fixed value δ = 0.5, the inequality ξ1 + 2 lnµ
Ta

+ δ + ξ2 + ξ3σ2 = −10.88 < 0

holds which assured that the trajectories of the error neural network (5.12) converge

globally exponentially at the rate of convergence λ
2

= 1.135 into a small compact

domain of convergence ∆̄1 =
{
e(t) ∈ Rn : ‖e(t)‖ ≤ 1.96

}
. The phase portrait of

hybrid impulsive signal with average impulsive interval Ta = 0.25 is depicted in

Fig.(5.3(a)) and the corresponding error trajectory of system (5.12) is shown in Fig.

(5.3(b)) with the experimental error bound 0.0032 which is less than the theoretical

error bound 1.96. This implies that the quasi-synchronization between the neural

networks (5.2) and (5.4) could be achieved with a given synchronization error bound

under the hybrid impulsive controller (5.11). This verifies the Theorem 5.1.

Example 5.4.2. In this example, considering the same systems as in Example 5.4.1,

we will verify the results obtained in Theorem 5.2. Let µ1 = 1.6 and µ2 = 0.7 are the

impulsive strengths at different instants of the impulsive sequence ζ = {t1, t2, ..., tk}

with average impulsive gain µ = 1.15 > 1 and the average impulsive interval Ta =∞.

For fixed δ
′
= 1.5, the inequality δ

′

2
+ξ1 +ξ2 +ξ3σ2 = −11.39 < 0 holds which means

that the trajectory of the impulsive system (5.12) converges globally exponentially

at the convergence rate λ′

2
= 1.15 in to a small compact domain of convergence

∆̄2 =
{
e(t) ∈ Rn : ‖e(t)‖ ≤ 1.91

}
. Fig.5.1 depicts the distribution of hybrid

impulses with Ta =∞ for Nζ(t, s) = [ 3
√
t− s] and the corresponding time evolution

of the controlled error neural network (5.12) with experimental error bound 0.00276

is shown in Fig.(5.4(a)).

For the Case 2 of Theorem 5.2, set the strengths of the hybrid impulses as µ1 = 0.2
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Figure 5.4: Time-evolution of error neural network (5.12) with µ = 1.15 and
µ = 0.35 for Ta =∞ are shown in (a) and (b), respectively.

and µ2 = 0.5 with average impulsive gain µ = 0.35 < 1 and average impulsive

interval Ta =∞, then the inequality ξ1 +ξ2 +ξ3σ2 = −12.14 < 0 holds which implies

that the trajectory of error neural network (5.12) converges globally exponentially

at the convergence rate λ
′′

2
= 1.19 into a small compact domain of convergence

∆̄3 =
{
e(t) ∈ Rn : ‖e(t)‖ ≤ 1.86

}
. For the infinite but sparse occurrence of

impulses as in Fig. 5.1, the error trajectory of the system (5.12) is fluctuating

within a small compact ball of radius 0.002672 which can be observed from the

Fig. (5.4(b)). Therefore, it is verified that in both cases of Theorem 5.2, the quasi-

synchronization between neural networks (5.2) and (5.4) could be achieved within a

given synchronization error bound under the controller (5.11) with hybrid impulses

and infinite average impulsive interval Ta =∞.

5.5 Conclusion

In this chapter, the effects of the hybrid impulses have been deeply investigated

for the quasi-synchronization of neural networks with mixed time-varying delays

and parameter mismatches. A hybrid impulsive controller with feedback term has

been designed so that the quasi-synchronization could easily be achieved, no matter
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how the simultaneous existence of synchronizing and desynchronizing impulses is

affecting the networks’ synchronization. By employing the new concept of average

impulsive interval, the average impulsive gain, some mathematical techniques, and

the extended comparison principle for delayed impulsive system combined with the

formula of variation of parameters, delay-dependent quasi-synchronization criteria

have been obtained for the neural networks with mixed time-varying delays when

Ta <∞ and Ta =∞. Meanwhile, the compact sets containing the origin have been

constructed for the cases Ta <∞ and Ta =∞ into which the impulsive error system

converges globally exponentially with the exponential convergence rates. Finally,

two examples are considered to validate the effectiveness of our theoretical results.

***********


