
Chapter 4

Exponential stability of inertial BAM neural

network with time-varying impulses

4.1 Introduction

This chapter investigates the global exponential stability of inertial neural network

with mixed time-varying delays under the influence of hybrid impulsive sequence.

Inertia in neural networks was first proposed by Babcock and Westervelt [96] in 1986.

They had added inertia via an inductor in an RLC circuit which connect the output

of a neuron to its input, and analyzed the dynamical behaviors of the network. In

consequence of the analysis, they found that the addition of inertial term to the

rate equation of a simple electronic neural network consisting of one or two neurons

may exhibit complex dynamic behaviors, such as spontaneous oscillation, instability,

ringing about the equilibrium point, and chaotic response to a periodic drive. In

engineering applications, systems with chaotic nature or complex dynamic behaviors

are required. As for instance, in secure communication, chaotic systems increase the

security strength of signals passing from a transmitter to a receiver. Therefore,

the stability problem of inertial neural networks has been paid much attention to

researchers [97, 98, 99, 100, 101, 102, 103].

In previous chapter of this thesis, we have considered fixed impulses for all impulsive

points of the sequence. Generally, impulses may vary at different impulsive points
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of the sequence. Thus, the primary purpose of this chapter is to study the effects

of hybrid impulsive sequence on global exponential stability of inertial BAM neural

networks.

4.2 Model description and preliminaries

Let us consider the state equation of inertial BAM neural network with mixed time-

varying delays as

d2ui(t)

dt2
= −γi

dui(t)

dt
− βiui(t) +

n∑
j=1

aijgj(uj(t)) +
n∑
j=1

bijgj(uj(t− σj(t)))

+
n∑
j=1

dij

∫ t

t−τj(t)
gj(uj(s))ds+ Ii(t), (4.1)

where i = 1, 2, ..., n and the second derivative of the state variable ui(t) of the

i−th neuron added in system (4.1) is called the inertial term; γi and βi are positive

constants; aij, bij and dij are the connection weights between the j−th and i−th

neurons in the neural network at time t, t − σj(t) and t − τj(t), respectively; the

activation function of the j−th neuron in the network is denoted by gj(.) satisfying

gj(0) = 0; σj(t) and τj(t) are the bounded discrete and distributed time-varying

delays, respectively, i.e., 0 ≤ σj(t) ≤ σ and 0 ≤ τj(t) ≤ τ for all j = 1, 2, ..., n with

τ̄ = max{σ, τ}; Ii(t) denotes the external input to the i−th neuron of the network

at time t satisfying |Ii(t)| ≤ Ii for all i = 1, 2, .., n.

The initial condition of the inertial BAM neural network (4.1) is given as

ui(s) = ψi(s),
dui(s)

dt
= ϕi(s), ∀s ∈ [−τ̄ , 0], i = 1, 2, .., n,

where ψi(s) and ϕi(s) are continuous functions from [−τ̄ , 0] to R.



Chapter 4. Exponential stability of inertial BAM... 95

Consider the following variable transformation

vi(t) =
dui(t)

dt
+ ζiui(t), i = 1, 2, ..., n, (4.2)

then the second order integro-differential form of neural network (4.1) can be written

as

dui(t)
dt

= −ζiui(t) + vi(t),

dvi(t)
dt

= −αivi(t) + ciui(t) +
∑n

j=1 aijgj(uj(t)) +
∑n

j=1 bijgj(uj(t− σj(t)))

+
∑n

j=1 dij
∫ t
t−τj(t) gj(uj(s))ds+ Ii(t),

(4.3)

together with the initial conditions

ui(s) = ψi(s), vi(s) = ϕi(s) + ζiψi(s), ∀s ∈ [−τ̄ , 0], i = 1, 2, ..., n, (4.4)

where αi = γi − ζi, and ci = αiζi − βi.

Remark 4.2.1. For the sake of simplicity, we have considered one variable ζi in

transformation (4.2). By introducing two variables in (4.2) as vi(t) = ξiu̇i(t)+ζiui(t),

we could get less conservative results.

In a compact form, system (4.3) can be written as


du(t)
dt

= −ζu(t) + v(t),

dv(t)
dt

= −Γv(t) + Cu(t) + Ag(u(t)) +Bg(u(t− σ(t))) +D
∫ t
t−τ(t)

g(u(s))ds+ I(t),

(4.5)

where u(t) = [u1(t), u2(t), ..., un(t)]T and v(t) = [v1(t), v2(t), ..., vn(t)]T are state

vectors, ζ = diag{ζ1, ζ2, ..., ζn}, Γ = diag{α1, α2, ..., αn}, C = diag{c1, c2, ..., cn},

A = [aij]n×n ∈ Rn×n, B = [bij]n×n ∈ Rn×n, and D = [dij]n×n ∈ Rn×n, g(u(t)) =
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[u1(t), u2(t), ..., un(t)]T , σ(t) = {σj(t)} and τ(t) = {τj(t)} for j = 1, 2, ..., n and

I(t) = [I1(t), I2(t), ..., In(t)]T .

Assumption 4.1. The activation function gj(.) satisfies Lipschitz condition, i.e., for

any x1, x2 ∈ R, there exist constants lj > 0 for all j = 1, 2, ..., n such that

|gj(x1)− gj(x2)| ≤ lj|x1 − x2|. (4.6)

Assumption 4.2. For any x1, x2 ∈ R, there exist constants lj > 0, j = 1, 2, ..., n

such that

0 ≤ gj(x1)− gj(x2)

x1 − x2

≤ lj, ∀j = 1, 2, ..., n. (4.7)

Lemma 4.2.1. [100, 104] If F (x) ∈ C(Rn), and it satisfies the following conditions

as

(1) F (x) is an injective on Rn,

(2) ‖F (x)‖ → ∞, as ‖x‖ → ∞, then F (x) is a homeomorphism on Rn.

Definition 4.2.1. The point u∗ is said to be an equilibrium point of system (4.1) if

−βiu∗ +
n∑
j=1

aijgj(u
∗) +

n∑
j=1

bijgj(u
∗) +

n∑
j=1

τj(t)dijgj(u
∗) + Ii(t) = 0, (4.8)

for all i = 1, 2, ..., n.

The point (u∗, v∗)T ∈ R2n with u∗ = (u1, u2, ..., un)T and v∗ = (v1, v2, ..., vn)T is said

to be an equilibrium point of system (4.5) if


−ζu∗ + v∗ = 0,

−Γv∗ + Cu∗ + Ag(u∗) +Bg(u∗) +D
∫ t
t−τ(t)

g(u∗)ds+ I(t) = 0.

(4.9)



Chapter 4. Exponential stability of inertial BAM... 97

Lemma 4.2.2. Under Assumption 4.1, system (4.1) must have a unique equilibrium

point if

−βi +
n∑
j=1

(
|aij|

2
+
|bij|

2
+ τ
|dij|

2

)
lj +

n∑
j=1

(
|aji|

2
+
|bji|

2
+ τ
|dji|

2

)
li < 0, (4.10)

for all i = 1, 2, ..., n.

Proof. From Definition 4.2.1, it is clear that u∗ ∈ Rn be the equilibrium point of

system (4.1) if it satisfies equation (4.8). Suppose a continuous function F (u) =

[F1(u), F2(u), ..., Fn(u)]T : Rn → Rn, defined as

Fi(u) = −βiui +
n∑
j=1

aijgj(uj) +
n∑
j=1

bijgj(uj) +
n∑
j=1

τj(t)dijgj(uj) + Ii(t), i = 1, 2, ...n.

(4.11)

All solutions of F (u) = 0 are the equilibrium points of neural network (4.1). If

function F (u) is a homeomorphism on Rn, then from Lemma 4.2.1, we will have

‖F (u)‖ → ∞ as ‖u‖ → ∞, i.e, function F (u) is proper from Rn to Rn which

implies that for every compact set K in Rn there exists a compact set F−1(K) in

Rn. Therefore, there must exists a unique equilibrium point u∗ ∈ Rn such that

F (u∗) = 0. Hence, in order to show F (u) is a homeomorphism on Rn, we will follow

Lemma 4.2.1.

First we will show that F (u) is an injective mapping. For this, suppose there exist

u, ū ∈ Rn such that u 6= ū and F (u) = F (ū), then

Fi(u)− Fi(ū) = 0.
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(ui − ūi)

[
− βi(ui − ūi) +

n∑
j=1

aij(gj(uj)− gj(ūj)) +
n∑
j=1

bij(gj(uj)− gj(ūj))

+
n∑
j=1

τj(t)dij(gj(uj)− gj(ūj))

]
= 0,

for i = 1, 2, ..., n. From Assumption 4.1, we get

0 ≤ −βi|ui − ūi|2 +
n∑
j=1

|aij|lj|uj − ūj||ui − ūi|+
n∑
j=1

|bij|lj|uj − ūj||ui − ūi|

+
n∑
j=1

τ |dij|lj|uj − ūj||ui − ūi|,

for all i = 1, 2, ..., n. Now, we have

0 ≤
n∑
i=1

[
− βi|ui − ūi|2 +

n∑
j=1

|aij|
2
lj

(
|uj − ūj|2 + |ui − ūi|2

)
+

n∑
j=1

|bij|
2
lj

(
|uj − ūj|2 + |ui − ūi|2

)
+

n∑
j=1

τ
|dij|

2
lj

(
|uj − ūj|2 + |ui − ūi|2

)]
.

(4.12)

We can write inequality (4.12) as

0 ≤
n∑
i=1

[
− βi +

n∑
j=1

(
|aij|

2
+
|bij|

2
+ τ
|dij|

2

)
lj +

n∑
j=1

(
|aji|

2
+
|bji|

2
+ τ
|dji|

2

)
li

]
|ui − ūi|2.

Using inequality (4.10), we must have ui = ūi for all i = 1, 2, ..., n, which contradicts

our supposition. Therefore, F (u) is an injective mapping.
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Now, we will show that ‖F (u)‖ → ∞ as ‖u‖ → ∞. Let F̂ (u) = [F̂1(u), F̂2(u), ..., F̂n(u)]T =

F (u)− F (0). Since we have g(0) = 0, then we get

F̂i(u) = −βiui +
n∑
j=1

aij
(
gj(uj)− gj(0)

)
+

n∑
j=1

bij
(
gj(uj)− gj(0)

)
+

n∑
j=1

τj(t)dij
(
gj(uj)− gj(0)

)
, i = 1, 2, ..., n.

Further, we can obtain

uT F̂ (u) =
n∑
i=1

[
− βi|ui|2 +

n∑
j=1

aijgj(uj)ui +
n∑
j=1

bijgj(uj)ui +
n∑
j=1

τj(t)dijgj(uj)ui

]

≤
n∑
i=1

[
− βi|ui|2 +

n∑
j=1

|aij|
2
lj

(
|uj|2 + |ui|2

)
+

n∑
j=1

|bij|
2
lj

(
|uj|2 + |ui|2

)
+

n∑
j=1

τ
|dij|

2
lj

(
|uj|2 + |ui|2

)]

≤
n∑
i=1

[
− βi +

n∑
j=1

(
|aij|

2
+
|bij|

2
+ τ
|dij|

2

)
lj

+
n∑
j=1

(
|aji|

2
+
|bji|

2
+ τ
|dji|

2

)
li

]
|ui|2.

uT F̂ (u) ≤ − min
1≤i≤n

[
βi −

n∑
j=1

(
|aij|

2
− |bij|

2
+ τ
|dij|

2

)
lj

−
n∑
j=1

(
|aji|

2
+
|bji|

2
+ τ
|dji|

2

)
li

]
‖u‖2.

(4.13)
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Taking norm ‖.‖ both sides of inequality (4.13) and using the Cauchy-Schwartz

inequality, we get

‖u‖‖F̂ (u)‖ ≥ ‖uF̂ (u)‖ ≥ min
1≤i≤n

[
βi −

n∑
j=1

(
|aij|

2
− |bij|

2
+ τ
|dij|

2

)
lj

−
n∑
j=1

(
|aji|

2
+
|bji|

2
+ τ
|dji|

2

)
li

]
‖u‖2.

(4.14)

Further, inequality (5.12) could be written as

‖F̂ (u)‖ ≥ min
1≤i≤n

[
βi −

n∑
j=1

(
|aij|

2
− |bij|

2
+ τ
|dij|

2

)
lj

−
n∑
j=1

(
|aji|

2
+
|bji|

2
+ τ
|dji|

2

)
li

]
‖u‖.

(4.15)

LetM = min1≤i≤n

[
βi−

∑n
j=1

(
|aij |

2
− |bij |

2
+τ

|dij |
2

)
lj−

∑n
j=1

(
|aji|

2
+
|bji|

2
+τ

|dji|
2

)
li

]
and substitute it in inequality (4.15), then we get

‖F̂ (u)‖ ≥ M‖u‖. (4.16)

It is clear from inequality (4.16) that ‖F̂ (u)‖ → ∞ as ‖u‖ → ∞ which further

implies that ‖F (u)‖ → ∞ as ‖u‖ → ∞. Therefore, according to Lemma 4.2.1,

mapping F (u) is a homeomorphism on Rn and has a unique equilibrium point. This

completes the proof.

Now suppose that (u∗, v∗) be a unique equilibrium point of system (4.5). Let x(t) =

u(t)− u∗ and y(t) = v(t)− v∗, then system (4.5) with the impulsive control can be
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written as

dx(t)
dt

= −ζx(t) + y(t),

dy(t)
dt

= −Γy(t) + Cx(t) + Af(x(t)) +Bf(x(t− σ(t))) +D
∫ t
t−τ(t)

f(x(s))ds, t 6= tk,

x(t+k ) = Pkx(t−k ),

y(t+k ) = Qky(t−k ), t = tk, k ∈ N,

(4.17)

where S = {tk : k ∈ N} is an increasing sequence of impulsive instants. The diagonal

matrices Pk = diag{p1k, p2k, ..., pnk} andQk = diag{q1k, q2k, ..., qnk} are the strengths

of the impulses at impulsive instant tk which belong to the set D = {Rk : Rk is a di-

agonal matrix and Rk1 6= Rk2for tk1 6= tk2 ∈ S}. The state variables x(t) and y(t) has

a jump kind of discontinuity from left side of tk ∈ S, i.e., x(t+k ), x(t−k ), y(t+k ), y(t−k )

exist and satisfy x(t+k ) = x(tk) 6= x(t−k ) and y(t+k ) = y(tk) 6= y(t−k ). The initial

condition of system (4.17) is x(s) = ψ(s), y(s) = ϕ(s) + ζψ(s) ∈ PC([−τ̄ , 0],Rn),

and f(x(t)) = g(x(t) + u∗)− g(u∗).

Remark 4.2.2. Basically, impulses are characterized into three categories on the

basis of their absolute values. If |qik| > 1 or |pik| > 1, then impulses are called

destabilizing impulses since they enlarge the absolute value of the state variable. If

|qik| < 1 or |pik| < 1, then impulses are called stabilizing impulses since they reduce

the absolute value of the state variable. If |qik| = 1 or |pik| = 1, the impulses are

inactive impulses since they do not affect the absolute value of the state variable,

negatively or positively.

Since the set S = {tk : k ∈ N} contains all the points at which stabilizing and

destabilizing impulses are activated, so without loss of generality, we suppose ťik
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and t̂jk ∈ S are the activation points of stabilizing and destabilizing impulses, re-

spectively, where i and j are the respective number of occurrence of stabilizing and

destabilizing impulses. Despite the frequent occurrence of destabilizing impulses,

which may lead to the unstable neural network, the system (4.17) can be stabilized

if the stabilizing impulses prevail over the effects of destabilizing impulses. In other

words, there should exist lower and upper bounds of the impulsive interval of desta-

bilizing and stabilizing impulses, respectively, to show that destabilizing impulses

do not occur frequently and the occurrence of stabilizing impulses should not be too

low. The results obtained in [105] are based on inf{t̂jk−t̂j(k−1)} and sup{ťik−ťi(k−1)},

other than the infimum and supremum of the impulsive interval, we have used the

concept of average impulsive interval of destabilizing and stabilizing impulses. The

following definitions are necessary to show the main results.

Definition 4.2.2. The average impulsive interval of destabilizing impulses is equal to

T̂a not less than inf{t̂jk − t̂j(k−1)}, and the average impulsive interval of stabilizing

impulses is equal to Ťa not more than sup{ťik−ťi(k−1)} if there exist positive constants

N0, T̂a and Ťa such that

N̂S(t, t0) ≤ t− t0
T̂a

+N0 and ŇS(t, t0) ≥ t− t0
Ťa
−N0, (4.18)

where N̂S(t, t0) and ŇS(t, t0) are the number of destabilizing and stabilizing impulses

occurred in the interval (t0, t). For the sake of simplicity, we will write just N̂S and

ŇS instead of N̂S(t, t0) and ŇS(t, t0), respectively.
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Lemma 4.2.3. [106] Let ξ1 ∈ R, ξ2 ≥ 0, δ > 1, bk ≥ 1
δ

are real constants and

0 ≤ W (t) ∈PC(R, R+) such that


D+(W (t)) ≤ ξ1W (t) + ξ2 supt−τ̄≤s≤tW (s), t 6= tk, k ∈ N,

W (t+k ) ≤ bkW (t−k ), t = tk,

W (s) = H(s), s ∈ [−τ̄ , 0].

(4.19)

Further, suppose ξ1 + ξ2δ− ln δ
ς
< 0, where ς = supk∈N{tk+1− tk} <∞ and 0 < λ <

ln δ
ς
−ξ1−ξ2δe

λτ̄ . If there exist η ≥ 0 and M ≥ δ such that δk+1
∏

t0<tk<t

bk ≤Meη(tk−t0),

∀k ∈ N, then W (t) ∈PC(R, R+) is estimated as

W (t) ≤M sup
t0−τ̄≤s≤t0

W (s)e−(λ−η)(t−t0), ∀t ≥ t0. (4.20)

Remark 4.2.3. The inequality ξ1 + ξ2δ− ln δ
ς
< 0 implies that there exists λ ∈ R such

that 0 < λ < ln δ
ς
− ξ1 − ξ2δe

λτ̄ holds. For this, assume ξ1 + ξ2δ − ln δ
ς
< 0 and define

φ : R→ R such that

φ(x) =
ln δ

ς
− ξ1 − ξ2δe

xτ̄ − x, φ(0) =
ln δ

ς
− ξ1 − ξ2δ > 0,

then there exists ε > 0 such that φ(x) > 0 for all x ∈ (−ε, ε). One needs to just

pick λ ∈ (0, ε) to verify 0 < λ < ln δ
ς
− ξ1 − ξ2δe

λτ̄ .

Definition 4.2.3. The solutions of impulsive system (4.17) converge globally expo-

nentially to a zero equilibrium point if there exist M > 1 and λ > 0 such that

‖e(t)‖q ≤M sup
−τ̄≤s≤0

‖e(s)‖qe−λt,∀t ≥ 0, (4.21)

where q = 1, 2,∞; e(t) = [x(t), y(t)]T and λ is the rate of convergence.
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4.3 Global exponential stability criteria of

inertial BAM neural network

In this section, in order to ensure the exponential stability of the equilibrium point

of system (4.17), we shall derive the sufficient criteria in the form of matrix measure.

Theorem 4.1. Under Assumption 4.1, the trajectories of system (4.17) are said to

converge globally exponentially at the convergence rate r̄1 > 0 to a unique equilibrium

point if there exist δ > 1, ζ = diag{ζ1, ζ2, ..., ζn}, and the matrix measure µq(.) (q =

1, 2,∞) such that

µq(H) + lq‖A‖q + (lq‖B‖q + τ lq‖D‖q)δ −
ln δ

ς
< 0, (4.22)

where H =

−ζ E

C −Γ

 ∈ R2n×2n, lq = max
1≤j≤n

{lj}, ς = supk∈N{tk+1 − tk} < ∞, and

the rate of convergence r̄1 will be different for different types of impulses which can

be described in the following cases:

Case 1: For 1
δ
≤ ηk < 1, ∀k ∈ N, the rate of convergence will be r̄1 = λ1 − ᾱ1 such

that

‖e(t)‖q ≤ K1 sup
−τ̄≤s≤0

‖e(s)‖qe−(λ1−ᾱ1)t, ∀t ≥ 0, (4.23)

where ηk =

∥∥∥∥∥∥∥
Pk 0

0 Qk


∥∥∥∥∥∥∥
q

, η̄ = max{η1, η2, ..., ηŇS} ,K1 = δŇS+1η̄−N0 ≥ δ, ᾱ1 =

ln η̄

Ťa
, and λ1 ∈

(
0, ln δ

ς
− µq(H)− lq‖A‖q − (lq‖B‖q + τ lq‖D‖q)δeλ1τ̄

)
.
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Case 2: For ηk ≥ 1, ∀k ∈ N, the rate of convergence will be r̄1 = λ1 − α̃2 such that

‖e(t)‖q ≤ K2 sup
−τ̄≤s≤0

‖e(s)‖qe−(λ1−α̃2)t, ∀t ≥ 0, (4.24)

where η̃ = max{η1, η2, ..., ηN̂S}, K2 = δN̂S+1η̃N0 ≥ δ , α̃2 = ln η̃

T̂a
, and λ1 be same as

given in Case 1.

Proof. Define e(t) = [x(t), y(t)]T . When t 6= tk, the right-hand Dini derivative of

‖e(t)‖q with respect to time along system (4.17) is as

D+(‖e(t)‖q) = lim
h→0+

‖e(t+ h)‖q − ‖e(t)‖q
h

= lim
h→0+

‖e(t) + hė(t) +O(h2)‖q − ‖e(t)‖q
h

, (4.25)

and

‖e(t) + hė(t) +O(h2)‖q =

∥∥∥∥∥∥∥
x(t)

y(t)

+ h

ẋ(t)

ẏ(t)

+O(h2)

∥∥∥∥∥∥∥
q

≤

∥∥∥∥∥∥∥e(t) + h

−ζ E

C −Γ

 e(t)

∥∥∥∥∥∥∥
q

+ h‖A‖q‖f(x(t))‖q

+ h‖B‖q‖f(x(t− σ(t)))‖q + h‖D‖q
∫ t

t−τ(t)

‖f(x(s))‖qds

+O(h2). (4.26)

From Assumption 4.1, we have

‖f(x(t))‖q ≤ lq‖x(t)‖q ≤ lq‖e(t)‖q, ‖f(x(t− σ(t)))‖q ≤lq‖x(t− σ(t))‖q

≤ lq‖e(t− σ(t))‖q. (4.27)
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Using (4.27) in the equation (4.26), we get

‖e(t) + hė(t) +O(h2)‖q ≤‖E + hH‖q‖e(t)‖q + hlq‖A‖q‖e(t)‖q + hlq‖B‖q‖e(t− σ(t))‖q

+ hlq‖D‖q
∫ t

t−τ(t)

‖e(s)‖qds+O(h2). (4.28)

Substituting inequality (4.28) in (4.25), we get

D+(‖e(t)‖q) ≤ lim
h→0+

‖E + hH‖q − 1

h
‖e(t)‖q + lq‖A‖q‖e(t)‖q + lq‖B‖q‖e(t− σ(t))‖q

+ lq‖D‖q
∫ t

t−τ(t)

‖e(s)‖qds

≤
(
µq(H) + lq‖A‖q

)
‖e(t)‖q + lq‖B‖q sup

t−σ≤s≤t
‖e(s)‖q

+ lq‖D‖qτ(t) sup
t−τ≤s≤t

‖e(s)‖q

≤
(
µq(H) + lq‖A‖q

)
‖e(t)‖q +

(
lq‖B‖q + lq‖D‖qτ

)
sup

t−τ̄≤s≤t
‖e(s)‖q.

(4.29)

When t = tk, k ∈ N,

‖e(tk)‖q =

∥∥∥∥∥∥∥
x(tk)

y(tk)


∥∥∥∥∥∥∥
q

=

∥∥∥∥∥∥∥
Pk 0

0 Qk


x(t−k )

y(t−k )


∥∥∥∥∥∥∥
q

≤

∥∥∥∥∥∥∥
Pk 0

0 Qk


∥∥∥∥∥∥∥
q

∥∥∥∥∥∥∥
x(t−k )

y(t−k )


∥∥∥∥∥∥∥
q

≤ηk‖e(t−k )‖q. (4.30)
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Assembling inequalities (4.29) and (4.30), we get



D+(‖e(t)‖q) ≤
(
µq(H) + lq‖A‖q

)
‖e(t)‖q +

(
lq‖B‖q + lq‖D‖qτ

)
supt−τ̄≤s≤t ‖e(s)‖q,

t 6= tk, k ∈ N,

‖e(tk)‖q ≤ ηk‖e(t−k )‖q, t = tk,

‖e(s)‖q =

∥∥∥∥∥∥∥∥
 ψ(s)

ϕ(s) + ζψ(s)


∥∥∥∥∥∥∥∥
q

, ∀s ∈ [τ̄ , 0].

(4.31)

From inequality (4.22), we have µq(H) + lq‖A‖q + (lq‖B‖q + τ lq‖D‖q)δ − ln δ
ς
< 0.

Using Lemma 4.2.3, we can estimate any solution ‖e(t)‖q ∈PC(R, R+) of system

(4.31) under different types of time-varying impulses as

Case 1: If 1
δ
≤ ηk < 1,∀k ∈ N, then from Definition 4.2.2, we have

δŇS+1
∏

t0<tk<t

ηk ≤δŇS+1η̄ŇS

≤δŇS+1η̄
t−t0
Ťa
−N0

=δŇS+1η̄−N0e
ln η̄

Ťa
(t−t0)

.

By Lemma 4.2.3, we obtain

‖e(t)‖q ≤ K1 sup
−τ̄≤s≤0

‖e(s)‖qe−(λ1−ᾱ1)t, ∀t ≥ 0. (4.32)

It can be easily observed from inequality (4.32) that the trajectories of system (4.17)

converge globally exponentially to a unique equilibrium point at the convergence rate

r̄1 = λ1 − ᾱ1 under the effects of stabilizing time-varying impulses.



Chapter 4. Exponential stability of inertial BAM... 108

Case 2: If ηk ≥ 1, ∀k ∈ N, then from Definition 4.2.2, we have

δN̂S+1
∏

t0<tk<t

ηk ≤δN̂S+1η̃N̂S

≤δN̂S+1η̃
t−t0
T̂a

+N0

=δN̂S+1η̃N0e
ln η̃

T̂a
(t−t0)

.

Using Lemma 4.2.3, we get

‖e(t)‖q ≤ K2 sup
−τ̄≤s≤0

‖e(s)‖qe−(λ1−α̃2)t, ∀t ≥ 0. (4.33)

It is concluded from inequality (4.33) that every trajectory of system (4.17) converges

globally exponentially to a unique equilibrium point with the convergence rate r̄1 =

λ1− α̃2 under the effects of destabilizing time-varying impulses. Hence, the proof is

completed.

Remark 4.3.1. Note that the result in Theorem 4.1 does not contain the information

about each lj, j = 1, 2, ... . Therefore, we will proceed to derive more precise stability

criteria which utilize the value of each lj. For this, we shall introduce the following

lemma in support of the next theorem.

Lemma 4.3.1. [107] Let Assumption 4.2 holds, and µq(.) be the matrix measure

corresponding to the matrix norm ‖.‖q induced on Rn×n, then µq(WF (x(t))) ≤

µq(W̄L), where F (x(t)) =diag
{
f1(x1(t))
x1(t)

, f2(x2(t))
x2(t)

, ..., fn(xn(t))
xn(t)

}
, L =diag{l1, l2, ..., ln},

and

W̄ = w̄ij =


max(0, wii), i = j,

wij, i 6= j,

for q = 1,∞.
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Theorem 4.2. Under Assumption 4.2, trajectories of system (4.17) are said to

converge globally exponentially at the convergence rate r̄2 > 0 to the unique equi-

librium point if there exist δ > 1, ζ = diag{ζ1, ζ2, ..., ζn}, and the matrix measure

µq(.) (q = 1,∞) such that

µq(H) + µq(ÂL̂) + (lq‖B‖q + τ lq‖D‖q)δ −
ln δ

ς
< 0, (4.34)

where Â =

0 0

A 0

, L̂ =diag{l1, l2, ..., ln, 1, 1, 1, ..., 1}, and the convergence rate r̄2

will be different for different types of impulses which can be described as

Case 1: For 1
δ
≤ ηk < 1,∀k ∈ N, the rate of convergence will be r̄2 = λ2 − ᾱ1 such

that

‖e(t)‖q ≤ K1 sup
−τ̄≤s≤0

‖e(s)‖qe−(λ2−ᾱ1)t, ∀t ≥ 0, (4.35)

where λ2 ∈
(

0, ln δ
ς
− µq(H)− µq(ÂL̂)− (lq‖B‖q + τ lq‖D‖q)δeλ2τ̄

)
.

Case 2:For ηk ≥ 1, ∀k ∈ N, the rate of convergence will be r̄2 = λ2 − α̃2 such that

‖e(t)‖q ≤ K2 sup
−τ̄≤s≤0

‖e(s)‖qe−(λ2−α̃2)t, ∀t ≥ 0. (4.36)
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Proof. When t 6= tk, k ∈ N, similar to the proof of Theorem 4.1, we have

D+(‖e(t)‖q) = lim
h→0+

‖e(t+ h)‖q − ‖e(t)‖q
h

= lim
h→0+

‖e(t) + hė(t) +O(h2)‖q − ‖e(t)‖q
h

≤ lim
h→0+

1

h

[∥∥∥∥∥∥∥e(t) + h

−ζ E

C −Γ

 e(t) + h

 0

Af(x(t))


∥∥∥∥∥∥∥
q

+ h‖B‖q‖f(x(t− σ(t)))‖q + h‖D‖q
∫ t

t−τ(t)

‖f(x(s))‖qds− ‖e(t)‖q

]
.

(4.37)

Since x(t) = [x1(t), x2(t), ..., xn(t)]T , y(t) = [y1(t), y2(t), ..., yn(t)]T , f(x(t)) =

[f1(t), f2(t), ..., fn(t)]T , then we can define

F1(x(t)) = diag
{f1(x1(t))

x1(t)
,
f2(x2(t))

x2(t)
, ...,

fn(xn(t))

xn(t)

}
, F2(y(t)) = diag{1, 1, 1, ..., 1}.

So f(x(t)) and y(t) could be written as

f(x(t)) = F1(x(t))x(t), y(t) = F2(y(t))y(t).

Now let

F (e(t)) =

F1(x(t)) 0

0 F2(y(t))

 ,
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then 0

Af(x(t))

 =

0 0

A 0


f(x(t))

y(t)

 =

0 0

A 0


F1(x(t)) 0

0 F2(y(t))


x(t)

y(t)


= ÂF (e(t))e(t). (4.38)

Using (4.38) in inequality (4.37), we obtain

D+(‖e(t)‖q) ≤ lim
h→0+

1

h

[∥∥∥∥∥∥∥e(t) + h

−ζ E

C −Γ

 e(t) + hÂF (e(t))e(t)

∥∥∥∥∥∥∥
q

+ h‖B‖q‖f(x(t− σ(t)))‖q + h‖D‖q
∫ t

t−τ(t)

‖f(x(s))‖qds− ‖e(t)‖q

]

≤ lim
h→0+

‖E + h
(
H + ÂF (e(t))

)
‖q − 1

h
‖e(t)‖q + lq‖B‖q‖e(t− σ(t))‖q

+ lq‖D‖q
∫ t

t−τ(t)

‖e(s)‖qds

≤µq
(
H + ÂF (e(t))

)
‖e(t)‖q + lq‖B‖q sup

t−σ≤s≤t
‖e(s)‖q

+ lq‖D‖qτ(t) sup
t−τ≤s≤t

‖e(s)‖q. (4.39)

From (1.3.3) and Lemmas 4.3.1, we have

µq
(
H + ÂF (e(t))

)
≤µq(H) + µq(ÂF (e(t)))

≤µq(H) + µq(ÂL̂), (4.40)
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where L̂ =diag{l1, l2, ..., ln, 1, 1, 1, ..., 1}. Putting the inequality (4.40) in (4.39), we

get

D+(‖e(t)‖q) ≤
(
µq(H) + µq(ÂL̂)

)
‖e(t)‖q +

(
lq‖B‖q + lq‖D‖qτ

)
sup

t−τ̄≤s≤t
‖e(s)‖q.

(4.41)

When t = tk, we get the inequality ‖e(tk)‖q ≤ ηk‖e(t−k )‖q. From the inequality

(4.34), we have µq(H) + µq(ÂL̂) + (lq‖B‖q + τ lq‖D‖q)δ − ln δ
ς
< 0. Now, following

the proof as given in Theorem 4.1, we get

Case 1: For 1
δ
≤ ηk < 1,∀k ∈ N, we have

‖e(t)‖q ≤ K1 sup
−τ̄≤s≤0

‖e(s)‖qe−(λ2−ᾱ1)t, ∀t ≥ 0, (4.42)

and

Case 2: For ηk ≥ 1, ∀k ∈ N, we have

‖e(t)‖q ≤ K2 sup
−τ̄≤s≤0

‖e(s)‖qe−(λ2−α̃2)t, ∀t ≥ 0. (4.43)

It is clear from inequalities (4.42) and (4.43) that the trajectories of system (4.17)

are converging globally exponentially to the unique equilibrium point with the con-

vergence rates r̄1 = λ2 − ᾱ1 and r̄2 = λ2 − α̃2 depending on 1
δ
≤ ηk < 1 and ηk > 1,

respectively. Hence, the proof is completed.

Remark 4.3.2. According to the definition of matrix measure, the value of a matrix

measure µq(W) (q = 1, 2,∞) can be negative, positive, or zero, whereas a matrix

norm can only have a non-negative value. Thus, using matrix measure one can

better utilize the elements of connection weights matrix.
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4.4 Numerical simulations and discussions

In this section, two examples are given to illustrate the theoretical results obtained

in the previous section.

Example 4.4.1. Let us consider the following state equations of an inertial BAM

neural network with mixed time-varying delays for n = 2 as



d2u1(t)
dt2

= −7du1(t)
dt
− 10u1(t) + 2g1(u1(t))− g2(u2(t)) + g1(u1(t− σ1(t)))

−g2(u2(t− σ2(t))) +
∫ t
t−τ1(t)

g1(u1(s))ds+
∫ t
t−τ2(t)

g2(u2(s))ds+ 0.8 sin t,

d2u2(t)
dt2

= −8du2(t)
dt
− 15u2(t)− g1(u1(t))− 3g2(u2(t))− g1(u1(t− σ1(t)))

−g2(u2(t− σ2(t))) + 2
∫ t
t−τ1(t)

g1(u1(s))ds−
∫ t
t−τ2(t)

g2(u2(s))ds+ 0.4 cos t,

(4.44)

where gi(ui(t)) = tanh(ui(t)), σi(t) = 0.5 sin2 t+ 0.5, τi(t) = cos2 t, i = 1, 2. Setting

ζ1 = 3, ζ2 = 4, the system of equations (4.44) can be written in the form of (4.17)

with the corresponding matrices obtained as

ζ =

3 0

0 4

 , Γ =

4 0

0 4

 , C =

2 0

0 1

 , A =

 2 −1

−1 −3

 ,

B =

 1 −1

−1 −1

 , D =

1 1

2 −1

 .

By simple calculations for q = 2, we get lq = 1, σ = 1, τ = 1, τ̄ = 1, µ2(H) =
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Figure 4.1: (a) and (b) demonstrate time evolution and phase portrait of states’
trajectories for the system (4.44), respectively
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Figure 4.2: (a) and (b) demonstrate time evolution of ‖e(t)‖2 for stabilizing and
destabilizing impulses with T̂a = 0.071, respectively.
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Figure 4.3: (a) demonstrate time evolution of ‖e(t)‖1 for stabilizing with T̂a =
0.03. (b) demonstrate time evolution of ‖e(t)‖1 for destabilizing impulses with

T̂a = 0.04.
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−1.9188, ‖A‖2 = 3.1926, ‖B‖2 = 1.4142, and ‖D‖2 = 2.3028. The inequalities

−β1 +
2∑
j=1

(
|a1j|

2
+
|b1j|

2
+ τ
|d1j|

2

)
lj +

2∑
j=1

(
|aj1|

2
+
|bj1|

2
+ τ
|dj1|

2

)
l1 = −2.5 < 0,

−β2 +
2∑
j=1

(
|a2j|

2
+
|b2j|

2
+ τ
|d2j|

2

)
lj +

2∑
j=1

(
|aj2|

2
+
|bj2|

2
+ τ
|dj2|

2

)
l2 = −6.5 < 0,

hold for i = 1, 2. It is obvious from Lemma 4.2.2 that system (4.44) must have a

unique equilibrium point. The phase trajectory and the time evolution of system

(4.44) with the initial condition (0.5, 0, 0.1, 0) are depicted in Fig. (4.1(b)) and

Fig. (4.1(a)), respectively. If δ = 2, then the maximum impulsive interval of the

impulsive sequence S = {tk : k ∈ N} is ς = 0.0714 for which the inequality µ2(H) +

lq‖A‖2 + (lq‖B‖2 + τ lq‖D‖2)δ − ln δ
ς

= −1.0001 < 0 holds; and we choose λ1 =

0.1016 ∈ (0, 0.2151).

The notations ťik and t̂jk for i = 1, 2, ..., ŇS , j = 1, 2, ..., N̂S , k ∈ N are the activa-

tion times of the stabilizing and destabilizing impulses, respectively. Suppose both

the stabilizing and destabilizing impulses are time-invariant, i.e., Pk1 = Pk2 , Qk1 =

Qk2 , ťik = ťk, t̂jk = t̂k for all i = 1, 2, ..., ŇS , j = 1, 2, ..., N̂S and k1, k2 ∈ N.

Case 1: Let Pk =

−0.9 0

0 0.5

, and Qk =

−0.2 0

0 0.3

, then 0.5 < ηk = 0.9 <

1,∀k ∈ N implies η̄ = 0.9. Suppose the average impulsive interval of the stabilizing

impulsive sequence Ťa = 0.02, and the positive constant N0 = 1, then we have

ᾱ1 = −5.2680. Thus, from Theorem 4.1, the trajectory of system (4.44) converges

globally exponentially with the convergence rate r̄1 = 0.1016 + 5.2680 = 5.3696

under the effects of stabilizing impulses, which is shown in Fig. (4.2(a)).

Case 2: Let Pk =

−1.002 0

0 1.003

 , Qk =

−1.004 0

0 1.007

, the average im-

pulsive interval of the destabilizing impulses T̂a = 0.071, and positive constant
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N0 = 5, then we can obtain ηk = 1.007 > 1, ∀k ∈ N, α̃2 = 0.0982, and η̃ = 1.007.

Thus, from Theorem 4.1, it is clear that even for destabilizing impulses, the trajec-

tory of system (4.44) is converging globally exponentially at the convergence rate

r̄1 = 0.1016− 0.0982 = 0.0034, which can be seen in Fig. (4.2(b)). Hence, Theorem

4.1 is verified.

Example 4.4.2. Consider system (4.44) to verify the results of Theorem 4.2. By

simple calculations for q = 1, we obtain µ1(H) = −1, µ1(ÂL̂) = 4, ‖B‖1 = 2, and

‖D‖1 = 3. Let δ = 3, then the maximum impulsive interval of the impulsive sequence

S = {tk : k ∈ N} is ς = 0.05 for which the inequality µ1(H) + µ1(ÂL̂) + (lq‖B‖1 +

τ lq‖D‖1)δ − ln δ
ς

= −3.978 < 0 holds; and we choose λ2 = 0.2177 ∈ (0, 0.3240).

Case 1: Consider the same impulsive strength as in the Case 1 of Example 1, i.e., 1
3
<

η̄ = 0.9 < 1 and let the average impulsive interval of stabilizing impulsive sequence

is Ťa = 0.03 ,and positive constant N0 = 5, then we have ᾱ1 = −3.5120. Hence, the

rate of convergence at which the trajectory of system (4.44) is converging globally

exponentially, is r̄2 = 0.2177 + 3.5120 = 3.7297. The convergence of trajectory of

system (4.17) is shown in Fig. (4.3(a)).

Case 2: For the same impulsive strength as in the Case 2 of Theorem 4.1, we have

η̃ = 1.007 > 1. Let the average impulsive interval of the destabilizing impulsive

sequence is T̂a = 0.04, and the positive constant N0 = 5, then we get α̃2 = 0.1744.

Hence, under the effects of destabilizing impulses, system (4.44) is getting stabilized

with the convergence rate r̄2 = 0.2177 − 0.1744 = 0.0433. The time-evolution of

the system’s trajectory is depicted in Fig. (4.3(b)). Thus, the obtained results of

Theorem 4.2 are verified.



Chapter 4. Exponential stability of inertial BAM... 117

4.5 Conclusion

This chapter has investigated the effects of time-varying stabilizing and destabiliz-

ing impulses on exponential stability of inertial BAM neural networks with mixed

time-varying delays. The original system has been transformed into the system of

first order differential equations by implementing a suitable variable transformation.

Using the concept of homeomorphism, a distributed delay-dependent sufficient cri-

terion has been found under which the system acquires a unique equilibrium point.

The matrix measure technique together with the extended impulsive differential

inequality have been successfully applied to derive sufficient criteria for ensuring

the global exponential stability of inertial BAM neural networks with mixed time-

varying delays for two classes of activation functions. Meanwhile, using the concept

of the average impulsive interval, the exponential convergence rates of the system’s

trajectories for each case of stabilizing and destabilizing variable impulses have been

investigated. Two numerical examples are given to validate the effectiveness of the

theoretical results.

***********


