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PREFACE 

The surge for the design and development for new and advanced materials have always 

been enticing to the materials engineering & science community.  The intermetallics and 

metal matrix composites (MMCs) are receiving increasing attention among the advanced 

materials due to their high strength, stiffness and high-temperature properties.  The 

intermetallic compounds have emerged as technologically important materials widely used 

for high-temperature applications.  The discovery of aperiodic intermetallics i.e., 

quasicrystals in 1984 by Dan Shechtman has been a path-breaking development, which has 

redefined the conventional concept of crystallography. The inherent room temperature 

brittleness and reduced dislocation activity of periodic and aperiodic intermetallics have 

resulted in its low fracture toughness.  This low values of fracture toughness often restrict 

its large scale structural applications.  Similarly, in the year 2004, yet another paradigm 

shift in the materials development strategy has given birth to the concept of high-entropy 

alloys (HEAs) having five or more than five alloying elements in equiatomic, near 

equiatomic or non-equiatomic ratio.  These HEAs was first reported by Brian Cantor and J 

W Yeh independently and despite having five or more elements in equiatomic proportions 

mostly resulted in disordered solid solution.  On the other hand, the aluminium matrix 

composites (AMCs) falling under the class of MMCs have received much attention due to 

their high strength to weight ratio.  Designing and finding suitable reinforcement for these 

AMCs has always been challenging as well as awarding.  For developing high strength 

AMCs, Al-based metal matrices have been reinforced with quasicrystals and HEAs.  

The processing of these advanced materials is equally necessary for developing materials 

for engineering applications.  The nanostructured alloys and AMCs have better properties 

compared to their conventional counterpart.  The nanostructuring of the aperiodic 
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intermetallics (i.e. quasicrystals) and AMCs improves its strength and toughness.  These 

nanostructures alloys and AMCs can be synthesized by solid-state techniques, i.e. 

mechanical milling.  Non-equilibrium processing routes can synthesize the nanostructured 

alloys and AMCs for tailoring their physical and mechanical properties.  The consolidation 

of these nanostructured alloys and AMCs are challenging and can be accomplished through 

various non-equilibrium consolidation techniques like spark plasma sintering (SPS), 

vacuum hot-pressing (VHP), and hot isostatic pressing (HIP).   

The present work deals with the synthesis and processing of the nanocomposites of Al-Cu-

Fe quasicrystalline matrix reinforced with Sn particles and AA 6082 Al matrix reinforced 

with Al-Cu-Fe icosahedral quasicrystal (IQC) and non-equiatomic AlSiCrMnFeNiCu 

HEA.  The study aims at understanding the structural transformation, thermal stability and 

microstructural features of these nanocomposite powders.  Attempts were made to 

consolidate these nanocomposite powders through SPS, hot-pressing (HP) and pressure-

less sintering.  The structure, microstructure and mechanical properties of these bulk 

composites were studied in detail.   

The thesis is divided into six chapters. Chapter-1 presents the introduction and current 

understanding of the theme of the work based on the reviewed literature available. This 

chapter briefly describes the timeline for design and development of the new materials, i.e. 

quasicrystals, high-entropy alloy and high strength Al matrix composites.  The 

crystallography, properties and applications of quasicrystals was described along with 

present shortcomings for its application as a structural material.  The section on the AMCs 

briefly discusses the AMCs reinforced with various unconventional reinforcement such as 

quasicrystals and HEAs.  This chapter also concerns the different material processing 
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methodology being used in the present work.  The objectives of the present study are listed 

at the end of this chapter.   

Chapter-2 describes the details of the materials and experimental procedure used for the 

present work.  This chapter mentions the equipment and protocol required for materials 

processing and its characterization.  Vacuum induction melting was used for preparing as-

cast quasicrystalline and non-equiatomic high-entropy alloy (HEA) and was further 

crushed into a particle size of ≤ 100 µm.  Mechanical milling (MM) was used for synthesis 

nanocomposite powders of quasicrystalline and Al matrix composite through high energy 

planetary ball milling.  The structural and microstructural features of these nanocomposites 

were studied through X-ray diffraction (XRD) and transmission electron microscopy 

(TEM), and scanning electron microscopy (SEM) equipped with energy dispersive 

spectroscopy.  The thermal stability of these nanocomposite powders was established 

through differential scanning calorimetry (DSC).  The heating events in the DSC 

thermogram were co-related with the phases evolved by ex-situ XRD of annealed 

composite powder or by in-situ XRD.  The hardness and indentation behaviour of these 

nanocomposite powders studied through microindentation and nanoindentation techniques.  

Further, these nanocomposite powders were consolidated through SPS, HP and pressure-

less sintering for fabricating bulk composite.  The phase analysis and microstructure of 

bulk composites were studied through XRD and TEM, and optical microscopy (OM) and 

SEM, respectively.  The mechanical properties of these bulk composites were investigated 

through microhardness and compressive testing.         

Chapter-3 presents the investigation on the mechanically driven structural transformation 

in Sn reinforced Al-Cu-Fe quasicrystalline (IQC) matrix nanocomposite (NC). The 

sequence of structural transformation, phase composition, thermal stability and hardness of 
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mechanically milled IQC-Sn NC powder were studied. The XRD result suggests the 

formation of nanostructured composites.  The IQC phase co-existed with Al13Fe4 (a=1.549 

nm, b=0.808 nm, c=1.248 nm, α=β=90˚, γ=107.720˚; mC102; C2/m) and B2-type Al (Cu, 

Fe) (a=0.29 nm; cP2; Pm3̅m) phase, in IQC-Sn NC powder subjected to MM for 40 h.  The 

double diffraction was observed due to the layering of nanocrystalline B2 and IQC phase 

in the NC powder.  The inner concentric and outer ring corresponds to the B2-type and 

(422222) reflection of the IQC phase, respectively.  The phases formed during MM 

transforms to stable IQC phase along with crystalline phases during subsequent annealing 

treatment as confirmed by XRD and nano-beam diffraction (NBD).  The structural 

transformations occurring during MM have a remarkable effect on indentation hardness, 

which is in the range of  4 to 7 GPa.  This nanocomposite powder was consolidated by 

SPS, HP, and pressure-less sintering.  The phase evolved in SPSed IQC-Sn composite was 

also found to be dependent on the volume fraction of Sn reinforcement in the IQC matrix.  

The bulk composite prepared by SPS has shown significant enhancement in the 

compressive yield strength ~75% for IQC-20Sn.  The fracture toughness of the IQC-10Sn 

HPed composite was found to increase by ~22%.  The increase in the compressive yield 

strength and fracture toughness of these bulk composite was attributed to the inhibition of 

cracks by soft Sn particles homogeneously dispersed in the IQC matrix by milling and 

sintering.  

Chapter-4 deals with studying the effect of Al-Cu-Fe IQC reinforcement on the structure, 

morphology and phase composition of AA 6082 Al matrix nanocomposites processed 

through mechanical milling and SPS.  The characterization of these milled and SPSed 

AMCs was done through XRD, TEM, and SEM. The MM induces microstructural 

refinement of the matrix, and the extent of improvement was dependent on the volume 

fraction of the IQC.  However, the partial structural transformation of IQC phase to Al13Fe4 
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crystalline phase (a=1.549 nm, b=0.808 nm, c=1.248 nm, α=β=90˚, γ=107.720˚; mC102; 

C2/m) was only evident for AMCs reinforced with 40 vol% of IQC.  The presence of 

(311111) diffraction peak of the IQC phase in AMCs confirms the existence of face-centred 

IQC phase even after 50 h of MM.  The Al-IQC was consolidated at 300 ℃ (573 K) with 

a pressure of 500 MPa, and another set of the sample was consolidated at 450 ℃ (723 K) 

and 550 ℃ (823 K) with a pressure of 50 MPa.  It was observed that on increasing the 

reinforcement in AMCs, the relative density of the composite increases and reaches a 

maximum value of 99.5% for Al-40IQC.    The compressive yield strength and ultimate 

strength of these AMCs is ~519 MPa and 639 MPa respectively.  However, the Al-30IQC 

SPSed at 300 ℃ (573 K) with a pressure of 500 MPa for 30 min has resulted in a significant 

rise in the compressive yield strength ~900 MPa.  The enhancement in the mechanical 

properties may be attributed to strong interfacial bonding of the Al matrix and IQC 

reinforcement due to interfacial reactions. 

Chapter-5 concerns with investigating the effect of non-equiatomic AlSiCrMnFeNiCu 

high-entropy alloy (HEA) reinforced Al-based metal matrix composite.  These HEA used 

as reinforcement was prepared by vacuum induction melting followed by 30 min milling 

for its fragmentation.  The HEA was reinforced into the AA 6082 Al matrix by MM 

followed by pressure-less sintering.  The structure, microstructure and morphology, 

compositional analysis, and thermal stability of these HEA and Al-HEA nanocomposite 

powders were ascertained using XRD and TEM, SEM-EDS, and DSC respectively.  The 

HEA used as reinforcement was found to have a two-phase microstructure with a major 

phase corresponding to the B2-type and a minor phase of Cr5Si3.  The MM imparts 

significant refinement of the Al matrix, and a nanostructured grain of ~10-12 nm was 

observed for Al-30HEA nanocomposite powder.  For AMCs with a higher fraction of 

reinforcement, the HEA was found to be well embedded in the 6082 Al matrix and has an 
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excellent interfacial bonding.  The Al-30HEA nanocomposite powder was found to be 

thermally stable up to 650 ℃ (923 K). This was confirmed by correlating the DSC 

thermogram with the in-situ XRD investigations.  It provided a basis for the consolidation 

of Al-HEA composite at high temperature through pressure-less sintering.  The pressure-

less sintering of Al-30HEA has led to the formation of a thin ~500 nm transitional layer at 

the interface of 6082 Al matrix and HEA reinforcement.  The microhardness of Al-HEA 

composite was found to be encouraging, and a maximum microhardness of ~1.72 GPa was 

observed for Al-30HEA composite. This high value of microhardness was attributed due 

to the formation of the transitional layer and indirect strengthening of Al-HEA composite.   

Chapter-6 presents a summary of the work indicating major findings and observation 

arising out from the present work along with the suggestions for future work.  

Reference section provides the list of relevant references (~400) cited in Chapter 1-6 of 

the thesis. 

 

 


