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APPENDICES 

Appendix A: The chemical composition of austenitic stainless steels developed for biomedical applications (mass %). 

Designation C Mn Cr Ni Mo N Si P S Cu Nb Fe 

F 138 [211] 0.03 

max 

2.0 

max 

17.0-

19.0 

13.0-

15.0 

2.25-

3.0 

0.1 

max 

0.75 

max 

0.025 

max 

0.01 

max 

0.50 

max 

- Bal 

ASTM F1314 [89] 0.03 

max 

4.0-6.0 20.5-

23.5 

11.5-

13.5 

 

2.0-

3.0 

0.2-

0.4 

0.75 

max 

0.025 

max 

0.01 

max 

0.5 

max 

0.1-0.3 Bal 

ASTM F1586 [90] 0.08 

max. 

2.0-

4.25 

19.5-

22.5 

9.0-

11.0 

2.0-

3.0 

0.25-

0.50 

0.75 

max. 

0.025 

max. 

0.01 

max. 

0.25 

max. 

0.25-

0.80 

Bal 

ASTM F2581 [95] 0.15-

0.25 

9.5-

12.5 

16.5-

18.0 

0.05 

max 

2.7-

3.7 

0.45-

0.55 

0.2-

0.6 

0.02 

max. 

0.01 

max 

0.25 

max 

- Bal 

ASTM F2229 [94]/ Biodur 

108 [68] 

0.08 

max 

21.0-

24.0 

19.0-

23.0 

0.05 

max 

0.5-

1.5 

0.85-

1.1 

0.75 

max 

0.03 

max 

0.01 

max 

0.25 

max 

- Bal 

P2000/ X13CrMnMoN18-

14-3 [115] 

< 0.15 12-16 16-20 - 2.5-

4.2 

0.75-

1.0 

- - - - < 0.25 Bal 

PANACEA P558 [118] 0.16 9.47 16.62 < 0.02 3.25 0.49 0.43 < 0.005 0.0002 0.02 0.026 Bal 

BIOSSN4 [212]  0.029 12.58 17.05 0.03 2.38 0.43 0.42 0.014 0.007 1.44 - Bal 

0Cr18Mn15Mo2N0.64 

[125] 

0.044 15.8 18.62 0.03 2.78 0.64 0.18 0.013 0.004 - - Bal 
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Appendix B: Microstructure and mechanical behavior of nickel-free/negligible nickel, nitrogen stabilized austenitic stainless steel. 

S. No. Alloys/Composition Experimental details Findings References 

1.  Cr-19, Mn-10, N-0.63, 

Ni-0.8, Mo-0.16, C-

0.03, Si-0.03 

The tribological behavior was 

investigated by dry abrasion, abrasion-

corrosion (synthetic mine water) and 

cavitation-erosion (in distilled water) 

techniques and compared with that of 

the 304 and Hadfield steel.  

In a corrosive medium, Cr-Mn-N steel 

exhibited superior abrasion resistance and 

cavitation-erosion resistance. 

1998 [97] 

2.  P2000 Fatigue, chemical and sliding wear in 

Ringer’s solution were studied. In vitro 

cytotoxicity was studied with MC3T3 

cells. 

It showed good corrosion, fatigue and 

tribological behavior and is recommended for 

biomedical application. 

2002 

[115,116]  

3.  Biodur 108, 316L and 

22Cr-13Ni-5Mn  

Fatigue tests were conducted in 

Ringer’s solution at 37°C as per ASTM 

F1801 up to failure or 106 cycles at 1 Hz 

frequency. 

The S-N curve of Biodur 108 is significantly 

above the 316L and fatigue life decreased in 

Ringer’s solution compared to distilled water 

for all three steels. 

2003 [98] 

4.  Fe24Mn13Cr1Ni0.44N, 

Fe24Mn18Cr3Ni0.62N   

Tests under tensile loading were 

conducted at an elongation rate of 10 

µm/min and 50 µm/min. The 

Slip and twinning both the mechanisms were 

there during the testing. 

2006 [99] 
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microstructure was analyzed using in-

situ SEM. 

5.  Fe-24Cr-2Mo (HFVM), 

Fe-24Cr-2Mo-1N (NA-

1) and Fe-23Cr-1Mo-

1N (P-ESR) 

High cycle fatigue test at stress ratio (R) 

of 0.1in air and PBS solution kept at 

310°K and pH 7.5 bubbled with 

nitrogen-4% O2 gas mixture, with 20 

Hz frequency in air and 2 Hz in PBS 

solution. 

No significant difference between S-N curves 

was there in air and in PBS for each steel. The 

fatigue strength at 107 cycles for the NA alloy 

and P-ESR alloy was 245 MPa and 320 MPa, 

respectively. 

2009 [102] 

6.  Fe24Mn13Cr0.44N Bend rotating cyclic tests were 

performed at room temperature at 40 Hz 

frequency and R= -1 

The fatigue strength at 107 cycles was 341 

MPa. 

2009 [101] 

7.  ASTM F2229 and 316L 

in cold rolled condition 

(20-30%) 

Fatigue tests were performed at RT with 

R=0.053 and frequency of 1 Hz. Tests 

were interrupted to analyze the crack 

initiation mechanisms. 

Cracks were preferentially initiated along 

annealing twin boundaries for ASTM F2229, 

whereas for 316L, cracks initiated along 

intrusions and extrusions associated with slip. 

2013, 2014 

[100,210]  

8.  HNS (C-0.022, Si-0.15, 

Mn-0.10, P< 0.05, S-

0.0005, Ni-0.04, Cr-

23.78, Mo-0.96, N-

1.05) and 316L (20% 

cold rolled) 

Fretting fatigue behavior of HNS was 

studied in air and PBS kept at pH of 7.5 

and temperature of 310 °K and aerated 

with 4% O2 containing N2 gas mixture. 

Tests were conducted at R of 0.1 at 20 

Hz and 2 Hz frequency in air and PBS 

Fatigue strength of HNS at 107 cycles was 

320 MPa in air and PBS and was comparable 

to that of 316L. The fretting fatigue was 280 

MPa and 240 MPa in air and PBS, 

respectively. The plain fatigue of HNS was 

lower than that of 316L (350 and 320 MPa) 

2013 [103] 
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solution, at a contact pressure of 30 

MPa 

whereas, the fretting fatigue limit was 

significantly higher than that of 316L (180 

MPa). 

9.  Cr-17.97, Mn-18, N-

0.63, C-0.056, Al-0.02 

Tests were performed under tensile 

loading at strain rates of 10-4 and 10-2 

/sec. LCF tests were performed at RT at 

a constant frequency of 0.5 Hz and 

different strain amplitudes. 

Increase in strength and decrease in 

elongation was observed with increasing 

strain rate. The plastic deformation behavior 

was well fitted with modified Ludwik 

relation. Cracks nucleation was at grain 

boundaries or along slip bands at higher strain 

rate, whereas at lower strain rate, they 

initiated preferably at inclusions. 

There was fall in fatigue life with rise in strain 

amplitude. Cyclic softening was there from 

the initial cycle. 

2015 

[104,107]  

10.  316, 316LVM, 

316MnN1, 316MnN2, 

316MnN3, 

Tensile and hardness tests at RT There was increase in hardness and strength 

with increase in nitrogen content while 

decrease in ductility.  

2015 [105] 

11.  Cr-22, Mn-17, Mo-2.43, 

N-0.83, C-0.02, Si-0.27, 

Nb-0.21, P-0.012, S-

0.004 

Tensile tests were carried out at RT at 

different strain rates ranging from 10-

4/sec to 1/sec in the solution treated, hot 

rolled and cold rolled condition 

This steel exhibited two-stage strain 

hardening behaviour. There was increase in 

YS and UTS with increase in strain rate but 

decrease in elongation. 

2017 

[108,109] 
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12.  Fe-18Cr-10Mn-0.4N 

and Fe-18Cr-10Mn-

0.6N  

High cycle fatigue tests were conducted 

with R=0.1 at 10 Hz frequency  

Fatigue limits of 0.4N and 0.6N at 107 cycles 

were 425 MPa and 475 MPa, respectively. 

Both the steels have similar UTS, but YS of 

0.6N (537 MPa) is higher than that of 0.4N 

(445 Mpa) 

2017 [106] 

Note: SEM: Scanning electron microscopy; PBS: Phosphate buffer saline; YS: Yield strength; UST: Ultimate tensile strength; RT: room temperature 
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Appendix C: Electrochemical corrosion study of nickel-free/negligible nickel, nitrogen stabilized austenitic stainless steel. 

S. No. Alloys/Composition Experimental details Findings References 

Medium/soluti

on 

pH Tem

p. 

Methods 

1.  C-0.2, Cr-17.35, Mn-

10.18, Mo-3.09, N-

0.49 

PBS, MEM, 

MEM+10% 

FCS, 

MEM+10% 

FCS + L929 

cells 

- - EIS Two maxima observed in the bode 

phase spectra indicate the presence of 

one inner passive layer whose resistance 

increased with immersion time related 

to uniform corrosion and one outer 

porous layer.  

2005 [111] 

2.  C-0.048, Cr-18.44, 

Mo-2.23, Mn-15.96, 

Si-0.24, P-0.004, S-

0.017, N-0.66  

XM H2SO4+ 

0.5M NaCl, 

0.5M H2SO4 + 

0.25M Na2SO4  

- - Potentiodynamic 

polarisation, EIS, 

Mott-Schottky 

and XPS 

Passive film formed in NaCl was stable, 

but stability decreased with the addition 

of H2SO4. Passive film formed on acidic 

Na2SO4 was superior to acidic NaCl 

2009 [110] 

3.  HNS A (19.8 Cr, 

18.4 Mn, 0.82 N, 

0.04 C, 0.012 S, 

0.015 P, 0.02 Al ), 

HNS B (19.07 Cr, 

18.84 Mn, 2.20 Mo, 

3.5% NaCl, 

0.5 M NaCl + 

0.5 M H2SO4 

- RT Potentiodynamic 

polarisation, EIS 

HNS exhibited higher resistance against 

pitting than that of the 316L in both 

mediums. There was no significant 

effect of the addition of Mo.  

2009 [66] 
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0.77 N, 0.043 C, 

0.012 S, 0.015 P, 

0.02 Al ), HNS C 

(18.4 Cr, 15.8 Mn, 

2.19 Mo, 0.66 N, 

0.24 Si, 0.04 C, 0.005 

S, 0.017 P, 0.02 Al ) 

and 316L 

4.  A1 (19.56 Cr, 19.4 

Mn, 2.29 Mo, 0.82 N, 

0.049 C, 0.19 Si, 

0.003 S, 0.04 Al ), A2 

(19.84 Cr, 18.9 Mn, 

2.26 Mo, 0.88 N, 

0.022 C, 0.19 Si, 

0.002 S, 0.02 Al), A3 

(19.55 Cr, 19.5 Mn, 

2.26 Mo, 0.96 N, 

0.058 C, 0.19 Si, 

0.003 S, 0.04 Al) and 

316L 

3.5 % NaCl 

with addition 

of HCl and 

NaOH 

1, 3, 6, 

7 and 9 

30 

°C - 

70 

°C 

XPS, 

Potentiodynamic 

polarisation and 

EIS 

Nitrogen steels had better resistance 

against pitting and crevice corrosion 

than that of 316L. Increase in pitting 

resistance and CPT was observed with 

increase in nitrogen content. A relation 

between CPT and MARC is given as : 

CPT= 2.55 MARC – 29 

2009 [84] 
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5.  00Cr18Mn15Mo2N0

.62 

Hank’s 

solution 

- 37 

°C 

Potentiodynamic 

polarisation, 

platelet adhesion 

and tensile test 

Better corrosion resistance and blood 

compatibility as compared to 316L. YS 

and UTS of 537 MPa and 884 MPa, 

respectively was observed.  

2009 [123] 

6.  P558 and ISO 5832-9 MEM - 37 

°C 

Potentiodynamic 

polarisation and 

EIS 

Electrochemical corrosion resistance 

was comparable to that of the ISO 5832-

9 

2010 [117] 

7.  Fe-17Cr-15Mn-

2Mo-(0.5-1.0)N 

(HNS) and 317L 

PBS, PBS with 

0.1 g/L of 

albumin and 

PBS with 

0.1g/L of 

fibrinogen 

7.4 37 

°C 

EIS, cyclic 

voltammetry 

(CV), Mott-

Schottky 

HNS exhibited a more protective 

passive layer of higher thickness with 

increase in nitrogen content. Passive 

films showed n-type semiconductor 

behavior and decrease in donor density 

was observed with increase in nitrogen.   

2012 [112] 

8.  N1 (18.4 Cr, 15.96 

Mn, 2.23 Mo, 0.52 N, 

0.048 C, 0.24 Si, 

0.004 S, 0.017 P), N2 

(18.4 Cr, 15.96 Mn, 

2.23 Mo, 0.66 N, 

0.048 C, 0.24 Si, 

0.004 S, 0.017 P), N3 

0.5 M NaCl + 

0.5 M H2SO4 

- - EIS It is suggested that the addition of 

nitrogen accelerates the dissolution 

process, which is attributed to the 

accumulation of passivation species and 

improvement in passivity. 

2015 [113] 
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(18.9 Cr, 18.9 Mn, 

2.28 Mo, 0.96 N, 

0.058 C, 0.2 Si, 0.003 

S, < 0.03 P) 

9.  HNS (0.18-0.186 C, 

12.6-12.61 Mn, 17.4-

17.5 Cr, 3-3.2 Mo, 

0.5-0.51 N, 0.06-0.07 

S, 0.013-0.014 P, 

0.41-0.42 Si) and 

316L 

Ringer’s 

solution and 

Artificial 

saliva solution 

6.5-7.5  Potentiodynamic 

poalarisation, Pin 

on disc 

tribocorrosion at 

normal loads of 2 

and 10 N 

HNS showed higher pitting resistance 

as compared to 316L under static as 

well as under applied load.  

2018 [114] 

Note: RT: Room temperature; PBS: Phosphate buffer saline; FCS: Fetal calf serum; MEM: Minimum essential medium; EIS: Electrochemical impedance spectroscopy; 

XPS: X-ray photoelectron spectroscopy; CPT: Crevice pitting temperature; MARC: Measure of alloying for resistance to corrosion  
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Appendix D: Effect of treatment of surface through surface mechanical attrition and ultrasonic shot peening on various properties of metallic 

materials. 

S. No. Alloys Experimental details Findings References 

Shot 

size 

Peening 

Duration 

(min) 

Frequency 

(Hz) 

Methods 

1.  AISI 316L 3 30 20k Tensile tests of the 

nanocrystalline 316L stainless 

steel at RT 

It exhibited an extremely high 

tensile strength of 1450 MPa 

2005 [144] 

2.  AISI 316L 8 60 50 Corrosion in 0.05M H2SO4 + 

0.25M Na2SO4 

Improvement in corrosion 

resistance 

2006 [213] 

3.  AISI 316L 2, 3 15 20k High cycle fatigue at R= -1 at 

10Hz frequency in air 

Increase in fatigue life and 

fatigue limit with increase in 

shot size 

2006 [158] 

4.  AIS 316L 3 30 20k Ball on disc sliding wear test in 

ambient condition 

Increase in wear resistance 

following USP 

2006 [214] 

5.  SS 400 8 15 50 High cycle fatigue at R=0 at 

40Hz frequency in air 

Fatigue strength increased by 

13.1% 

2009 [215] 
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6.  AISI 409 2, 5, 

8 

15, 30, 45 50 Corrosion in 0.6M NaCl Increase in corrosion resistance 

with 2 mm shots whereas 

decrease with bigger shots 

2010 [193] 

7.  AISI 304 2, 5, 

8 

15, 30, 45, 

60 

50 Corrosion in 0.6M NaCl No significant effect 2013 [194] 

8.  IN 718 3 45, 60, 90 20k Tensile test at RT Marginal increase in strength 2014 [216] 

9.  AISI 304 6 180 40 Tribocorrosion in 0.9% NaCl 

solution 

Wear rate decreased by 2 to 4 

times following SMAT 

2014 [217] 

10.  AISI 304 2, 5, 

8 

15, 30, 45, 

60 

50 Corrosion in Ringer’s solution Increase in corrosion resistance 

with 2 mm shots and decrease 

with bigger shots 

2015 [170] 

11.  Al 2014 3 10 20k LCF tests at total strain 

amplitudes of 0.375 %, 0.40 

%, 0.50 % and 0.55%. High 

cycle fatigue at 180 MPa. 

A significant increase in fatigue 

life. 

2015 [218] 

12.  Mg-6Gd-

3Y-0.5Zr 

8 3 20k Dry sliding wear Decrease in wear resistance 

after SMAT 

2015 [154] 

13.  Titanium 3 30 50k Ability to new bone formation 

is assessed by in vitro cell 

adhesion, proliferation, 

There was a significant increase 

in Osseo-integration following 

USP 

2015 [131] 
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differentiation and 

mineralisation 

14.  AISI 316L 5 2 20k Cell culture, cell adhesion and 

proliferation, using human 

osteoblast cell (Saos-2) 

Enhancement in cell 

attachment, spreading and 

proliferation rate following 

USP 

2017 [129] 

15.  AISI 316, 

AISI 690 

3 15, 30, 45, 

60 

20k Corrosion at RT and 300 °C in 

simulated steam generators 

(SG) environment. 

Corrosion resistance decreased 

at RT, whereas it increased in 

simulated SG environment. 

2017 [127] 

16.  AISI 316L 3 - 20k LCF tests at strain amplitudes of  

0.50 %, 0.80 %, 1.0 % and 

1.25 % 

Decrease in fatigue life at a 

higher strain amplitude of 1.25 

whereas no effect at lower strain 

amplitudes. 

2017 [165] 

17.  Ti-6Al-4V 3 5 20k LCF tests at strain amplitudes of  

0.60 %, 0.65 %, 0.70 %, 

0.80 %, 0.90 %, 1.0 % 

Enhancement of fatigue life at 

lower strain amplitudes whereas 

no effect at higher strain 

amplitudes of 0.90 % and 1.0 

% 

2017 [132] 

18.  Al 7075 3 0.25, 0.5, 1 

and 5 

20k Corrosion resistance in 3.5% 

NaCl 

Enhancement of corrosion 

resistance for 0.25 min of USP 

2017 [133] 
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19.  Al 7075 3 0.5, 1, 3, 5 20k LCF tests at strain amplitudes of  

0.38 %, 0.40 %, 0.45 %, 

0.50 %, 0.55 %, 0.60 % 

Increase in fatigue life with 

increase in USP duration 

2017 [134] 

20.  MG-AZ31B 2, 3 15 20k Corrosion fatigue in 3% NaCl Improvement in corrosion 

fatigue life following SMAT 

2019 [153] 

21.  Co28Cr6Mo 3 15 20k Corrosion in Ringer’s solution Enhancement in corrosion 

resistance 

2018 [128] 

Note: RT:  Room temperature; R: stress ratio; LCF: Low cycle fatigue; HCF: High cycle fatigue; SMAT: Surface mechanical attrition treatment; USP: Ultrasonic shot 

peening 
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Appendix E: Effect of cold rolling and severe plastic deformation on various properties of the nickel free (or negligible nickel) nitrogen stabilised 

austenitic stainless steel. 

S. No. Alloys/Composition Experimental details Findings References 

1.  C-0.04, Cr-18.4, Mn-

15.8, Mo-2.19, N-0.66, 

Si-0.24, S-0.005, P-

0.017 

Cold reduction in thickness was done to 

8, 30, 40, 49 and 60%. Potentiodynamic 

and EIS tests were performed in 3.5% 

NaCl, 0.5 M NaCl + 0.5 M H2SO4 and 

0.5 M NaCl + 0.5 M NaOH solution.    

A decrease in pitting potential was observed 

in a solution of 3.5 % NaCl due to an 

imperfect and less protective passive layer 

formed, attributed to the defects induced by 

the cold rolling. However, no appreciable 

reduction in corrosion resistance was 

observed in 0.5 M NaCl + 0.5 M H2SO4 and 

0.5 M NaCl + 0.5 M NaOH solution.  

2008, 2009 

[219,220]  

2.  316L, 316LVM, 

316MnN1 (0.34), 

316LMnN2 (0.43), 

316LMnN2 (0.52) 

Samples were cold rolled for 10 and 20 

% thickness reduction. Tensile tests, 

hardness and microstructural study was 

conducted. Cell adhesion and MTT assay 

tests were also performed for DL cells to 

evaluate cytotoxicity. The corrosion 

resistance in SBF environment was 

evaluated at 37 °C using EIS and 

polarisation techniques. 

There was no phase change, but strength and 

hardness increased with increase in cold 

reduction. Nitrogen-containing steels 

showed higher cell proliferation as 

compared to 316L and 316LVM. Cell 

proliferation increased with cold reduction. 

Corrosion resistance increased with 

increasing nitrogen content and cold 

working.  

2013 

[105,206,221]  
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3.  C <0.08, Si- 0.2-0.6, 

Mn-18-18.7, Cr-18-20, 

V< 0.2, N-0.51 

Samples were cold compressed for 10, 

20, 30, 40 and 50% at strain rate of 

0.05/sec at RT.   

Strength increased with increase in the cold 

compression. 

2014 [208] 

4.  C-0.076, Mn-19.78, Cr-

17.96, Si-0.34, N-0.543, 

P-0.051, S-0.007, Ni-

0.16, Mo-0.11, Cu-0.01 

USP was carried out with 3 mm shots at 

80 µm amplitude with 20kHz frequency 

for different duration. Low cycle fatigue 

behaviour was studied following 10 

minutes of USP. 

There was decrease in fatigue life following 

USP as compared to non-USP. 

2014 [167] 

5.  00Cr18Mn15Mo2N0.86 Samples were cold deformed at different 

levels of 10, 20, 30, 40 and 50% and 

electrochemical corrosion tests of 

polarisation and EIS were performed in 

0.9% saline at 37 °C. 

There was no significant change in pitting 

potential. 

2016 [166] 

6.  C-0.014, N-0.9, Cr-18.3, 

Mn-15.3, Mo-2.4, Si-

0.31, S-0.009, P-0.01 

20% and 35% pre-strained fatigue 

samples were tested in air and PBS 

solution kept at 37 °C, at R=0.1 for 107 

cycles. 

Fatigue and corrosion fatigue limit of non-

strained sample was found 550 MPa and 475 

MPa, respectively, and there was increase in 

fatigue limit and fatigue life with increasing 

pre-straining.  

2018 [168] 

Note: RT: Room temperature; PBS: Phosphate buffer saline; EIS: Electrochemical impedance spectroscopy; USP: ultrasonic shot peening; R: Stress ratio 

 

 



Page | 156 
 

Appendix F: Glossary of words [222, 223, 224]. 

Acute: Duration of less than 30 days.  

Biocompatibility: The ability of a material to perform with an appropriate host response in a specific application. It may also be defined as 

“biological performance of a material in a specific application that is judged suitable to that situation”.  

Biological environment: Conditions encountered within an animal or human body. 

Breakdown potential: The potential at which there is breakdown of passive film and drastic increase in corrosion current with little increase in 

potential.  

Capsule: Tissue surrounding an implant produced by local host response. 

Cell culture: Growth of cells dissociated from the parent tissue by spontaneous migration or mechanical or enzymatic dispersal. 

Corrosion potential: Potential at which rate of anodic dissolution of the electrode equals the rate of cathodic reaction. It is also called zero current 

potential or open circuit potential. 

Cyclic stress amplitude: It is half of the algebraic difference between the maximum and minimum stress in a cycle. 

Cytotoxic: Having a deleterious effect on cells.  

Cytotoxicity: Cellular damage to one or more metabolic pathways, intracellular processes, or structures resulting in impaired function. Often, but 

not necessarily, linked to loss of viability. 

Elastic strain amplitude, cyclic: It is half of the algebraic difference between the maximum and minimum elastic component of strain in a cycle. 
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Endurance limit: It is the stress limit below which materials are supposed to run for infinite number of cycles. In general, it is defined for 107 or 

108 cycles of cyclic loading.  

Fatigue failure: Materials subjected to a repetitive or fluctuating stress will fail at a stress much lower than that required to cause fracture on a 

single application of load. Failure occurring under such conditions of dynamic loading are called fatigue failure. 

Frequency: Number of cycles per second 

Hemocompatibility: Compatibility of material with blood. 

Hemolysis: Release of hemoglobin due to damage to red blood cells. 

Implant: A medical device made from one or more biomaterials that is intentionally placed within an animal or human body by the act of 

implantation. 

Implantation: Placement of a device or material within the body of an animal of human by a medical or surgical professional, in such a way as 

to breach one or more epithelial layers and to leave materials and/or components in place after the initial procedure is completed. 

In vitro: Literally, “in glass”, but used conventionally to mean cultured outside of the host as cell cultures, organ cultures, or short-term organ 

bath preparations. 

In vivo: In the living plant or animal. 

Local Host response: The response, other than the intended therapeutic response, of tissue and organs contacting a biomaterial. 

Passive film: The ultra-thin oxide layer formed on the surface which protect against corrosion. 



Page | 158 
 

Physiological environment: Controlled chemical (inorganic) and thermal conditions simulating a portion of a biological, biophysiological, or 

pericellular environment.  

Pitting: Formation of spots or pits on the surface due to localised corrosion. 

Plastic strain amplitude, cyclic: It is half of the algebraic difference between the maximum and minimum plastic component of strain in a cycle. 

Prosthesis: A device that replaces a limb, organ, or tissue of the body. 

Stress ratio (R): It is the ratio of minimum stress to maximum stress in a cycle. 

Total strain amplitude, cyclic: It is half of the algebraic difference between the maximum and minimum strain in a cycle.  
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