
Chapter 1

Introduction

An artificial neural network is designed to model how the human brain performs a

particular task. The basic principle of the working mechanism is motivated by the

function of biological neurons. In this thesis, we investigate the stability and syn-

chronization problems of neural networks. The dynamics of neural networks are a

crucial part that is needed in implementation in real world’s problems such as asso-

ciative memory, artificial intelligence, secure communication, signal processing, op-

timization problem [2, 3, 4]. For example, chaos synchronization of neural networks

is applied in secure communication to increase the security of signals transmitting

from a transmitter to a receiver.

In synchronization problems of neural networks, control theory is needed to stabilize

the error systems. Many controllers have been designed so far, such as intermittent

control [5], linear feedback control [6], integral sliding mode control[7], and impul-

sive control[8, 9, 10, 11]. Among these effective controllers, the intermittent and

impulsive controls are discontinuous, which reduces the control cost; thus, they are

more effective than continuous controllers. When we use the impulsive controller to

control a nonlinear system, it makes the system hybrid, i.e., the system’s state is

continuous in the time-span except at a countable number of points. This type of

system is called an impulsive system. This thesis’s primary purpose is to study the

dynamics of neural networks with different kinds of impulsive sequences. We focused
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on a hybrid impulsive sequence containing stabilizing and destabilizing impulses and

tried to extend it to a more general class of impulsive sequences.

In the first section of this introductory chapter, we present the underlying motivat-

ing factor of artificial neural networks, biological neurons. We review a neuron’s

structure, the transmission of neural signals, and how the communication between

these biological neurons can be modeled. In the following section, we define artifi-

cial neural networks and give introductory mathematical concepts applied in further

chapters to investigate the dynamics of neural networks. In the final section of this

chapter, we present the definitions of synchronization with its different forms.

1.1 Biological neurons

The human brain and the nervous system are a composition of a huge number of

interconnected cellular units (nerve cells or neurons) and glial cells. The glial cells

are supportive in providing physical and functional supports to neurons. Although

neurons are found in a wide variety of shapes, sizes, and locations, most of them

are of uniform structures and follow the same basic principles of transmitting neural

signals [12, 13]. The essential features of the brain are the connectivity of neurons

and the mechanism of transmitting electrochemical signals in neurons. Both of them

help the brain to perform complex tasks.

A prototypical neuron is in Figure 1.1. The cell body (soma) is the central part of

neuron which constitutes the metabolic center and contains the nucleus and other

essential organelles. Many root-like extensions branch out from the cell body called

dendrites that have receiving zones of synaptic signals or impulses or information

from other neurons. A long fiber-like extension of the cell body is called an axon
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Figure 1.1: Schematic structure of a typical neuron [1].

that has specialized terminals (synaptic endings)-divided into many branches-to con-

vey the signals to target neurons. The main purpose of axon is to propagate a

self-generating electrical wave as electric signals from the point of initiation at the

cell body to its terminals. The mechanism of transmitting electrochemical signals

through axon is called the action potential. There are two types signaling mecha-

nism in neurons one is electrically and another is chemically. Interior of neurons is

prevailed with electrical signal, whereas chemical signals are operated at synaptic

ends.

Now we describe the procedure through which an electric current is generated across

the membrane of the axon, how it propagates, and the ways it can be modeled in the

mathematical equation. The neuron membrane consists of two thin layers of the lipid
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molecules. The layers separate the axon cytoplasm (interior) of the neuron and the

extracellular fluid. The membrane is selective to diffusion of particular molecules,

and its diffusion selectivity varies with time and length along the axon. The selective

permeability of membranes is due largely to ion channels which allow only certain

kinds of ions to cross the membrane in the direction of their concentration and

electro-chemical gradients.

There are ion concentrations of K+, Na+, Cl−, and Ca2+, and their differences

across the membrane of the axon cause an electrical potential in the neurons. In

the state of equilibrium the potential difference in the neuron is -70mV (resting

potential) across the membrane of the axon. In an inactive state of neuron the ions

distributions across the thin layers of the membrane makes the interior or cytoplasm

of neuron negatively charged relative to the extra-cellular fluid. This is caused by a

biological ion pump that works when the interior of the axon becomes more positive.

When an electric pulse injected in the axon of the neuron, the resting potential across

the membrane is deviated. This deviation changes ions concentrations across the

membrane that vary the potential difference. Thus, the membrane of the axon has

the property of capacitance, i.e., separation of charges. The function of membrane is

similar to the function of resistor-capacitor (RC)-type circuit that will be discussed

in the next section [14, 15]. The membrane permeability allows Na+ ions to enter in

interior of the neuron through the ion channels. This increases the voltage across the

membrane, as it exceeds the threshold, the injected current produces a single pulse

which propagates through the axon terminals. The pulse signal traveling through the

axon terminals stops at the synaptic ends due to the synaptic gap. From the synaptic

ends, it is transferred to the target neuron by a special chemical mechanism called

synaptic transmission. In synaptic transmission, special substances are released
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from the synaptic ends called neurotransmitters, and hits the target neurons passing

through the synaptic gap.

In the target neurons, the signal pulse act as a current pulse that follows the same

mechanism, to hit the other neurons, as it is followed in the pre-synaptic neuron.

1.1.1 Biological model

As we have discussed above that the neurons in human brain transmit an electrical

pulse along their axons to other neurons. By transmitting signals from one neuron

to other neurons in the network, our brain perform a particular task of interest. In

order to understand the brain functioning, it is necessary to model the biological

network of neurons into the mathematical equation. In this subsection we discuss

about the general mathematical model of biological neural networks that was first

formulated by Robert L. Harvey in his book Neural Network Principles published

in 1994.

Assume that there are n neurons in the network shown in Figure 1.2, denote them by

N1, N2, ..., Nn. Let a variable xi(t) describes ith-neuron’s state and a variable Zij(t)

describes the coupling strength between the neurons Ni and Nj. More precisely,

xi(t) = the deviation of the i-th neuron from the resting potential.

The activation level of the i-th neuron is described by the variable xi(t). It is

called axon potential or short term memory(STM) trace. The strength of interaction

between the neurons Ni and Nj is denoted by Zij(t) which can be negative or positive

depending on the signal that inhibits or excites the neurons to fire. If Zij(t) > 0, it

means that i-th neuron is excited to send a signal to j-th neuron. If Zij(t) < 0,it
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Figure 1.2: Schematic diagram of a network of neurons. Neuron Ni sends a
signal pulse Sij through its axon to hits the target neuron Nj with coupling

strength Zij(t). The external inputs Ii are stimuli for the neuron model.

means that i-th neuron is inhibited to send a signal to j-th neuron.

Zij(t) = the average release rate of neurotransmitter per unit axonal signal frequency.

This is called the synaptic coupling coefficient or long term memory(LTM) trace.

Assume a deviation in neuron’s potential from equilibrium due to internal and exter-

nal processes in neural network. The rate of change in neuron’s potential is described

by the following differential equation.

dxi(t)

dt
=

(
dxi(t)

dt

)
external

+

(
dxi(t)

dt

)
internal

, ∀i. (1.1)

Assume inputs from other neurons and stimuli are additive. Then, we have

dxi(t)

dt
=

(
dxi(t)

dt

)
external

+

(
dxi(t)

dt

)
excitatory

−
(
dxi(t)

dt

)
inhibitory

+

(
dxi(t)

dt

)
internal

,∀i.

(1.2)
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Assuming further that neuron’s potential is decaying exponentially to equilibrium

state without having external processes, we have

(
dxi(t)

dt

)
internal

= −αi(xi(t))xi(t),where αi(xi(t)) > 0, ∀i. (1.3)

Assume additive synaptic excitation is proportional to the pulse train frequency

(
dxi(t)

dt

)
excitatory

∝
∑

other neurons

(frequency of signal)(synaptic coupling strengths).

(1.4)

It can be written as

(
dxi(t)

dt

)
excitatory

=
n∑
l=1
l 6=i

Sli(t)Zli(t),∀i, (1.5)

where Sli(t) is the average frequency of signal in the axon from neuron Nl to Ni,

evaluated at Ni. The average signal frequency Sli(t) depends on the propagation

time delay τli taken by the signal to reach neuron Ni from Nl, and also depends on

the threshold value Γl for firing of Nl in the following manner

Sli(t) = fl(xl(t− τli)− Γl), (1.6)

where fl : R→ [0,∞) is a given non-negative function called signal function. There

are many different forms of signal functions which are commonly used in neural

networks, we shall discuss it later in detail.
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Substituting (1.6) in equation (1.5), we get

(
dxi(t)

dt

)
excitatory

=
n∑
l=1
l 6=i

Zli(t)fl(xl(t− τli)− Γl),∀i. (1.7)

Assume hardwiring of the inhibitory inputs from the other neurons,i.e., the coupling

strengths between the inhibited neurons are constant. We have the following

(
dxi(t)

dt

)
inhibitory

=
n∑
l=1
l 6=i

Cli, ∀i, (1.8)

where Cli = blihl(xl(t − τli) − Γl), and bli ≥ 0 is constant coupling strength. The

function hl is a signal function. Generally, the threshold value Γl is same for every

neuron in the network.

The stimuli are other external sources to change the neuron’s potential, so we have

(
dxi(t)

dt

)
external

= Ii,∀i. (1.9)

Now, substituting the equations (1.3), (1.7), (1.8), and (1.9) in the equation (1.2),

we get the so-called additive STM trace equation for i = 1, 2, ..., n.

dxi(t)

dt
= −αi(xi(t))xi(t) +

n∑
l=1
l 6=i

Zli(t)fl(xl(t− τli)− Γl)−
n∑
l=1
l 6=i

blihl(xl(t− τli)− Γl) + Ii.

(1.10)

As we have assumed that the excitatory synaptic coupling is varying with time, so

we have the following equation based on Hebb’s law.

dZij(t)

dt
= −Aij(Zij(t))Zij(t) + Pij(t)[xj(t)]

+, Aij(Zij(t)) > 0,∀i, j, (1.11)
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where Pij(t) = βijfi(xi(t− τij)− Γi), βij ≥ 0, and

[xj(t)]
+ =


xj(t), if xj ≥ 0,

0, if xj < 0.

The second term of the equation (1.11) shows that to increase Zij(t), neuron Ni

must send a signal Pij(t) to neuron Nj, and at the same time Nj must be activated,

i.e., xj(t) > 0.

Note that the STM and LTM trace equations (1.10) and (1.11) respectively are not

solvable until the coefficients αi, Aij, Cli, Sli, Pij and the external stimuli Ii are given.

1.2 Artificial Neural Networks

An artificial neural network (or neural network) is a biologically motivated machine

that is designed to model the way in which the biological neural network perform

a particular task or function of interest. The network is usually implemented by

using electronic components or is simulated in software on digital computer [16]. It

consists of computational units that correspond to neurons, and of interconnections

correspond to synapses. The architecture of artificial neurons and synaptic connec-

tions between them is inspired by the biological neuron model. The table 1.1 shows

the comparison between an artificial neural network to a biological one.

The definition of an artificial neural network may be the following defined by Simon

Haykin in his book [16] Neural Network: A Comprehensive Foundation.

Definition 1.2.1. A neural network is a massively parallel distributed processor con-

sists of simple processing units, which has a natural propensity for experiential

knowledge and making it available for use. It resembles the brain in two respects:
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2

Biological neural network Artificial neural network

Neuron Processing unit
Dendrite Input unit
Cell Body Processing function

Axons Output unit
Synapse Weights

External stimulus Bias

Table 1.1: Comparison between a human brain and an artificial neural network.

xr

...

wkr Σ
Summing
junction

uk fk(.)

Activation
function

yk

Output

x1 wk1
...

xn wkn

Weights

Bias
bk

Inputs

Figure 1.3: A diagram of an artificial neuron of the network.

(i) Neural network acquired knowledge from its environment through a learning

process.

(ii) Interconnection strengths, known as synaptic weights, are used to store the

acquired knowledge.

The specific features of a neural network that make it a powerful computing machine

is its massively parallel distributed structure, and its ability to learn and therefore

generalize. Generalization refers to its ability to produce reasonable outputs for

the inputs which are not encountered during learning. A neural network performs

to compute a complex problem in integrated manner. It cannot perform working

individually.

A basic diagram block of a neuron of the network is shown in Figure 1.3. The input

signals x1, ..., xr, ..., xn with synaptic weights wk1, ..., wkr, ..., wkn are connected to the



Chapter 1. Introduction 11

k-th neuron. The synaptic weights are the measurement of connections’ strength

that can be negative or positive depending on whether the signal is inhibitory or

excitatory, respectively. The manner of writing the subscript in synaptic weights

wkr is important to note, the first subscript refers to the neuron that is receiver of

the signals, and the second subscript refers to the input ends of the synapse to which

the weight refers. Different from biological neuron, the synaptic weights in artificial

neural networks may lie in intervals of real number.

The summing junction acts as a linear combiner of inputs ,i.e., input signal xr is

multiplied by its respective synaptic weight wkr. The bias bk is an external stimulus

that has the effects of decreasing or increasing the input of activation function fk(.),

it depends on whether the bias is negative or positive, respectively. Mathematical

expression for the linear combiner of input signals is the following.

uk =
n∑
r=1

xrwkr + bk. (1.12)

The output of the linear combiner uk in equation (1.12) is an input value or an

induced local field for the activation function. The main purpose of an activation

function is to get the desired output of a neuron. This is also known as a squashing

function because it squashes the amplitude of the output of a neuron to some finite

value. In figure 1.3, the output of a neuron after employing the activation function

is as follows:

yk = fk(uk) = fk(
n∑
r=1

xrwkr + bk). (1.13)

An activation function of a neuron can be linear or nonlinear in nature. Typically,

there are three types activation functions that are usually considered in designing

neural networks:
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Figure 1.4: (a) A threshold function, (b)Piecewise linear function, and (c) Sig-
moid activation function for β = 2, 3, and 4.

(a) Threshold function (step function). For this type of activation function shown

in Figure 1.4(a), we shall have the following output for a neuron of a Figure

1.1.

yk = fk(uk) =


1 if uk ≥ 0,

0 if uk < 0.

(1.14)

The model involving threshold function as an activation function is known

as McCulloch-Pitts model [17] in recognition of their pioneer work done by

McCulloch and Pitts in 1943. The basic concept of this model is, a neuron

fires a signal indicating ”yes”,i.e., ”1” if the induced local field of that neuron

is non-negative, and 0 otherwise. The activation function describes all-or-none

property of a neuron in the McCulloch-Pitts model.

(b) Piecewise linear function. A piecewise linear function shown in Figure 1.4(b)

is defined by the following function.

f(u) =


0 if u ≤ − 1

β
,

u+ 1
β

if − 1
β
< u < 1

β
,

1 if u ≥ 1
β
,

(1.15)
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where β is called the amplification factor or the neural gain. Such type of

activation function has been widely implemented in cellular neural network

[18, 19]. The piecewise linear function plotted in figure 1.4(b) is for β = 2.

It can be observed from the function 1.15 that if the amplification factor β

approaches to infinity then the piecewise linear function reduces to a threshold

function.

(c) Sigmoid function. The sigmoid function shown in figure 1.4(c) is the most

commonly used activation function in the construction of artificial neural net-

works. It is a strictly increasing, smooth, and bounded function. A logistic

function is one of the examples of a sigmoid function, defined by

f(u) =
1

1 + exp(−βu)
, (1.16)

where β is an amplification factor, and it represents the slop parameter of the

curve. By varying β, we can get different slopes of the curve as it is shown

in Figure 1.4(c). It can be observed from the function 1.16 that the sigmoid

function asymptotically approaches to 1 and 0 when β → ∞ and β → −∞,

respectively. That is the sigmoid function reduces to a threshold function if

the slop parameter β approaches infinity. Whereas a threshold function has

the range of only two elements 0 and 1, a sigmoid function has the range in

open interval (0, 1).

It is worth noting that a threshold function is not smooth whereas a sigmoid

function is a smooth function. The smoothness of the sigmoid function is

an important property for applications perspective: it allows analog signal

processing and it makes many mathematical theories applicable [20]. If we

consider random variables for the firing threshold of an all-or-non neuron with

a Gaussian normal distribution function, then the expected output signal’s
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value is a sigmoid function of activity [21]. The model of this type of neurons

is called stochastic model. For this and other reasons, a sigmoid activation

function has become increasingly popular in designing artificial neural network

model. Other popular examples of sigmoid activation function are inverse

tangent function and tangent hyperbolic function.

Input
Layer

Output
Layer

Figure 1.5: A feedforward network without hidden layer.

A network architecture of neurons in constructing the artificial neural networks is a

very crucial point for its applications or learning point of view. Different structure of

neurons in networks is designed for the different purpose of applications. In general,

for layered neural networks, there are two types of network architectures:

(a) Feedforward network. A feedforward neural network is shown in Figure 1.5

which consists of input layer of 4 neurons and output layer of 2 neurons. Nodes

in input layer are source of signals sending towards the neurons of output layer,

and not vice versa. The layer of input neurons is not counted because there

is no connections towards them to perform information processing. Hence,

such type of neural networks is called a single layered neural network. More

complicated feedforward neural network is a multilayer feedforward network
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Input
layer

Hidden
layer

Output
layer

Figure 1.6: Multilayer feedforward neural network with one hidden layer.

which is shown in Figure 1.6. The network is consisted of a input layer of 5

neurons, a so-called hidden layer of 3 neurons, and a output layer of single

neuron. This network is also known as a 5 − 3 − 1 network. In general, a

feedforward neural network consists of p neurons in input layer, q neurons in

first layer, h neurons in second layer, and h2 neurons in output layer is known

as a p− q − h1 − h2 network.

The main work of hidden layer’s neurons is to intervene between the external

inputs and the network output in a specific manner. If we add one or more

hidden layers then the network becomes able to extract higher-order statistics.

In other words, despite of having local connectivity in the network it acquires

a global perspective due to the extra set of synaptic connections and the extra

dimension of neural interactions [22]. The mechanism of forwarding the signals

in a multilayer neural network is started from the neurons of input layer which

supply the respective elements of the activation pattern (input vector) to the

neurons of the first layer (i.e., the first hidden layer). Further, the output

signals of the first hidden layer are supplied forward to the neurons of the

second hidden layer, and so on for the rest of the network. Typically, the
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Figure 1.7: A recurrent network with one hidden layer of neurons.

input signals of the neurons in each layer of the network are the output signals

of the preceding layers only. The overall response to the activation patterns

of the neurons in the input layer is constituted by the set of output signals of

the output (final) layer’s neurons.

(b) Feedback or Recurrent network. The network of neurons containing the feed-

back of output signals as inputs is called a feedback or a recurrent neural

network. A recurrent network may be of a single layer without a hidden layer

as it is shown in Figure 1.8. The network in Figure 1.8 has four neurons, and

each one of them feeds its output signal back to the inputs of all the other

neurons. Note that each neuron in the network is not feeding back its output

signal to the input of itself,i.e., network does not contain a self-feedback loop.

Existing of self-feedback loops in the network has a profound impact on the

learning capabilities, and its performance. Another class of recurrent neural

networks is presented in Figure 1.7, where the network has a single hidden

layer.

The feedforward neural network with a single hidden layer shown in Figure 1.6 is a

fully connected network. The network is said to be fully connected if every neuron
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Figure 1.8: A recurrent neural network without a hidden layer and a self-
feedback loop.

of each layer in the network is connected to every neuron in the adjacent forward

layer. In other case, if some of the synaptic connections from the network is missing

then it is called a partially connected network. An example of a partially connected

network with one hidden layer is presented in Figure 1.9, where each neuron of the

hidden layer has a local field of interconnections with the neurons of input layer.

Input
layer

Hidden
layer

Output
layer

Figure 1.9: Partially connected neural network.
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From the above discussions, it is concluded that the performance of a neural network

is affected by the following important factors.

(1) External inputs.

(2) Internal decay rates.

(3) Synaptic weights.

(4) Activation functions.

(5) Propagation delays.

(6) Connections topology/Network ar-

chitecture.
A deterministic model of a neural network is a dynamical system in the sense that

the future activation levels and synaptic coupling coefficients can be calculated if

their initial counterpart is given and all the other factors are assumed as parame-

ters. This is called the joint activation-weight dynamics. However, there are many

learning processes to train the network in which the weight dynamic is separated

from the activation dynamic. In the learning processes, synaptic weights of a net-

work are adaptively determined to achieve some particular kind of tasks such as

pattern recognition or to obtain some desired network outputs from a given set of

inputs. Such a scheme usually determines a discrete dynamical system (a system

of difference equations) or a continuous dynamical system (a system of differential

equations) in the space of matrices of synaptic coupling coefficients. This is called

weight dynamics.

Now, we stop here the discussions about the basic properties of artificial neural net-

works, and proceed further to introduce the famous models of neural networks such

as Hopfield model, Cohen-Grossberg model, and Bidirectional associative memory

model. All are important for this thesis. In order to introduce Hopfield model, we

have to understand the RC-circuit about which we have mentioned in the previous

section.
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1.2.1 Basics of electrical circuit

Electrical circuit is an important tool to understand the mechanism of signal pro-

cessing among the neurons of a human brain. It has been discussed in the previous

section that membrane in a biological neuron behaves like a capacitor that sepa-

rates the ion concentrations. Due to the separation of charges between the layers of

membrane, electric pulse is generated that travels through the axon of the neuron

to hit the target neuron. This behavior can be modeled by a resistor-capacitor (RC)

circuit shown in Figure 1.10. An electric circuit in Figure 1.10 is made of a resistor

Vb R

C

Figure 1.10: RC-circuit with a source of voltage.

(R), a capacitor (C), and a source of voltage(battery). All the electrical devices are

added in a series. The battery in the circuit models the force due to the difference

of ions’ concentration inside and outside of the body cell. The resistor in the circuit

behaves like ions channels that defines the permeability strength of membrane for

the specific ions. The modeling of this circuit is based on the Kirchhoff’s law of

current and voltage.

(a) Kirchhoff’s law of current. The sum of all currents entering into a junction is

equal to the sum of all currents leaving the junction.

(b) Kirchhoff’s law of voltage. The directed sum of the voltage differences around

any closed loop is zero.
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According to Kirchhoff’s voltage law, the voltage drop across the capacitor is equal

to the sum of the voltage drop across the battery and the voltage drop across the

resistor.

Vc = Vb + IRR, (1.17)

where Vc is the voltage across the capacitor, Vb is the voltage across the batter, and

IR is the current passing the resistor that comes from Ohm’s law VR = IRR. Thus,

we have

IR(t) =
Vc(t)− Vb(t)

R
. (1.18)

The external current through the synapses is injecting into the neuron. Let it is

denoted by Iext. Then by Kirchhoff’s current law, we have

Iext. = IC + IR. (1.19)

From equations 1.18 and 1.19, we obtain

C
dVc
dt

+
Vc(t)− Vb(t)

R
= Iext.. (1.20)

1.2.2 Additive model

Motivated from the behavior of a biological neuron as an RC-circuit. The model

(1.13) can be extended to the temporal nature of the input data,i.e., inputs to the

neuron vary with time. One way to take into account the time-varying inputs is illus-

trated in Figure 1.11 where synaptic weights wk1, wk2, ..., wkn are represented by con-

ductance (i.e.,reciprocal of resistance), and the respective inputs x1(t), x2(t), ..., xn(t)
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x1(t)
wk1

x2(t)
wk2

x3(t)
wk3

...

xn(t)
wkn

Current
Summing
Junction

w
k1x

1 (t)
w
k2x2(t)

wk3x3(t)

wkn
xn

(t)

Σwkixi(t)

Ck Rk

Current
Source

fk(.)

Activation
function

xk(t)

Ik
vk(t)Synaptic

inputs
Output

Figure 1.11: Additive model of a neuron.

are represented by potentials (i.e.,voltages). The inputs multiplied by their respec-

tive synaptic weights are summed up in the current summing junction characterized

as low input resistance, unity current gain, and high output resistance. Total current

flowing to the input node of the activation function fk(.) is

n∑
i=1

wkixi(t) + Ik, (1.21)

where the first term is due to the input signals of k-th neuron and the second term

is due to the external source of current applied as a bias to the neuron. Let vk(t)

denotes the induced local field at the input node of the activation function, then

the total current flowing away from the input node of the activation function is as

follows:

vk(t)

Rk

+ Ck
dvk(t)

dt
, (1.22)

where the first term presents the current across the resistor Rk and the second

term presents the current due to potential drop across the capacitor Ck. According

to Krichoff’s current law, the total current flowing through the input node of the

activation function in Figure 1.11 is zero. Thus, we have the following from the
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equations (1.21) and (1.22).

vk(t)

Rk

+ Ck
dvk(t)

dt
=

n∑
i=1

wkixi(t) + Ik. (1.23)

Given the induced input field vk(t), the output of the neuron k is determined by the

activation function as

xk(t) = fk(vk(t)). (1.24)

The activation function in the additive model is generally chosen to be bounded and

differentiable with asymptotic behavior like logistic function shown in Figure 1.4(c).

fk(vk) =
1

1 + exp(−vk)
. (1.25)

The model described by the differential equation (1.23) is known as an additive

model of a neuron, where the name ’additive’ is used to discriminate it from the

multiplicative (shunting) models which contain state dependent synaptic weights

[23].

1.2.3 Hopfield neural network

Let us consider a fully connected recurrent network consisting of n neurons, where

each neuron has the structure like Figure 1.11. The basic diagram of interconnections

is shown in Figure 1.12 in which each neuron feed back its output, via a unit delay

element, to the inputs of the other neurons by making feedback loops. More precisely,

there is no self feedback loop in the network. Thus, considering the instantaneous
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Figure 1.12: An architecture of Hopfield neural network consisting of n = 4
neurons.

propagation of signals between the neurons, and the equation (1.23). We have

Ck
dvk(t)

dt
= −vk(t)

Rk

+
n∑
i=1

wkifi(vi(t)) + Ik, for k = 1, 2, ..., n, (1.26)

where xi(t) = fi(vi(t)), i.e., each neuron has its own activation function. The ad-

ditive model (1.26) represents the Hopfield neural network without time delay [24].

Typically, the Hopfield model was designed into two forms of flow: one is discrete,

and another is continuous flow. The solution of differential equation (1.26) is the

continuous flow of the Hopfield neural network. The discrete flow of Hopfield net-

work is based on the McCulloch-Pitts model where the state of each neuron has

the values −1 and 1 depending on the signs of induced local field,i.e., xi(t) = −1 if

vi(t) > 0, and xi(t) = 1 if vi(t) < 0, ∀i. This thesis is concerned with the continuous

flow of neural networks rather than the discrete one.

The Hopfield neural network has attracted a great deal of attention in applications

as a associative memory [25, 26]. The broad field of associative memory is a content
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decoding

encoding

Figure 1.13: Encoding-Decoding illustration between the space of fundamental
memories ξµ and the space of stored vectors xµ.

addressable memory in that the fixed points of the network store the patterns in the

memory. The primary function of the network is to retrieve a pattern stored in a

memory on the basis of a given incomplete or noisy information about that pattern.

Therefore, it is an important property of a content addressable memory to retrieve

the stored pattern with the assistant of a given reasonable subpart or a subset of

the information of that pattern.

Mathematically, we may define the essence of a content addressable memory as a

mapping of a fundamental memory ξµ to a fixed (stable) point xµ of the network.

The arrow in Figure 1.13 from right to left describes encoding of a fundamental

memory onto a fixed (stable) point, whereas left to right arrow describes decoding

of the stored memory. Suppose now that the network has a pattern with partial

but sufficient information about one of the fundamental memories. That partial

information of the pattern is an initial state of the flow lies in the basin of attraction

of the stable fixed point. In other words, from mathematical perspective it is the

question of finding the conditions under which the flow of the network approach the

fixed point in response to the arbitrary initial data. In content addressable memory,

how many fixed points exist in the neural network is also an important question in

applications perspective. More fixed points indicates greater storage capacity in the

network.
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The dynamics of Hopfield network was being studied by John Hopfield in his pa-

per [24] published in 1984. He had defined an energy function for the network by

assuming the following conditions.

(i) The matrix of synaptic weights is symmetric, i.e., wki = wik for all i and k.

(ii) There exists an inverse of the activation function (1.25), so we may write

v = f−1
k (x).

From the equation (1.25), we obtain

f−1
k (x) = − ln

(
1− x
1 + x

)
. (1.27)

The energy or Lyapunov function of the Hopfield model (1.26) is defined as

E = −1

2

n∑
i=1

n∑
k=1

wikxi(t)xk(t) +
n∑
k=1

1

Rk

∫ xk

0

f−1
k (x)dx−

n∑
k=1

Ikxk. (1.28)

The name ’Lyapunov function’ will be discussed later so in this subsection we call it

only energy function. The energy function defined in the equation (1.28) may have

many minima points which represents the stable fixed points of the Hopfield model

(1.26). The dynamics of the network is to find out those minima.

Hence, differentiating E with respect to time and using the equations (1.26) and

(1.27), we obtain

dE

dt
= −

n∑
k=1

Ck

(
dxk
dt

)2[
df−1
k (xk)

dxk

]
. (1.29)
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From the equation (1.27), we can see that the inverse activation function is mono-

tonically non-decreasing function of the output xk. Thus it follows that

df−1
k (xk)

dxk
≥ 0 ∀ xk. (1.30)

Also note that

(
dxk
dt

)2

≥ 0 ∀ xk. (1.31)

Hence, we conclude from the equation (1.29) that

dE

dt
≤ 0. (1.32)

According to the Lyapunov’s method of stability, the inequality (1.32) implies that

the time-evolution of the continuous Hopfield neural network described by the equa-

tion (1.26) represents a trajectory, which seeks out the minima of the energy function

E and comes to a stop at such fixed points. It is also observable from the equation

(1.29), using the inequalities (1.30) and (1.31), that the inequality (1.32) is zero only

if

dxk
dt

= 0 for all k. (1.33)

We have, therefore, the following

dE

dt
< 0 except at fixed points. (1.34)

Thus the trajectory of the continuous Hopfield neural network is converging asymp-

totically to the fixed points.
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1.2.4 Cohen-Grossberg neural network

One of the most popular neural networks is a Cohen-Grossberg [27] neural network

that can be considered as a generalized version of Hopfield network. Cohen and

Grossberg in their paper published in 1983 described a general principle for designing

content addressable memory networks by proving that models can be written in the

form

dxi(t)

dt
= ai(xi(t))

[
bi(xi)−

n∑
k=1

wikfk(xk)
]
, for all i = 1, 2, ..., n, (1.35)

where xi(t) is the activation state of the i−th neuron, ai(xi(t)) is the amplification

function, bi(xi) is the self-signal function, and fk(xk) is the usual signal functions.

From the equation (1.35), it can be observed that the rate of change in activity of

the neuron decreases if and only if the net input to the neuron exceeds a certain

intrinsic function bi of its activity, and ai(xi(t)) is positive.

The nonlinear system (1.35) admits the Lyapunov function

V (x) = −
n∑
i=1

∫ xi

0

bi(ξi)f
′

i (ξi)dξi +
1

2

n∑
k,j=1

wkjfk(xk)fj(xj), (1.36)

if the synaptic coefficients wik, and the other components ai, bi, fk of the system

satisfies the following conditions.

(G1) symmetric: wik = wki;

(G2) continuity : ai(η) is continuous for η ≥ 0, and bi(η) is continuous for η > 0;

(G3) positivity : ai(η) > 0 if η > 0;

(G4) monotonicity : fi(η) is continuously differential and f
′
i (η) ≥ 0 for η ≥ 0.
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Integrating V along the trajectories implies that

dV

dt
= −

n∑
i=1

aif
′

i

[
bi −

n∑
k=1

wikfk
]2
. (1.37)

From (G3) and (G4), we have dV
dt
≤ 0 along the trajectories. That is, the trajectories

of the system (1.35) converge globally to the equilibrium points.

Cohen and Grossberg noted in his publication [27] that the differential equation

(1.35) can represent the additive model (1.26) by using the coefficients of the stan-

dard electrical circuit interpretation as

ai(xi(t)) =
1

Ci
, (1.38)

bi(xi(t)) = − 1

Ri

+ Ii, (1.39)

wik(1.26) = −wik(1.37), (1.40)

where numbers in bracket is taken only for showing synaptic weights in respect

of their model. Thus, in the additive case, the amplification function is positive

constant, hence it satisfies positivity, and the self-signal function is linear. If we

substitute the equations (1.38), (1.39), and (1.40) in the Lyapunov function (1.36)

then we obtain

V = −1

2

n∑
j,k=1

wjkfj(xj)fk(xk) +
n∑
i=1

1

Ri

∫ xi

0

ξif
′

i (ξi)dξi −
n∑
i=1

Iifi(xi). (1.41)

In Hopfield energy function, he has assumed the activation function should be in-

vertible whereas Cohen and Grossberg has considered the activation function only to

be non-decreasing. The work of Hopfield published in 1984 one year later than the

work of Cohen and Grossberg. Despite of this, physicists and engineers named the

additive model as Hopfield additive model in their literature. Therefore, Stephen
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Grossberg had published a review paper [28] of his works and shown that how the

additive model is a special case of the work published in collaboration with Michael

A. Cohen [27].

1.2.5 Bidirectional Associative Memory

Bidirectional associative memory (BAM) is the extension of associative memory.

The primary functions of associative memory is to recall the whole stored patterns

in response to the given input patterns associated with the stored pattern. The

classification of associative memory is such that while the memory in which the

associated input and output patterns differ are called heteroassociative memory, it

is called autoassociative memory if they are the same. The typical diagram of a

bidirectional associative memory is shown in Figure 1.14 that is consisted of two

layers of neurons. Let us denote the layers of the network by X-layer containing n

neurons and Y -layer containing m neurons, where all the neurons of the layers have

mutual interconnections. More precisely, there is not any interconnection among

the neurons of the same layer. Information passes forward from one neuron layer

to the other by passing through the connection matrix W = [wik]n×m. Information

passes backward through the matrix transpose W T . This backward-forward passes

of information in search of the stored memory is the motivation behind naming the

network BAM. In general, BAM is a symmetric neural network,i.e., W 6= W T .

In the papers of Kosko [29, 30] published in 1987, he had extended the autoas-

sociative neural networks Cohen and Grossberg [27] and Hopfield [24] to the het-

eroassociative neural network that performs bidirectional associative search. The

Cohen-Grossberg theorem can not be applied in order to stabilize BAM neural net-

work unless it is symmetric network. Bark Kosko in his paper [30] has devised the
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Figure 1.14: Bidirectional associative memory neural network.

procedure for dealing with systems having asymmetric coefficients. The interactions

of the neurons from Y-layer to X-layer obey the following additive equation.

ẋj(t) = −Ajxj +
m∑
i=1

wijfi(yi) + Ij, for all j = 1, 2, ..., n. (1.42)

Whereas the top-down interactions of the neurons obey the following additive equa-

tion.

ẏi(t) = −Biyi +
n∑
j=1

wjifj(xj) + Ii, for all i = 1, 2, ...,m, (1.43)

where the first term of the equation (1.42) represents a decay term with propor-

tionality constant Aj, and Ij are external stimuli to the neurons having activation

level xj; similarly for the equation (1.43), Bi are proportionality constants, Ii are

external stimuli, and the activation levels of the neurons are represented by yi; the

activation functions fk(.) is influencing the states xj with connection strengths wij

whereas fl(.) is influencing the states yi with connection strengths wji; the activation

functions f(.) are bounded and monotonically increasing functions.

The connections matrix is W = [wij]m×n 6= W T in general model of BAM neural

network. If we assume W = W T then by Cohen and Grossberg [27], B. Kosko in [30]

has shown the Lyapunov global stability of the system governed by the equations
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(1.42) and (1.43). The global Lyapunov or energy functional is defined as

E =−
n∑
j=1

∫ xj

0

f
′

j(aj)ajdaj −
m∑
i=1

n∑
j=1

fi(xi)fj(yj)wij −
n∑
i=1

fi(yi)Ii −
m∑
j=1

fj(xj)Ij

+
m∑
i=1

∫ yi

0

f
′

i (bi)bidbi. (1.44)

The total time derivative of E will result in the following equation after rearranging

the terms.

Ė =−
n∑
j=1

f
′

j(xj)ẋj

[
− Ajxj +

m∑
i=1

wijfi(yi) + Ij

]

−
m∑
i=1

f
′

i (yi)ẏi

[
−Biyi +

n∑
j=1

wjifj(xj) + Ii

]

=−
n∑
j=1

f
′

j(xj)ẋ
2
j −

m∑
i=1

f
′

i (yi)ẏ
2
i ≤ 0 (1.45)

From the inequality (1.45) it is concluded that the BAM neural network is globally

stable. Since f
′
(.) > 0 so the energy reaches its minimum if and only if ẋj =

ẏi = 0. The BAM neural network can be implemented as an autoassociative neural

network,i.e., Hopfield model (1.26), by defining the augmented vector (x1, x2, ..., xn,

y1, y2, ..., ym) with a symmetric connection matrix of order m+ n.

1.3 An Overview of Mathematical Concepts

This section will summarize the mathematical concepts that are applied in the chap-

ters of this thesis. We mainly focus on delay differential equations, impulsive differ-

ential equations, and matrix measure theory.



Chapter 1. Introduction 32

1.3.1 Delay Differential Equations

A delay differential equation (DDE) is a differential equation where the highest order

derivative only occurs with one value of the argument, and this argument is not less

than the argument of the unknown function and its lower order derivatives appearing

in the equation. For example

ẋ(t) = x2(t− 3) + x(t), (1.46)

is a delay differential equation but

ẋ(t− 5) = x2(t) + x3(t), (1.47)

is not.

Let us define C = C([−τ, 0],Rn) is a Banach space of continuous functions mapping

interval [−τ, 0] into Rn. The norm for the space C is designated as

‖φ‖τ = sup
−τ≤s≤0

‖φ(s)‖, (1.48)

where ‖.‖ is an Euclidean norm on Rn. Suppose x(t) is a function defined on at

least [t− τ, t] then we can define a new function xt as

xt(s) = x(t+ s), ∀ s ∈ [−τ, 0]. (1.49)

For D ⊂ Rn, we define CD = C([−τ, 0], D) is a Banach space of continuous functions

mapping interval [−τ, 0] into D.
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Definition 1.3.1. Let I ⊂ R, f : I × CD → Rn is a given function, and ”.” denotes

the right hand time derivative then we say the following relation

ẋ(t) = f(t, xt), (1.50)

is a delay differential equation on I × CD.

Where right hand time derivative of a function x(t) : R→ R is defined as

lim
h→0+

sup
x(t+ h)− x(t)

h
. (1.51)

For a given t0 ∈ I and φ0 ∈ CD, the initial value problem (IVP) associated with the

DDE (1.50) is


ẋ(t) = f(t, xt), t > t0,

x(s) = φ0(s− t0), ∀ s ∈ [t0 − τ, t0].

(1.52)

It means that the initial value at t0 must specify the solution x(t) for the whole past

[t0−τ, t0]. Note that the initial function or history φ0 is a continuous function but it

is not necessarily compatible with the DDE (1.52). Thus the solution might not be

differential at initial instant t0. For example, take the simple model of DDE given

as 
ẋ(t) = x(t− 1), t > 0,

x(s) = 1, ∀ s ∈ [−1, 0],

(1.53)

The solution of DDE (1.53) for interval t ∈ (0, 1] is x(t) = t+1 with initial condition

x(0) = 1. It clear from the solution that ẋ(0+) = 1 6= ẋ(0−) = 0,i.e., first derivative

of x(t)) at t0 = 0 is not continuous.
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The equation (1.50) is a general equation for the following differential equations.

(i) If τ = 0, then ordinary differential equation

ẋ(t) = f(t, x). (1.54)

(ii) DDE with discrete delays as

ẋ(t) = f(t, x(t), x(t− τ1), ..., x(t− τn)), where τ = max
1≤i≤n

τi. (1.55)

(iii) DDE with distributed delay as

ẋ(t) =

∫ 0

−τ
f(t, s, x(t+ s))ds. (1.56)

In the third case, delay can be infinity as

ẋ(t) =

∫ 0

−∞
f(t, s, x(t+ s))ds, (1.57)

associated with the history function x(s) = φ0(s− t0) ∀ s ∈ (−∞, t0].

Now we define the solutions of DDE (1.50).

Definition 1.3.2. A function x(t) is a solution of equation (1.50) on [t0 − τ, β) if

there are t0, β ∈ R with β > t0 such that x ∈ C([t0 − τ, β), D), [t0, β) ⊂ I, and x(t)

satisfies equation (1.50) for t ∈ [t0, β).
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As in an ordinary differential equation, the solution of IVP (1.52) is equivalent to

finding the solution of the following integral equation.


x(t) = φ0(t0) +

∫ t
t0
f(s, xs)ds, for all t ∈ [t0, β)

xt0(s) = φ0(s), for all s ∈ [t0 − τ, t0].

(1.58)

The concept of existence, uniqueness, continuation of solutions, and continuous de-

pendence is very similar to the ordinary nonlinear differential equation [31]. We

will introduce the theorems on existence and uniqueness of DDE with finite delay,

the detailed proofs can be found in [32]. Before stating the theorems we need the

following definition.

Definition 1.3.3. Let f : I × CD → Rn and let S ⊂ I × CD. Then f is Lipschitz on

S if there exists L > 0 such that

‖f(t, φ1)− f(t, φ2)‖ ≤ ‖φ1 − φ2‖τ , (1.59)

whenever (t, φ1), (t, φ2) ∈ S.

Theorem 1.1. (Local Existence) Let Ω is an open subset in R×C and f : Ω→ Rn

be continuous on its domain. If (t0, φ0) ∈ Ω, then there is a solution of the IVP

(1.52) passing through (t0, φ0) that exists on [t0 − τ, t0 + δ] for some δ > 0.

Theorem 1.2. (Uniqueness) Let Ω is an open subset in R× C and f : Ω → Rn be

continuous with Lipschitz on each compact set in Ω. If (t0, φ0) ∈ Ω, then there is a

unique solution of the IVP (1.52) passing through (t0, φ0).

Time-delay in neural networks play an important role in dynamical behavior of the

network. In previous section we have assumed that the transmission of signals in

neurons is an instantaneous process but practically it is not always true. There are
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different shapes and sizes of axons due to which signal transmission from one neuron

to others is not instantaneous [33]. To take this facts into account the additive model

of Hopfield represented by the equation (1.26) can be transformed in the following

DDE.

Ck
dvk(t)

dt
= −vk(t)

Rk

+
n∑
i=1

wkifi(vi(t− τki)) + Ik, for k = 1, 2, ..., n, (1.60)

where τki is the time taken by the signals to transmit from i-th to k-th neurons

in the network. This type of delay is called discrete delay. Since neural networks

have a spatial structure due to the presence of many parallel pathways connected

among the neurons so it is not possible to model them with discrete delay. There

will be a distribution of propagation time delay. Thus, it is desired to model them

by introducing continuously distributed delays [34, 35, 36, 37, 38, 39]. The equation

(1.26) can be represented in the form of DDE with distributive delays.

Ck
dvk(t)

dt
= −vk(t)

Rk

+
n∑
i=1

wkifi

(∫ ∞
0

vi(t− u)gki(u)du

)
+ Ik, for k = 1, 2, ..., n,

(1.61)

where u is a signal delay from i-th to j-th neuron occurs with probability distribution

function gki(u) with mean delay τki =
∫∞

0
ugki(u)du. A DDE consisting of discrete

and distributed delays is called a DDE with mixed-time delays. The time derivative

of state variable vk depends on vi for the past (−∞, t]. There are literature involving

results on delayed neural networks have been published in recent past [40, 41, 42,

43, 44, 45].
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1.3.2 Impulsive Differential Equation

The theory of impulsive differential equations play an important role in modeling the

real world problems that are the symbiosis of continuous and discontinuous systems.

Many evolution process are characterized by the fact that at certain moments of time

they experience a change of state abruptly [46, 47, 48]. This kind of sudden change

in the states of the system is known as impulsive effects. There are many real

world problems which can not be modeled only in continuous form, for example,

bursting rhythm models in medicine and biology, frequency modulated systems,

optimal control models in economics, and pharmacokinetics, do exhibit impulsive

effects.

There are two different kinds of impulsive differential equations: impulses at fixed

times, and impulses at variable times, the former one is described by the following

equation.


ẋ(t) = f(t, x), t ≥ t0, t 6= tk, k = 1, 2, ...

∆x(tk) = Ik(x), t = tk,

(1.62)

where Ik : Ω → Ω, f : R+ × Ω → Rn, Ω ⊂ Rn is an open set, R+ is a non-negative

real line, and Rn is a n- dimensional Euclidean space; tk is a sequence of time in R+

at which the state x(t) has a jump kind of discontinuity at t = tk, more precisely,

x(t−k ) = lim
h→0

x(tk−h) = x(tk) but x(t+k ) 6= x(tk) so ∆x(tk) = x(t+k )−x(t−k ); impulsive

sequence tk is strictly increasing and unbounded above ,i.e., t0 < t1 < t2 < ... < tk

and lim
k→∞

tk =∞.

Let x(t) = x(t, t0, x0) is a solution of the continuous part of the system (1.62) at

initial point (t0, x0). Then evolution of the solution x(t) of the system (1.62) is
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elaborated as follows: the point Pt(t, x(t)) starts its motion from the initial point

P0(t0, x0) along the solution {(t, x(t)) : t ≥ t0} until it reaches the time t = t1 at

which the first impulse effect is activated and transfer the point Pt1 to Pt+1 (t1, x(t+1 )),

where x(t+1 ) = x(t1) + I1(x). Further the point Pt continues to move along the

trajectory x(t) = x(t, t+1 , x(t+1 )) until it reaches the time t2 > t1 at which the second

impulse effect is activated and transfer the point Pt2 to Pt+2 (t2, x(t+2 )), where x(t+2 ) =

x(t2) + I2(x). As before, the evolution process continues as long as the solution of

the system (1.26) exists.

The second form of the impulsive differential equation is described as follows:


ẋ(t) = f(t, x), t 6= τk(x), k = 1, 2, ...,

∆x(tk) = Ik(x), t = τk(x),

(1.63)

where t = τk(x) is a sequence of surfaces such that τk(x(t)) < τk+1(x(t)) and

lim
k→∞

τk(x) = ∞. The impulsive system with variable moment exhibits more dif-

ficult behavior than fixed moment. For example, it is clear from the system (1.63)

that impulsive moment is depending on the solutions of tk = τk(x(t)), for each k.

Thus, the trajectory started at different initial points will have different points of

discontinuity. It may happen that a solution hits the same surface tk = τk(x) several

number of times, we call this behavior ’pulse phenomena’.

In this thesis, we studied impulsive neural network with fixed time impulses. The

impulse phenomena was being considered in neural networks by K. Gopalsamy in

his paper [49]. He has studied the stability problem of Hopfield network when

states of the neurons have sudden changes at impulsive points. Generally, we study

two types of neural network, discrete or continuous. An impulsive neural network

is a symbiosis of both forms. Thus many researchers have drawn their attentions
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to the problems of stability and synchronization of neural networks with impulses

[50, 51, 52, 53, 54, 55]. In particular, let us consider an impulsive system with fixed

time impulses


ẋ(t) = f(t, x), t ≥ t0, t 6= tk, k = 1, 2, ...

∆x(tk) = µkx(t+k ), t = tk,

(1.64)

where µk is an impulsive strength or impulse gain at fixed time tk. The impulse

gain is characterized into three categories:(i) stabilizing impulses (|µk| < 1), (ii)

destabilizing impulses (|µk| > 1), (iii) inactive impulses (|µk| = 1). This thesis is

concerned to investigate stability and synchronization problems of neural networks

with generalized cases of impulses.

1.3.3 Matrix measure theory

There are many algebraic methods for stability analysis of neural networks, such

as the methods based on the concept of Linear Matrix Inequality (LMI) [56, 57],

M-Matrices [58], H-Matrices [59], and Matrix measure theory [60, 61, 62], etc. The

concept of measuring the matrix is developed from the normed linear space or we

can say it is an extension of the concept; norm of vectors, norm of matrices.

Let us consider a finite dimensional Euclidean linear space Rn over real field R. The

norm ‖(.)‖p in Rn for 1 ≤ p <∞ is defined as

‖x‖p =
( n∑
i=1

|xi|p
) 1
p . (1.65)
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The linear space Rn associated with the norm defined in (1.65) is called normed

linear space. Thus for any x ∈ Rn, we can have the following for p = 1, 2,∞.

‖x‖1 =
n∑
i=1

|xi|, ‖x‖2 =
( n∑
i=1

|xi|2
)2
, ‖x‖∞ = max

1≤i≤n
|xi|. (1.66)

Similarly, we define the norm in linear space Rn×n of matrices over the real field R.

For any matrix A = [aij]n×n ∈ Rn×n, we can get the following for p = 1, 2,∞.

‖A‖1 = max
j

n∑
i=1

|aij| (column sum), ‖A‖2 = (max
i
λi(A

TA))
1
2 ,

‖A‖∞ = max
i

n∑
j=1

|aij| (row sum). (1.67)

The function ‖(.)‖ : Rn×n → R+ is uniformly continuous and convex in nature.

Then at any point X ∈ Rn×n, the one-sided directional derivative of the function

‖(.)‖ along the direction of matrix A is defined as

lim
h→0+

‖X + hA‖ − ‖X‖
h

. (1.68)

Definition 1.3.4. The one-sided directional derivative of the norm function ‖(.)‖ at

point I ∈ Rn×n in the direction of A is called the matrix measure of A and it is

denoted by µ(A), i.e.,

µ(A) = lim
h→0+

‖I + hA‖ − 1

h
. (1.69)

The existence of limit (1.69) can be shown by assuming function f(h) = ‖I+hA‖−1
h

.

If f(h) is decreasing w.r.t h and bounded below then the limit (1.69) must exists for
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all A ∈ Rn×n. Let k ∈ (0, 1), then we get

khf(kh) = ‖I + khA‖ − 1 =‖k(I + hA) + (1− k)I‖ − 1 ≤ k‖I + kA‖+ 1− k − 1

≤k(‖I + hA‖ − 1).

That is f(kh) ≤ f(h) implies f(h) is decreasing w.r.t. h. Note that f(h) ≥ −‖A‖.

Therefore, the existence of the limit (1.69) is proved.

The matrix measure of A induced from the norm ‖(.)‖p for p = 1, 2,∞ is defined as

µp(A) = lim
h→0+

‖I + hA‖p − 1

h
. (1.70)

Thus we have

µ1(A) = max
j

[
ajj+

n∑
i=1
i 6=j

|aij|
]
, µ2(A) = max

i
[λi(

A+ AT

2
)],

µ∞(A) = max
i

[
aii +

n∑
j=1

j 6=i

|aij|
]

Example 1.3.1. If matrix A ∈ Rn×n is a skew-symmetric and A 6= 0 then µ2(A) = 0.

Important properties of matrix measure

The following properties of matrix measure are very useful for application purpose.

Let A,B ∈ Rn×n, and µ(.) is defined in (1.69), then we have the following.

(i) −‖A‖ ≤ −µ(−A) ≤ µ(A) ≤ ‖A‖.

(ii) µ(cA) = cµ(A), ∀c ≥ 0.

(iii) µ(A+ cI) = µ(A) + c, ∀c ∈ R.
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(iv) max[µ(A)− µ(−B),−µ(−A) + µ(B)] ≤ µ(A+B) ≤ µ(A) + µ(B).

(v) µ : Rn×n → R is convex on Rn×n,i.e.,

µ[λA+ (1− λ)B] ≤ λµ(A) + (1− λ)µ(B), ∀λ ∈ (0, 1).

(vi) |µ(A)− µ(B)| ≤ |µ(A−B)| ≤ ‖A−B‖.

(vii) −µ(−A) ≤ Reλi(A) ≤ µ(A) for all i ∈ {1, 2, ..., n}.

(viii) If A is non-singular −µ(−A) ≤ (‖A‖)−1 ≤ ‖A‖.

Proof. Proof of the above listed properties of the matrix measure can be found in

[62].

The benefits of using matrix measure method to investigate stability analysis of

neural networks are as follows: (i) the measure of a matrix can be zero/negative/-

positive whereas the norm is always positive; (ii) it is known well that constructing

Lyapunov function for the system is a tough task due to unavailability of general

method but in a matrix measure approach we can easily construct Lyapunov func-

tion. Due to these benefits of the matrix measure method, many authors have drawn

their attentions to the problem of stability analysis of neural networks via matrix

measure approach [60, 61, 62, 63, 64].

1.4 Synchronization

Chaos is an important behavior of nonlinear dynamical systems. If the trajectory of

a nonlinear system is highly sensitive to the initial condition then it is called chaotic

nature. Many researchers have demonstrated chaotic behavior of neural networks
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in their articles [65, 66, 67]. The synchronization of chaotic systems is a difficult

problem owing to their extremely sensitive dependence on initial conditions. Any

initial correlation present between identical systems, starting from very close initial

conditions, exponentially decrease to zero with time. Thus, for all practical purposes,

any initial synchronization between the systems is bound to disappear rapidly. In

recent times, however, some methods of achieving synchronized behavior between

chaotic systems have been proposed. Pioneering work in this respect has been done

by Pecora and Carroll [68], who used the concept of a response system locking on to a

driver system. So far, such studies have been limited to driving a response system by

a single driver system. However, the knowledge gained from studying such simple

systems may not be adequate to give us an idea as to how systems consisting of

multiple independent driver systems, competing with each other to synchronize the

same response system, will behave. The Pecora-Carroll driving mechanism can be

seen as the ”strong-coupling” limit of a general scheme of directionally- oriented

couplings in a network of chaotic elements.

There are many types of synchronization have been reported in literature [69, 70, 71].

Some of them are described below

(1) Complete Synchronization: This type of synchronization can be occurred when

systems are identical and coupled unidirectionally or bidirectionally. Let us

assume two coupled identical systems as follows

ẋ(t) =f(x(t)) (1.71)

ẏ(t) =f(y(t)) + U(x(t), y(t)), (1.72)

where f : Rn → Rn is a continuous vector field and U(x, y) is a coupling

term. The systems (1.71) and (1.72) are said to be synchronized completely if
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‖y(t)− x(t)‖ → 0 as t→∞.

(2) Quasi Synchronization: Let us consider the coupled systems as

ẋ(t) =f(x(t)) (1.73)

ẏ(t) =g(y(t)) + U(x(t), y(t)), (1.74)

where g : Rn → Rn is a continuous vector field. The systems (1.73) and

(1.74) are said to be synchronized in quasi way if there exists T > 0 such that

e(t) ∈ D = {e(t) : ‖e(t)‖ < ε} for all t > T ,where e(t) = y(t)− x(t) and ε is a

synchronization error bound.

(3) Projective synchronization: In this type of synchronization response system

is synchronized with drive system up to a scaling factor,i.e., error system is

defined as

e(t) = x(t)− αy(t), (1.75)

where α 6= 0 is a scaling factor and ‖e(t)‖ → 0 as t→∞.

– In general, if α is replaced by a diagonal matrix Ω = {α1, α2, ..., αn}

with constant elements αi 6= 0∀i then it is called modified projective

synchronization.

– If α is replaced by a diagonal matrix Ω(t) = diag{α1(t), α2(t), ..., αn(t)},

where αi(t) 6= 0 is bounded and continuously differentiable function for all

i, then it is called modified function projective synchronization (MFPS).

– If α1(t) = α2(t) = ... = αn(t) then it is called function projective syn-

chronization.
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There are also other types of synchronization schemes have been reported in liter-

ature such as anticipated-synchronization, phase synchronization, generalized syn-

chronization, see [72, 73, 74] and the references cited therein.

***********


