
Chapter 2

Weak, modified, and function projective

synchronization of Cohen-Grossberg neural

networks

2.1 Introduction

In this chapter, we investigate MFPS of general Cohen-Grossberg neural networks

(CGNNs), introduced in previous section 1.2.4, with parameter mismatches. The

master and slave systems contain discrete and distributed delays that have been

introduced in the subsection 1.3.1. The concept of projective synchronization was

first studied by Mainieri and Rahacek [75] in 1999 in which they synchronized the

slave and the response systems up to a constant scaling factor. Later on more general

cases of projective synchronization, defined in the section 1.4, have been investigated

in the literature [76, 77, 78, 79, 80, 81, 82].

47
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2.2 Model description and mathematical

preliminaries

We consider a CGNN with mixed time-varying delays as a drive system

ẋi(t) = −αi(xi(t))

[
γi(xi(t))−

n∑
j=1

aijfj(xj(t))−
n∑
j=1

bijfj(xj(t− τ1(t)))

−
n∑
j=1

dij

∫ t

t−τ2(t)

fj(xj(s)) ds + Ii

]
, (2.1)

where i = 1, 2, ..., n. This can be written in more concise form as

ẋ(t) = −α(x(t))

[
Υ(x(t))− Af(x(t))−Bf(x(t− τ1(t)))−D

∫ t

t−τ2(t)

f(x(s))ds + I

]
,

(2.2)

where n represents the number of neurons in the neural network; x(t) = [x1(t), ...,

xn(t)]T ∈ Rn is the state vector associative with the neurons at time t;α(x(t)) =

diag(α1(x(t)), α2(x(t)), ..., αn(xn(t))) is a diagonal matrix of the state dependent

amplification functions; Υ(t) = [γ1(t), γ2(t), ..., γn(t)]T ∈ Rn denotes a column vector

of appropriately behaved functions ;f(x(t)) = [f1(x1(t)), f2(x2(t)), ..., fn(xn(t))]T ∈

Rn denotes a column vector of activation functions at time t with f(0) = 0; τ1(t)

is discrete and τ2(t) is distributed time-varying delays ; A = (aij)n×n, B = (bij)n×n,

and D = (dij)n×n denote connections weight matrices at time t, time-varying delay

τ1(t) and distributed delay τ2(t) respectively. I = [I1, I2, I3, ..., In] is a column vector

of external constant inputs to neurons. The initial condition of equation (2.2) is

denoted by x(t) = φ(t) ∈ C ([−τ, 0],Rn), where C ([−τ, 0],Rn) denotes the set of

all continuous functions from [−τ, 0] to Rn and φ(t) = [φ1(t), φ2(t), ..., φn(t)]T is
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a column vector of continuous functions. Throughout this chapter the following

hypotheses will be considered.

Assumption 2.1. There exists
−
ηi,η̃i > 0 such that

0 ≤ αi(ui(t)) ≤
−
ηi; i = 1, 2, 3, ..., n.

0 ≤ βi(ui(t)) ≤ η̃i; i = 1, 2, 3, ..., n.

Assumption 2.2. For any u, v ∈ Rn, there exist constants ρi > 0, i = 1, 2, ..., n,such

that

0 ≤ fi(u)− fi(v)

u− v
≤ ρi, i = 1, 2, ..., n.

Assumption 2.3. For any u, v ∈ Rn, there exist constants σi > 0, ρi > 0, %i > 0, i =

1, 2, ..., n, such that

‖γi(u)− γi(v)‖p ≤σi‖u− v‖p,

‖fi(u)− fi(v)‖p ≤ρi‖u− v‖p,

‖Γi(u)− Γi(v)‖p ≤%i‖u− v‖p.

The p-norm is defined in the section 1.3.3. There is an another norm that is used

in this chapter is ω−norm defined as

‖M‖ω = max
j

n∑
i=1

ωi
ωj
|mij|, (2.3)

and the matrix measure induced from the ω− norm is defined as

µω(M) = max
j

[
mjj +

n∑
i=1,i 6=j

ωi
ωj
|mij|

]
. (2.4)
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Assumption 2.4. Let us consider that 0 ≤ τ1(t), τ2(t) ≤ τ, ∀t.

The following lemma will be used to prove the theorems.

Lemma 2.2.1. [83] If Ψ(t) ≥ 0, ∀t ∈ (−∞,∞),

D+ (Ψ(t)) ≤ ξ1(t) + ξ2(t)Ψ(t) + ξ3(t) sup
t−τ(t)≤s≤t

Ψ(s),

for t > t0, where ξ1(t) ≥ 0, ξ2(t) ≤ 0, ξ3(t) ≥ 0 are continuous functions and τ(t) ≥ 0.

D+ (Ψ(t)) = limh→0+

Ψ(t+ h)−Ψ(t)

h
is the upper right Dini’s derivative of Ψ(t). If

∃δ ≥ 0, such that

ξ2(t) + ξ3(t) ≤ −δ < 0, t ≥ t0,

then Ψ(t) ≤ ξ∗

δ
+ sup−∞≤s≤t0 Ψ(s)e−µ

∗(t−t0), where ξ∗ = supt0≤s<∞ξ1(s) and µ∗ =

inft≥t0{µ(t) : µ(t) + ξ2(t) + ξ3(t)eµ(t)τ(t) = 0}.

2.3 Main results

In this section, the problem of the weak MFPS between coupled CGNNs systems

with mixed time-varying delays and parameter mismatch is formulated.

Let us consider an another CGNN as a slave system whose parameters are different

from the drive system (2.2) as

ẏ(t) =− β(y(t))

[
Γ (y(t))− Pf(y(t))−Qf(y(t− τ1(t)))−R

∫ t

t−τ2(t)

f(y(s))ds + J

]

+ U(t), and y(t) = ϕ(t), t ∈ [−τ, 0], (2.5)

where y(t) = [y1(t), y2(t), ..., yn(t)]T ∈ Rn is a state vector; β(y(t)) ∈ Rn×n is a

diagonal matrix for which Assumption 2.1 is already stated; Γ (y(t)) is appropriately
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behaved function satisfies Assumption 2.3 ; P ∈ Rn×n, Q ∈ Rn×n, and R ∈ Rn×n

are constant matrices; ϕ(t) ∈ C ([−τ, 0],Rn) is the initial condition of equation

(2.5). The controller is chosen as U(t) = −ζ(t) (x(t)− Λ(t)y(t)), where Λ(t) =

diag (ν1(t), ν2(t), ..., νn(t)) is a diagonal matrix of order n and νi(t) is continuously

differentiable function with bound, νi(t) 6= 0, i = 1, 2, ..., n, for all t. ζ(t) is coupling

strength matrix.

In order to achieve a weak MFPS, we construct an error system from drive and

response systems (2.2)-(2.5) as follows:

e(t) = y(t)− Λ(t)x(t). (2.6)

From the equations (2.2) and (2.5), we get

ė(t) =− ζ(t)e(t)− β(y(t))Γ̃ (e(t)) + β(y(t))P f̃(e(t)) + β(y(t))Qf̃(e(t− τ1(t)))

+ β(y(t))R

∫ t

t−τ2(t)

f̃(e(s))ds+H(x(t), Λ(t), τ1(t), τ2(t)), (2.7)

where f̃(e(t)) = f(y(t))− f(Λ(t)x(t)), Γ̃ (e(t)) = Γ (y(t))− Γ (Λ(t)x(t)), and

H (x(t), Λ(t), τ1, τ2) =β(y(t))Γ (Λ(t)x(t)) + Λ(t)α(x(t))Υ (x(t))

+ β(y(t))Pf(Λ(t)x(t))− Λ(t)α(x(t))Af(x(t))

+ β(y(t))Qf(Λ(t)x(t− τ1(t)))− Λ(t)α(x(t))Bf(x(t− τ1(t)))

+ β(y(t))R

∫ t

t−τ2(t)

f(Λ(s)x(s))ds− Λ(t)α(x(t))

×D
∫ t

t−τ2(t)

f(x(s))ds+ J(Λ(t)α(x(t))− β(y(t)). (2.8)

From literature survey [84, 85, 86] on dynamics of neural networks with parameter

mismatches. It is seen that the parameter mismatches is unfavorable for the complete
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synchronization. Chen and Cao [85] have considered the mismatched parameters

between the chaotic neural networks for projective synchronization problem. Our

aim is to find weak MFPS between the CGNNs (2.2) and (2.5).

It is clear from equation (2.7) that the effect of parameter mismatches and the scaling

function Λ(t) cause the error system having non-zero equilibrium point. However,

a small synchronization error bound can be obtained up to which a weak MFPS is

achieved.

Definition 2.3.1. The weak MFPS is said to be achieved between the drive and slave

systems (2.2)-(2.5) with an error bound ε > 0 if there exists a scaling function matrix

Λ(t) and T
′
> 0 such that

‖y(t)− Λ(t)x(t)‖p ≤ ε,

for all t ≥ T
′
.

Remark 2.3.1. It can be observed from Definition (2.3.1) if the scaling function

matrix is a zero matrix i.e.,Λ(t) = 0 then the problem becomes stability analysis

of CGNN with mixed time-varying delays. In the case of Λ(t) = I where I is an

identity matrix, the problem is called quasi-synchronization.

Assumption 2.5. Let us assume that the states of driven system x(t) is bounded i.e.,

x(t) ∈ {x(t) : ‖x(t)‖p ≤ Cp} ,∀t ≥ −τ.
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For p = 1,∞, ω, we have

‖H(x(t), Λ(t), τ1(t), τ2(t))‖p ≤ ‖β(y(t))‖p‖Γ (Λ(t)x(t)‖p + ‖Λ(t)‖p‖α(x(t))‖p‖Υ (x(t))‖p

+ ‖β(y(t))‖p‖P‖p‖f(Λ(t)x(t))‖p

+ ‖Λ(t)‖p‖α(x(t))‖p‖A‖p‖f(x(t))‖p

+ ‖β(y(t))‖p‖Q‖p‖f(Λ(t)x(t− τ1(t))‖p

+ ‖Λ(t)‖p‖α(x(t))‖p‖B‖p‖f(x(t− τ1(t)))‖p

+ ‖β(y(t))‖p‖R‖p
∫ t

t−τ2(t)

‖f(Λ(s)x(s)‖pds

+ ‖Λ(t)‖p‖α(x(t))‖p‖D‖p
∫ t

t−τ2(t)

‖f(x(s))‖pds

+ ‖I‖p‖Λ(t)‖p‖α(x(t))‖p + ‖J‖p‖β(y(t))‖p.

Using Assumptions (2.1)-(2.5), we get

‖H(x(t), Λ(t), τ1(t), τ2(t))‖p ≤ (‖A‖p + ‖B‖p)
−
ηρCp‖Λ(t)‖p + (‖P‖p + ‖Q‖p) η̃ρCp‖Λ(t)‖p

+ (η̃‖R‖p +
−
η‖D‖p)ρCpτ‖Λ(t)‖p +

(
η̃%+

−
ησ
)
Cp‖Λ(t)‖p

+
−
η‖Λ(t)‖p‖I‖P + η̃‖J‖p, (2.9)

where
−
η = maxi

{
−
ηi

}
, ρ = maxi {ρi} , σ = maxi {σi} , η̃ = maxi {η̃i} , % = maxi {%i}.

From (2.9), ‖H(x(t), Λ(t), τ1(t), τ2(t)‖p is bounded for ∀t ≥ −τ . Suppose that

Ξ = supt≥0‖H(x(t), Λ(t), τ1(t), τ2(t)‖p, (2.10)

where Ξ <∞.

Theorem 2.1. Suppose the Assumptions (2.1), (2.3) and (2.4) are true. Then

the error system (2.7) is said to be exponential convergent within a small domain

D containing the origin if there exists a matrix measure µp(.)(p = 1,∞, ω) and a
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non-singular matrix T such that

µp(−Tζ(t)T−1) + %η̃‖T‖p‖T−1‖+ ρη̃‖P‖p‖T‖p‖T−1‖p + η̃ρ‖Q‖p‖T‖p‖T−1‖p

+ η̃ρ‖T‖p‖T−1‖p‖R‖pτ2(t) ≤ −δ1 < 0,∀t ≥ 0, (2.11)

where

D =

{
e ∈ Rn|‖e(t)‖p ≤

‖T−1‖p‖T‖pΞ
δ1

}
,

and δ1 is a positive real number.

Proof. Let T is nonsingular matrix then the chosen Lyapunov function is given by

V (e(t)) = ‖Te(t)‖p (2.12)

The Dini derivative of the equation (2.12) with respect to t along the solution of

error system (2.7) is

D+(V (e(t))) = lim
h→0+

‖Te(t+ h)‖p − ‖Te(t)‖p
h

= lim
h→0+

‖Te(t) + hT ė(t) + o(h)‖p − ‖Te(t)‖p
h

= lim
h→0+

1

h

{
‖Te(t) + hT

(
− ζ(t)e(t)− β(y(t))Γ̃ (e(t))

+ β(y(t))P f̃(e(t)) + β(y(t))Qf̃(e(t− τ1(t)))

+ β(y(t))R

∫ t

t−τ2(t)

f̃(e(s))ds+H(x(t), Λ(t), τ1(t), τ2(t))
)

+O(h)‖p − ‖Te(t)‖p

}
.
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D+(V (e(t))) ≤ lim
h→0+

1

h

[
‖Te(t) + h(−Tζ(t)T−1)Te(t)‖p − ‖Te(t)‖p

]
+ ‖Tβ(y(t))Γ̃ (e(t))‖p + ‖Tβ(y(t))P f̃(e(t))‖p

+ ‖Tβ(y(t))Qf̃(e(t− τ1(t)))‖p

+ ‖Tβ(y(t))R

∫ t

t−τ2(t)

f̃(e(s))ds‖p

+ ‖TH(x(t), Λ(t), τ1(t), τ2(t)‖p.

Using Assumptions (2.1), (2.3) and (2.4), we get

D+(V (e(t))) ≤ lim
h→0+

‖I + h(−Tζ(t)T−1)‖p − 1

h
‖Te(t)‖p

+
(
η̃%‖T‖p‖T−1‖p + η̃ρ‖T‖p‖P‖p‖T−1‖p

)
‖Te(t)‖p

+
(
η̃ρ‖T‖p‖Q‖p‖T−1‖p + η̃ρ‖T‖p‖R‖p‖T−1‖pτ2(t)

)
× sup

s∈[t−τ,t]
‖Te(s)‖p + ‖T‖p‖H‖p (2.13)

D+(V (e(t))) ≤‖T‖p‖H‖p +
(
µp(−Tζ(t)T−1) + η̃%‖T‖p‖T−1‖p

+ η̃ρ‖T‖p‖P‖p‖T−1‖p
)

+
(
η̃ρ‖T‖p‖Q‖p‖T−1‖p

+ η̃ρ‖T‖p‖R‖p‖T−1‖pτ2(t)
)

sup
s∈[t−τ,t]

‖Te(s)‖p. (2.14)

Let

ξ1(t) = ‖T‖p‖H‖p,

ξ2(t) = µp(−Tζ(t)T−1) + η̃%‖T‖p‖T−1‖p + η̃ρ‖T‖p‖P‖p‖T−1‖p,

ξ3(t) = η̃ρ‖T‖p‖Q‖p‖T−1‖p + η̃ρ‖T‖p‖R‖p‖T−1‖pτ2(t).



Chapter 2. Weak, modified and function projective synchronization... 56

Then by using ξ1(t), ξ2(t) and ξ3(t) in inequality (2.13), we get

D+(V (e(t))) ≤ ξ1(t) + ξ2(t) + ξ3(t) sup
t−τ≤s≤t

‖Te(s)‖p, t ≥ 0.

Now, using (2.11) and Lemma (2.2.1) (Generalized Halanay inequality), we obtain

V (e(t)) ≤ ‖T‖pΞ
δ1

+ sup
s∈[−τ,0]

V (e(s))e−µ
∗t, (2.15)

where µ∗ = inft≥0

{
µ(t) : µ(t) + ξ2(t) + ξ3(t)eµ(t)τ = 0

}
. The equation (2.12) can be

written as

‖T−1‖pV (e(t)) = ‖T−1‖p‖Te(t)‖p ≥ ‖e(t)‖p; (2.16)

V (e(t)) = ‖Te(t)‖p ≤ ‖T‖p‖e(t)‖p. (2.17)

By using the inequalities (2.16) and (2.17) in the inequality (2.3), we get

‖e(t)‖p ≤
‖T−1‖p‖T‖pΞ

δ1

+ ‖T−1‖p‖T‖p sup
s∈[−τ,0]

‖e(s)‖pe−µ
∗t. (2.18)

Inequality (2.18) is showing the exponential convergence of the error system (2.7)

within a small domain

D =

{
e(t) ∈ Rn|‖e(t)‖p ≤

‖T−1‖p‖T‖pΞ
δ1

}
.

containing the origin. From (2.18), we observe that for an arbitrary ε > 0, ∃ T ′ > 0

such that

‖e(t)‖p ≤ ε+
‖T−1‖p‖T‖pΞ

δ1

(2.19)

for any t ≥ T
′
.

Thus from Definition (2.3.1), the weak MFPS is achieved between the systems (2.2)
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and (2.5) with a small synchronization error bound ε+ ‖T−1‖p‖T‖pΞ

δ1
. This completes

the proof.

Remark 2.3.2. The information about each of ρi for all i = 1, 2, ..., n is not found in

Theorem 2.1. So, we are going to derive the lemma based on Assumption 2.2 which

will use ρi for each i. Based on this lemma we construct the Theorem 2.2 that will

have more precise result than Theorem 2.1.

Lemma 2.3.1. Let the Assumption (2.1) is true, and ‖.‖p be an induced matrix norm

onRn×n and suppose µp(.) be the respective matrix measure, then µp(β(y(t))PF (e(t)))

≤ µp(qP̃K), where

F (e(t)) = diag

{
f̃1(e1(t))

e1(t)
,
f̃2(e2(t))

e2(t)
,
f̃3(e3(t))

e3(t)
, ...,

f̃n(en(t))

en(t)

}
,

K = diag {ρ1, ρ2, ρ3, ..., ρn}, β(y(t)) = diag
{
β1(y1(t)), β2(y2(t)), ..., βn(yn(t))

}
, q =

diag {η̃1, η̃2, ..., η̃n},

and

P̃ = (p̃ij)n×n =


max(0, pij), ifi = j,

pij, otherwise,

for p = 1,∞, ω.

Proof. We know from the definitions of P, F (e(t)), β(y(t)), Assumptions (2.1) and

(2.2) that 0 ≤ f̃i(ei(t))
ei(t)

≤ ρi, 1 ≤ i ≤ n and

β(y(t))PF (e(t)) =


β1(y1(t))p11

f̃1(e1(t))
e1(t)

... β1(y1(t))p1n
f̃n(en(t))
en(t)

...
...

βn(yn(t))pn1
f̃1(e1(t))
e1(t)

... βn(yn(t))pnn
f̃n(en(t))
en(t)

 .
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For p = 1, Definition 1.3.4 will confirm the following

µ1(β(y(t))PF (e(t))) = max
j

[
βj(yj(t))pjj

f̃(ej(t))

ej(t)
+

n∑
i=1,i 6=j

∣∣∣∣∣βi(yi(t))pij f̃(ej(t))

ej(t)

∣∣∣∣∣
]
,

and

βj(yj(t))pjj
f̃(ej(t))

ej(t)
≤ η̃jmax(0, pjj)ρj,∣∣∣∣∣βi(yi(t))pij f̃(ej(t))

ej(t)

∣∣∣∣∣ = |βi(yi(t))||pij|

∣∣∣∣∣ f̃(ej(t))

ej(t)

∣∣∣∣∣ ≤ |η̃ipijρj|.
Thus, we obtain the following for 1 ≤ j ≤ n

βj(yj(t))pjj
f̃(ej(t))

ej(t)
+

n∑
i=1,i 6=j

∣∣∣∣∣βi(yi(t))pij f̃(ej(t))

ej(t)

∣∣∣∣∣ ≤ η̃jmax(0, pjj)ρj +
n∑

i=1,i 6=j

|η̃ipijρj|.

(2.20)

From inequality (2.20), we can write µ1(β(y(t))PF (e(t))) ≤ µ1(qP̃K) where µ1(qP̃K) =

maxj
{
η̃jmax(0, pjj)ρj +

∑n
i=1,i 6=j |η̃ipijρj|

}
. In similar way, we can show the proof

of lemma for p =∞, ω.

Theorem 2.2. Based on Assumption (2.2) and Lemma (2.3.1), if there exists a

matrix measure µp(.) (p = 1,∞, ω) induced by a norm ‖.‖p and a nonsingular matrix

T such that

µp(−Tζ(t)T−1) + µp(TqP̃KT
−1) + η̃%‖T‖p‖T−1‖p + η̃ρ‖T‖p‖T−1‖p‖Q‖p

+η̃‖T‖p‖T−1‖p‖R‖pτ2(t) ≤ −δ2 < 0, ∀t ≥ 0. (2.21)

then the weak MFPS between the drive system (2.2) and the slave system (2.5) is

achieved with an error bound ε+‖T‖p‖T
−1‖pΞ

δ2
, where δ2, ε > 0, K = diag {ρ1, ρ2, ρ3, ..., ρn},
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q = diag {η̃1, η̃2, ..., η̃n}, and

P̃ = (p̃ij)n×n =


max(0, pij), if i = j,

pij, otherwise.

Proof. The Dini derivative of the chosen Lyapunov function in (2.12) with respect

to t along the solution of error system (2.7) is

D+(V (e(t))) = lim
h→0+

‖Te(t+ h)‖p − ‖Te(t)‖p
h

= lim
h→0+

‖Te(t) + hT ė(t) + o(h)‖p − ‖Te(t)‖p
h

= lim
h→0+

1

h

{
‖Te(t) + hT

(
− ζ(t)e(t)− β(y(t))Γ̃ (e(t))

+ β(y(t))P f̃(e(t)) + β(y(t))Qf̃(e(t− τ1(t)))

+ β(y(t))R

∫ t

t−τ2(t)

f̃(e(s))ds+H(x(t), Λ(t), τ1(t), τ2(t))
)

+O(h)‖p − ‖Te(t)‖p

}

≤ lim
h→0+

1

h

[
‖Te(t) + hT

(
−ζ(t)e(t) + β(y(t))P f̃(e(t))

)
‖p − ‖Te(t)‖p

]
+ ‖Tβ(y(t))Γ̃ (e(t))‖p + ‖Tβ(y(t))Qf̃(e(t− τ1(t)))‖p + ‖Tβ(y(t))R

×
∫ t

t−τ2(t)

f̃(e(s))ds‖p + ‖TH(x(t), Λ(t), τ1(t), τ2(t)‖p. (2.22)

From Lemma 2.2.1, we have

F (e(t)) = diag

{
f̃1(e1(t))

e1(t)
,
f̃2(e2(t))

e2(t)
, ...,

f̃n(en(t))

en(t)

}
,
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which can be written as f̃(e(t)) = F (e(t))e(t). Now putting it in the inequality

(2.22), we get

D+(V (e(t))) ≤ lim
h→0+

1

h

[
‖I + h

(
− Tζ(t)T−1 + Tβ(y(t))PF (e(t))T−1

)
‖p − 1

]
‖Te(t)‖p

+η̃%‖T‖p‖T−1‖p‖Te(t)‖p +
(
η̃ρ‖T‖p‖Q‖p‖T−1‖p + η̃ρ‖T‖p‖R‖p

×‖T−1‖pτ2(t)
)

sup
t−τ≤t

‖Te(s)‖p + ‖T‖p‖H‖p. (2.23)

D+(V (e(t))) ≤
(
µp(−Tζ(t)T−1) + µp(Tβ(y(t))PF (e(t))T−1)

)
‖Te(t)‖p + η̃%‖T‖p

× ‖T−1‖p‖Te(t)‖p +
(
η̃ρ‖T‖p‖Q‖p‖T−1‖p + η̃ρ‖T‖p‖R‖p‖T−1‖pτ2(t)

)
× sup

t−τ≤t
‖Te(s)‖p + ‖T‖p‖H‖p. (2.24)

D+(V (e(t))) ≤‖T‖p‖H‖p +
(
µp(−Tζ(t)T−1) + µp(TqP̃KT

−1) + η̃%‖T‖p‖T−1‖p
)

× ‖Te(t)‖p +
(
η̃ρ‖T‖p‖Q‖p‖T−1‖p + η̃ρ‖T‖p‖R‖p‖T−1‖pτ2(t)

)
× sup

t−τ≤s≤t
‖Te(s)‖p. (2.25)

Suppose

ξ1(t) = ‖T‖p‖H‖p,

ξ2(t) = µp(−Tζ(t)T−1) + µp(TqP̃KT
−1) + η̃%‖T‖p‖T−1‖p,

ξ3(t) = η̃ρ‖T‖p‖Q‖p‖T−1‖p + η̃ρ‖T‖p‖R‖p‖T−1‖pτ2(t).

Putting these ξ1(t),ξ2(t) and ξ3(t) in inequality (2.25), we get

D+(V (e(t))) ≤ ξ1(t) + ξ2(t)V (e(t)) + ξ3(t) sup
t−τ≤s≤t

V (e(s)).
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From inequality (2.21), we have ξ2(t) + ξ3(t) ≤ −δ2 < 0. According to Lemma 2.2.1

(Generalized Halanay inequality), we will have

V (e(t)) ≤ ‖T‖pΞ
δ2

+ sup
s∈[−τ,0]

V (e(s))e−µ
∗
1t,

where µ∗1 = inft≥0

{
µ(t) : µ(t) + ξ2(t) + ξ3(t)eµ(t)τ = 0

}
. Using the estimations (2.16)

and (2.17), we will get the estimation of the error system (2.7) as

‖e(t)‖p ≤
‖T−1‖p‖T‖pΞ

δ2

+ ‖T−1‖p‖T‖p sup
s∈[−τ,0]

‖e(s)‖pe−µ
∗
1t. (2.26)

It can be observed from the inequality (2.26) that we get the small domain D of

exponential convergence of the error system (2.7) as

D =

{
e ∈ Rn|‖e(t)‖p ≤

‖T−1‖p‖T‖pΞ
δ2

}

and it is obvious from (2.26) that for ε > 0, ∃ T ′ > 0 such that

‖e(t)‖p ≤ ε+
‖T−1‖p‖T‖pΞ

δ2

,∀t ≥ T
′
. (2.27)

Thus, the weak MFPS between the systems (2.2) and (2.5) is achieved with a small

error bound ε+ ‖T−1‖p‖T‖pΞ

δ2
.

If we replace the non singular matrix T with identity matrix I in Theorem 2.1 and

2.2, then the following corollaries can be drawn.

Corollary 2.3.1. There exists a matrix measure µp(.) (p = 1, ω,∞) induced by a

norm ‖.‖p such that

µp(−ζ(t)) + %η̃ + ρη̃‖P‖p + η̃ρ‖Q‖p + η̃ρ‖R‖pτ2(t) ≤ −δ1 < 0,∀t ≥ 0. (2.28)
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holds then the trajectory of error system (2.7) converges exponentially in the domain

D =

{
e ∈ Rn|‖e(t)‖p ≤

Ξ

δ1

}
.

It means the slave system (2.5) achieve weak MFPS with the drive system (2.2) up

to a small error bound ε+ Ξ
δ1

.

Corollary 2.3.2. If there exists a matrix measure µp(.) (p = 1,∞, ω) induced by a

norm ‖.‖p such that

µp(−ζ(t)) + µp(qP̃K) + η̃%+ η̃ρ‖Q‖p + η̃‖R‖pτ2(t) ≤ −δ2 < 0,∀t ≥ 0, (2.29)

then weak MFPS is achieved between the slave and drive systems (2.5)-(2.2) with

an error bound ε + Ξ
δ2

. The trajectory of error system (2.7) will be exponentially

converging to a small domain

D =

{
e ∈ Rn|‖e(t)‖p ≤

Ξ

δ2

}
.

Remark 2.3.3. The benefits of using ω-measure is if we assume ωi << ωj then Ξ can

be minimized to a desired synchronization error bound that can not be possible in

others measures.

Remark 2.3.4. From Definition 1.3.4, we can see that matrix norm ‖ − M‖p =

‖M‖p, (i = 1, 2, ω,∞) is restricted to a non-negative value. On the other hand,

matrix measure can be negative or positive or zero. Weights of interconnections

among the neurons can be negative or positive depending on inhibitory or excitatory

signals respectively. Thus, matrix measure approach gives more intuitive results than

norm.

Remark 2.3.5. If the amplification functions and scaling matrix are constant then

the obtained results will also be true for p = 2.
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2.4 Results and discussion

In this section, the following example has been considered to validate the effective-

ness of the results of our proposed theorems. Let us consider the numerical examples

of the drive and slave systems as

ẋ(t) =− α

[
Υx(t)− Af(x(t))−Bf(x(t− τ1(t)))−D

∫ t

t−τ2(t)

f(x(s))ds + I

]
,

x(t) =φ(t), t ∈ [−τ, 0] (2.30)

and

ẏ(t) =− β

[
Γy(t)− Pf(y(t))−Qf(y(t− τ1(t)))−R

∫ t

t−τ2(t)

f(y(s))ds + J

]
+ U(t),

y(t) =ϕ(t), t ∈ [−τ, 0]. (2.31)

The parameters of both equations are taken as

α =

1 0

0 1

 , Υ =

1 0

0 1

 , A =

 2 −0.11

−5.0 3.2

 ,

B =

 −1.6 −0.1

−0.18 −2.4

 , D =

−0.5 1

2 −1.8

 ,
and

β =

1 0

0 1

 , Γ =

0.97 0

0 1.1

 , P =

 2.1 −0.1

−5.1 3.19



Q =

 −1.5 0

−0.15 −2.3

 , R =

−0.48 1.02

2.1 −1.9

 ,
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where x(t) = [x1(t), x2(t)]T and y(t) = [y1(t), y2(t)]T are the state vectors of the

systems (2.30) and (2.31) respectively. f(x(t)) = [tanhx1(t), tanhx2(t)]T is activa-

tion function which satisfies the Assumptions 2.2 and 2.3, τ1(t) = τ2(t) = et

1+et
with

τ = 1. Let ν1(t) = 2 + 0.3sin(2πt
40

) and ν2(t) = 2 + 0.28sin(2πt
40

) are the entries of

the scaling function Λ(t) = diag(ν1(t), ν2(t)) and its norm ‖Λ(t)‖1 = 2.3. External

inputs are I = J = [0, 0].

If the coupling strength ζ(t) = [ 0 0
0 0 ] for the linear controller U(t) = ζ(t)

(
y(t) −

Λ(t)x(t)
)
, then both systems will be independent of each other as we can see in

Fig.2.1(b). Consider ζ(t) = [ 40 0
0 42 ] and T = I, then the error system converges

exponentially to a small domain D = {e ∈ Rn|‖e(t)‖p ≤ 0.39} which can be seen

in Fig.2.2(a), i.e., the weak MFPS between the slave system (2.5) and the drive

system (2.2) is achieved with an error bound 0.39. But, in Fig.(2.2(b)), for Λ(t) =

[ 0.5 0
0 0.4 ] the small domain of convergence is reduced to an upper bound 0.14 i.e.,

D = {e ∈ Rn|‖e(t)‖p ≤ 0.14}.This is happened because Ξ also depends on norm of

Λ(t). From Corollaries 2.3.1 and 2.3.2, we can see that error bound depends on Ξ and

δ1 or δ2. Another way to reduce the error bound is stated in Remark 2.3.3. As we

stated, for ω−measure if we take ωi << ωj, i 6= j, the error bound will be tending to

zero as shown in the Fig.2.3. We have η̃ = 1, ρ = 1, % = 1.1, ‖P‖1 = 7.2, ‖Q‖1 = 2.3
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Figure 2.1: Periodic attractors of neural networks without coupling terms.
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Figure 2.2: Time evolution of the error system is shown in (a) for ‖Λ(t)‖1 = 2.3,
and in (b) for ‖Λ(t)‖1 = 0.5.
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Figure 2.3: Time evaluation of the error system for ωi/ωj ≈ 0.000001, i 6= j.

and ‖R‖1 = 2.92 for the systems (2.30) and (2.31). By putting these values in result

of Theorem 2.1, we get −µ1(−ζ(t)) = 42 > 10.60. For Theorem 2.2, It is obvious

that 3.30 < −µ1(−ζ(t))− µp(qP̃ k) = 49.20. Thus all the theorems are verified.

2.5 Conclusion

This chapter discussed a weak MFPS of two different CGNNs with time-varying

delays. Due to the presence of parameter mismatches, the complete MFPS between

the drive-response systems is not possible. Therefore, a new concept, viz.,weak

MFPS is investigated with a small synchronization error bound. Based on the
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generalized Halanay inequality and Matrix measure, the state of the error system is

estimated and several generic criteria are derived. The effectiveness of our proposed

theory is validated through an example.

***********


