TABLE OF CONTENTS

		Page No.
Table of Co	ntents	xiii
List of Figures		xxi
List of Table	es	xxix
Abbreviatio	ns	xxxi
Symbols		xxxiii
Preface		XXXV
Chapter 1	INTRODUCTION AND LITERATURE REVIEW	1-28
1.1	Introduction	1
1.2	Various Modes of Failure of Orthopedic Implants	2
1.2.1	Improper Loading of Implants	2
1.2.2	Fatigue of Implants	2
1.2.3	Corrosion and Corrosion Fatigue of Implants	3
1.3	Metallic Biomaterials	5
1.4	316L Austenitic Stainless Steel as a Biomaterial	6
1.5	Nickel Allergy: Government Policies and Directives and	9
	Need for the Development of Nickel-Free Austenitic Stainless	
	Steel	
1.6	Role of Alloying Elements in High Nitrogen Austenitic	9
	Stainless Steels without Nickel	
1.6.1	Role of Carbon (C)	10
1.6.2	Role of Chromium (Cr)	10
1.6.3	Role of Molybdenum (Mo)	10

1.6.4	Role of Manganese (Mn)	11
1.6.5	Role of Nitrogen (N)	11
1.7	Development of Nickel-Free Nitrogen Stabilized Austenitic	16
	Stainless Steel for Biomedical Applications	
1.7.1	Philosophy of Alloy Design of Nickel-Free Nitrogen	17
	Stabilized Austenitic Stainless Steel	
1.7.2	Mechanical Behavior, Corrosion Resistance and	19
	Biocompatibility of Nickel-Free Nitrogen Stabilized	
	Austenitic Stainless Steel	
1.8	Surface Modification of Metallic Materials	22
1.8.1	Ultrasonic Shot Peening	23
1.8.2	Role of Surface Nanostructuring on Various Properties of	25
	Metallic Materials	
1.9	Surface Modification and its Impact on Properties of Nitrogen	26
	Stabilized Austenitic Stainless Steel	
1.10	Scope of the Present Investigation	27
1.11	Objectives of the Present Investigation	28
Chapter 2	MATERIALS AND EXPERIMENTAL METHODS	29-46
2.1	Introduction	29
2.2	Materials	29
2.3	Ultrasonic Shot Peening	30
2.4	Microstructural Characterization	32
2.4.1	Optical Microscopy	32
2.4.2	Scanning Electron Microscopy	32
2.4.3	Transmission Electron Microscopy	33

2.4.4	X-Ray Diffraction	33
2.5	Surface Roughness Measurement	34
2.6	Mechanical Testing	34
2.6.1	Hardness Testing	34
2.6.2	Tensile Testing	34
2.6.3	Low Cycle Fatigue Testing	34
2.6.4	High Cycle Fatigue and Corrosion Fatigue Testing	36
2.7	Corrosion Testing	38
2.8	Biocompatibility Testing	39
2.8.1	Cell Culture	39
2.8.2	Cell Proliferation	40
2.8.3	In vivo Animal Study of HNS	41
2.8.4	Cell Adhesion	43
2.8.5	In vitro Cytotoxicity	43
2.8.6	In vitro Hemocompatibility	44
2.8.7	Irritation and Skin Sensitization	44
2.8.8	Guinea Pig Maximization Test of Physiological Saline	45
	Extract of HNS-Mo	
2.8.9	Acute Systematic Toxicity	46
2.8.10	Implantation of HNS-Mo	46
Chapter 3	MECHANICAL PROPERTIES, CORROSION BEHAVIOR AND BIOCOMPATIBILITY OF NICKEL-	47-66
2.1	FREE AUSTENITIC STAINLESS STEEL (HNS)	A –
5.I 2.2	Microsoftware Characterization of the UNIC and 21 Ch	4/
3.2	wherostructure Characterization of the HINS and 316L	4/

3.3	Comparison of Corrosion Behavior of the HNS and 316L 49	
3.4	Comparison of Mechanical Properties of the HNS and 316L	
3.4.1	Tensile Properties and Hardness	50
3.4.2	Low Cycle Fatigue Behavior	51
3.4.3	High Cycle Fatigue Behavior in Air	54
3.5	Biocompatibility of HNS	55
3.5.1	In vitro Cell Culture and Proliferation	55
3.5.2	In vivo/Animal Study	57
3.5.2.1	Histopathology	60
3.6	Discussion	60
3.6.1	Microstructure and Corrosion Resistance	60
3.6.2	Mechanical Behavior	62
3.6.3	Biocompatibility	65
3.7	Conclusions	66
Chapter 4	MECHANICAL PROPERTIES, CORROSION	67-86
	BEHAVIOR AND BIOCOMPATIBILITY OF	
	AUSTENITIC STAINLESS STEEL (HNS-Mo)	
4.1	Introduction	67
4.2	Microstructure Characterization of HNS-Mo	68
4.3	Corrosion Behavior of HNS-Mo	69
4.4	Comparison of Mechanical Properties of the HNS-Mo, HNS	71
	and 316L	
4.4.1	Tensile Properties and Hardness	71
4.4.2	High Cycle Fatigue Behavior of the HNS-Mo in Air	72
4.4.3	Corrosion Fatigue of HNS-Mo	73

4.5	Biocompatibility of HNS-Mo	74
4.5.1	In vitro Cell Adhesion and Proliferation	74
4.5.2	In vitro Cytotoxicity	76
4.5.3	Hematology	77
4.5.4	In vivo Studies	78
4.5.4.1	Irritation and Skin Sensitization	78
4.5.4.2	Acute Systematic Toxicity	78
4.5.4.3	Implantation of HNS-Mo	79
4.6	Discussion	79
4.6.1	Microstructure and Corrosion Resistance of HNS-Mo	80
4.6.2	Mechanical Behavior of HNS-Mo	83
4.6.3	Biocompatibility of HNS-Mo	84
4.7	Conclusions	85
Chapter 5	EFFECT OF ULTRASONIC SHOT PEENING ON MICROSTRUCTURE, CORROSION RESISTANCE, BIOCOMPATIBILITY AND LOW CYCLE FATIGUE BEHAVIOR OF NICKEL-FREE AUSTENITIC STAINLESS STEEL (HNS)	87-121
Chapter 5	EFFECT OF ULTRASONIC SHOT PEENING ON MICROSTRUCTURE, CORROSION RESISTANCE, BIOCOMPATIBILITY AND LOW CYCLE FATIGUE BEHAVIOR OF NICKEL-FREE AUSTENITIC STAINLESS STEEL (HNS) Introduction	87-121 87
Chapter 5 5.1 5.2	EFFECT OF ULTRASONIC SHOT PEENING ON MICROSTRUCTURE, CORROSION RESISTANCE, BIOCOMPATIBILITY AND LOW CYCLE FATIGUE BEHAVIOR OF NICKEL-FREE AUSTENITIC STAINLESS STEEL (HNS) Introduction	87-121 87 88
Chapter 5 5.1 5.2 5.3	EFFECT OF ULTRASONIC SHOT PEENING ON MICROSTRUCTURE, CORROSION RESISTANCE, BIOCOMPATIBILITY AND LOW CYCLE FATIGUE BEHAVIOR OF NICKEL-FREE AUSTENITIC STAINLESS STEEL (HNS) Introduction Surface Morphology and Surface Roughness Microstructure Characterization of the USPed Samples	87-121 87 88 91
Chapter 5 5.1 5.2 5.3 5.4	EFFECT OF ULTRASONIC SHOT PEENING ON MICROSTRUCTURE, CORROSION RESISTANCE, BIOCOMPATIBILITY AND LOW CYCLE FATIGUE BEHAVIOR OF NICKEL-FREE AUSTENITIC STAINLESS STEEL (HNS) Introduction Surface Morphology and Surface Roughness Microstructure Characterization of the USPed Samples Hardness and Residual Stress	87-121 87 88 91 96
Chapter 5 5.1 5.2 5.3 5.4 5.5	EFFECT OF ULTRASONIC SHOT PEENING ON MICROSTRUCTURE, CORROSION RESISTANCE, BIOCOMPATIBILITY AND LOW CYCLE FATIGUE BEHAVIOR OF NICKEL-FREE AUSTENITIC BEHAVIOR OF NICKEL-FREE AUSTENITIC STAINLESS STEEL (HNS) Introduction Surface Morphology and Surface Roughness Microstructure Characterization of the USPed Samples Hardness and Residual Stress Effect of Ultrasonic Shot Peening on Corrosion Resistance of the HNS	87-121 87 88 91 96 98

5.7	Effect of Ultrasonic Shot Peening on Low Cycle Fatigue	104
	Behavior of the HNS	
5.7.1	Effect of Ultrasonic Shot Peening on Cyclic Stress Response	104
5.7.2	Effect of Ultrasonic Shot Peening on Low Cycle Fatigue Life	106
5.7.3	Variation in the Cycles for Crack Initiation and Propagation	108
5.7.4	Fracture Behavior	
5.8	Discussion	112
5.8.1	Surface Nanostructuring by Ultrasonic Shot Peening	112
5.8.2	Effect of Ultrasonic Shot Peening on Corrosion Resistance	114
5.8.3	Effect of Ultrasonic Shot Peening on in vitro Cell Culture and	116
	Proliferation	
5.8.4	Effect of Ultrasonic Shot Peening on Low Cycle Fatigue	117
	Behavior	
5.9	Conclusions	120
Chapter 6	EFFECT OF ULTRASONIC SHOT PEENING ON CORROSION RESISTANCE, BIOCOMPATIBILITY, FATIGUE AND CORROSION FATIGUE BEHAVIOR OF THE INDIGENOUSLY DEVELOPED NICKEL- FREE AUSTENITIC STAINLESS STEEL (HNS-Mo)	123-136
6.1	Introduction	123
6.2	Effect of Ultrasonic Shot Peening on Corrosion Behavior of	124
	the HNS-Mo	
6.3	Effect of Ultrasonic Shot Peening on Cell Culture and Proliferation of the HNS-Mo	125
6.4	Effect of Ultrasonic Shot Peening on High Cycle Fatigue and Corrosion Fatigue of the HNS-Mo	128

6.5	Discussion	
6.5.1	Effect of Ultrasonic Shot Peening on Corrosion Behavior	130
6.5.2	Effect of Ultrasonic Shot Peening on Cell Culture and	132
	Proliferation	
6.5.3	Effect of Ultrasonic Shot Peening on High Cycle Fatigue and	133
	Corrosion Fatigue Life	
6.6	Conclusions	136
Chapter 7	SUMMARY AND SUGGESTIONS FOR FUTURE	137-140
	WORK	
7.1	Introduction	137
7.2	Summary	137
7.3	Suggestions for Future Work	140
Appendices		141-158
References		159-172
List of Publications/Patents		173

List of Figures

Figure	Description of Figures	Page
190.		110.
1.1	Modified Schaeffler diagram for predicting stable phase of stainless	18
	steel from Cr and Ni equivalent	
1.2	Schematic representation of USP set-up	23
2.1	The peening head (left) and the central unit (right) of the ultrasonic	30
	shot peening device	
2.2	MTS^{TM} Landmark servo-hydraulic fatigue test system (Model	35
	370.10)	
2.3	Geometry of LCF fatigue test sample	35
2.4	Sample geometry for stress-controlled high cycle fatigue tests in (a)	37
	air and (b) simulated body fluid (corrosion fatigue)	
2.5	Corrosion fatigue test set-up	37
2.6	Various surgical steps: (a) Step 1: Part preparation, (b) Step 2:	42
	Anterior midline incision over knee, patella retracted laterally and	
	exposure of knee joint, (c) Step 3: Fracture created in distal femoral	
	shaft, (d) Step 4: Fracture fixed retrogradely with HNS wire, and (e)	
	Step 5: Wound closed in layers	
3.1	Optical micrographs showing the microstructures of the (a) HNS and	48
	(b) 316L austenitic stainless steels	
3.2	XRD patterns of the austenitic stainless steels: (a) HNS and (b) 316L	48
3.3	Potentiodynamic polarization curves of the HNS and 316L austenitic	49
	stainless steels	

- 3.4 Comparison of engineering stress-strain curves of the HNS and 316L 50
 austenitic stainless steels
- 3.5 Cyclic stress response curves of the austenitic stainless steels: (a) 51HNS and (b) 316L
- 3.6 Variation of the number of reversals to failure (2N_f) with strain 53 amplitude for austenitic stainless steels: (a) HNS and (b) 316L
- Comparison of high cycle fatigue behavior of the HNS and 316L
 austenitic stainless steels in air, at stress ratio of 0.1
- 3.8 Panel representing the fluorescent cell culture images of the MG-63 56
 human bone osteosarcoma cells on the various steel samples; after 1
 day, 3 days and 5 days of incubation. Blue color: nuclei staining; red
 color: actin cytoskeleton filament staining
- 3.9 Histograms representing comparison of the MG-63 cell proliferation 57 on the 316L and HNS austenitic stainless steels; after 1, 3 and 5 days of incubation by MTT assay. In this experiment, absorbance of control for the 5th day culture was taken as reference for all the samples. $*p \le 0.05$ with respect to 1 day of corresponding group. $#p \le$ 0.05 with respect to 3 days of corresponding group. $$p \le 0.05$ with respect to 3 days of 316L
- 3.10 (a, b) Post operation day 1 radiographs of group 1, and (c, d) 3 weeks
 58 follow up radiographs of the respective cases of group 1. Arrows indicate the fracture sites and the encircled regions show the union of fracture after 3 weeks
- 3.11 (a, b) Post operation day 1 radiographs of group 2, and (c, d) 6 weeks59 follow up radiographs of the respective cases of group 2. Arrows

indicate the fracture sites and the encircled regions show the union of fracture after 6 weeks

- 3.12 Post operation after harvesting femur: (a, b) at 3 weeks (group 1); 59 and (c, d) at 6 weeks (group 2). Arrows show the callus
- 4.1 (a) Optical micrograph, and (b) X-ray diffraction pattern of the HNS-69 Mo austenitic stainless steel
- 4.2 Microstructure of the HNS-Mo austenitic stainless steel, following 69
 10% oxalic acid test according to ASTM A-262, practice A
- 4.3 Potentiodynamic polarization curves of the HNS-Mo, HNS and 316L 70 austenitic stainless steels
- 4.4 Comparison of engineering stress-strain curves of the HNS-Mo, HNS 71and 316L austenitic stainless steels
- 4.5 (a) Comparison of high cycle fatigue behavior of the HNS-Mo, HNS 72 and 316L austenitic stainless steels in the air, (b) Comparison of high cycle fatigue behavior of the HNS-Mo in air and SBF, at stress ratio of 0.1
- 4.6 L-929 cells adhesion on (a) HNS-Mo and (b) glass coverslip 74
- 4.7 Panel representing the fluorescent cell culture images of the MG-63 75 human bone osteosarcoma cells on the various steel samples; after 1 day, 3 days and 5 days of incubation. Blue color: nuclei staining; red color: actin cytoskeleton filament staining
- 4.8 Histograms representing comparison of the MG-63 cell proliferation 76 on the 316L, HNS and HNS-Mo austenitic stainless steels after 1, 3 and 5 days of incubation by MTT assay. In this experiment, absorbance of control for the 5th day culture was taken as a reference

for all the samples. *p ≤ 0.05 with respect to 1 day of corresponding group. #p ≤ 0.05 with respect to 3 days of corresponding group. *p ≤ 0.05 with respect to 316L for the same day. *p ≤ 0.05 with respect to HNS for the same day.

- 4.9 L-929 cells after 24 h contact with (a) HNS-Mo austenitic stainless 77 steel, (b) negative control (UHMWPE) and (c) positive control (PVC).
- 5.1 Surface morphology of the HNS in various USPed conditions: (a) 88USP 2-0.5, (b) USP 2-2, (c) USP 3-0.5, and (d) USP 3-2
- 5.2 Surface morphology of the samples of HNS in different conditions of
 89 USP: (a) USP 2-0.5, (b) USP 2-1, (c) USP 2-2, (d) USP 3-0.5, (e)
 USP 3-1, and (d) USP 3-2
- 5.3 SEM micrographs of the longitudinal sections, normal to the USPed 92 flat surface of the disc-shaped samples, in various USPed conditions:
 (a) USP 2-1, (b) USP 3-1, (c) USP 3-3, and (d) USP 3-6. The right side edge is the edge of the USPed surface
- 5.4 X-ray diffraction patterns of the HNS in the Un-USP and different
 93
 USPed conditions: (a) X-ray diffractograms, and (b) magnified (111)
 peaks
- 5.5 Bright field TEM micrographs and their corresponding SAD patterns
 95 from the top surface regions of the HNS in different USPed conditions: (a, b) USP 2-2; (c, d) USP 3-0.5; (e, f) USP 3-3; and (g, h) USP 3-6

- 5.6 (a) Bright field TEM micrograph and (b) corresponding SAD patterns
 96 of the USP 3-6 sample at the depth of ~ 20 μm from the USPed surface
- 5.7 Surface hardness of the HNS in different USPed conditions
 5.8 Microhardness profiles of the HNS in different USPed conditions
 97
- 5.9 Variation of residual stress induced in the HNS in different USPed
 98 conditions from the surface to 300 µm depth
- 5.10 Potentiodynamic polarization plots of the HNS in the Un-USP and 99 different USPed conditions
- 5.11 Panel representing the fluorescent cell culture images of MG-63 101human bone osteosarcoma cells on the various HNS samples; after 1 102
 day, 3 days and 5 days of incubation. Blue color: nuclei staining; red
 color: actin cytoskeleton filament staining
- 5.12 Histograms representing comparison of MG-63 cell proliferation 103 after 1, 3 and 5 days of incubation by MTT assay for the HNS in various USPed conditions. In this experiment, absorbance of control for the 5th day culture was taken as reference for all the samples. $*p \le$ 0.05 with respect to 1 day of corresponding group. $#p \le 0.05$ with respect to 3 days of corresponding group. $&p \le 0.05$ with respect to Un-USP for the same day
- 5.13 Cyclic stress response curves of the HNS in different USPed 105 conditions at varying strain amplitudes; (a) Un-USP, (b) USP 3-3, (c) USP 3-6, (d) USP 3-10, and (e) USP 3-14
- 5.14 Variation of $|\sigma_t|$ - $|\sigma_c|$ with number of cycles at the different total strain 106 amplitudes ($\Delta \epsilon_t/2$): (a) ± 0.40 %, and (b) ± 0.80 %

- 5.15 (a) Effect of USP duration on fatigue life of the USPed samples with 108 respect to Un-USP sample at high (\pm 0.80 %) and low (\pm 0.40 %) strain amplitudes, and (b) Coffin-Manson plots showing the variation of the number of reversals to failure (2N_f) with plastic strain amplitude for the Un-USP and different USPed conditions
- 5.16 (a) Schematic presentation of quotient plots ($|(\sigma_c/\sigma_t)| \ge 100$), with 109 number of cycles and determination of the number of cycles to crack initiation (N_i), (b) Variation of the number of cycles for crack initiation (N_i) and crack propagation (N_p), with % total strain amplitude ($\pm \Delta \epsilon_t/2$) for the Un-USP and different USPed conditions
- 5.17 Fracture behavior of the different samples at the total strain amplitude 110 of \pm 0.40%: (a, b) Un-USP; (c, d) USP 3-6; (e, f) USP 3-14. Boxes and circles show the crack initiation sites. Arrows indicate the direction of crack propagation
- 5.18 SEM micrographs showing surface morphology of the LCF samples 111 on the periphery (close to fracture ends) of the different samples tested at: (A) $\Delta \varepsilon_t/2 = \pm 0.40\%$: (a) Un-USP, (b) USP 3-3, and (c) USP 3-14; (B) $\Delta \varepsilon_t/2 = \pm 0.80\%$: (d) Un-USP, (e) USP 3-3, and (f) USP 3-14. Arrows indicate the direction of loading
- 6.1 Potentidynamic polarization plots of the HNS-Mo in various USPed 124 conditions
- 6.2 Panel representing the fluorescent cell culture images of MG-63 126human bone osteosarcoma cells on the HNS-Mo samples in various 127
 USPed conditions; after 1 day, 3 days and 5 days of incubation. Blue
 color: nuclei staining; red color: actin cytoskeleton filament staining

- 6.3 Histograms representing comparison of MG-63 cell proliferation 128 after 1, 3 and 5 days of incubation by MTT assay for the HNS-Mo in various USPed conditions. In this experiment, absorbance of control for the 5th day culture was taken as a reference for all the samples. *p ≤ 0.05 with respect to 1 day of corresponding group. #p ≤ 0.05 with respect to 3 days of corresponding group. *p ≤ 0.05 with respect to Un-USP for the same day. *p ≤ 0.05 with respect to USP 2-1 for the same day
- 6.4 Comparison of high cycle fatigue life of the HNS-Mo in the Un-USP 130 and USP 3-3 conditions in (a) air, and (b) SBF

List of Tables

Table	Description of Tables	Page
No.		No.
1.1	Composition of selected components of human body fluids	3
1.2	Composition of simulated physiological fluids/solutions	4
1.3	Comparison of various mechanical properties and applications of	6
	metallic alloys	
2.1	Chemical compositions of the three austenitic stainless steels (wt%)	30
2.2	Designations of the differently USPed samples of the nickel-free	31
	nitrogen stabilized austenitic stainless steels	
2.3	Test matrix of low cycle fatigue tests	36
2.4	Grading criteria for reactivity of cells	44
3.1	Inclusion rating of the HNS austenitic stainless steel	48
3.2	Corrosion data of the HNS and 316L austenitic stainless steels	50
3.3	Tensile properties of the HNS and 316L austenitic stainless steels	51
3.4	LCF data of the HNS and 316L austenitic stainless steels	53
3.5	Fatigue parameters based on strain-life relationships	54
3.6	Comparison of high cycle fatigue life of the HNS and 316L austenitic	54
	stainless steels at various maximum stresses	
3.7	Theoretical PREN and MARC values of the HNS and 316L austenitic	61
	stainless steels	
4.1	Inclusion rating of the HNS-Mo austenitic stainless steel	69
4.2	Corrosion data of the HNS-Mo, HNS and 316L austenitic stainless	71
	steels	

4.3	Tensile properties of the HNS-Mo, HNS and 316L austenitic stainless	72
	steels	
4.4	Comparison of high cycle fatigue life of the HNS-Mo, HNS and 316L	73
	austenitic stainless steels at various maximum stresses	
4.5	Grading of reactivity of cells	77
4.6	Theoretical nickel equivalent, chromium equivalent, PREN and	81
	MARC values of the HNS-Mo, HNS and 316L austenitic stainless	
	steels	
5.1	Surface roughness parameters of flat disc-shaped samples of the HNS	90
	in different conditions of USP	
5.2	Surface roughness parameters over gauge section of the LCF samples	91
	in different conditions of USP	
5.3	Crystallite size and microstrain of the USPed HNS samples, estimated	94
	by XRD analysis	
5.4	Corrosion parameters of the HNS in different conditions	100
5.5	LCF data of the Un-USP and USPed samples of HNS	107
5.6	LCF parameters based on the strain-life relationship	108
6.1	Corrosion data of HNS-Mo in various conditions	125
6.2	Comparison of high cycle fatigue life of the HNS-Mo austenitic	129
	stainless steel for the USP 3-3 and Un-USP conditions, at various	
	maximum stresses in air and SBF environment	

Abbreviations

AISI	American Iron and Steel Institute
ALP	Alkaline Phosphatase
ASTM	American Society for Testing and Materials
BDT	Brittle to Ductile Transition
Co-Cr	Cobalt-Chromium
CSO	Cotton Seed Oil
DBTT	Ductile to Brittle Transition Temperature
DMG	Dimethyl-glyoxime
DMEM	Dulbecco's Modified Eagle's Medium
FBS	Fetal Bovine Serum
FCC	Face Centered Cubic
GPa	Giga Pascal
GPMT	Guinea Pig Maximization Test
HCF	High Cycle Fatigue
IARC	International Agency for Research on Cancer
IGC	Intergranular Corrosion
ISO	International Organization for Standardization
IREL	Increment Rate of Endurance Limit
LCF	Low Cycle Fatigue
MARC	Measure of Alloying for Resistance Against Corrosion
MEM	Minimum Essential Medium
MPa	Mega Pascal
MRI	Magnetic Resonance Imaging
MTT	3-[4,5-Dimethyl-thiazol-2-yl]-2,5-diphenyl tetrazolium bromide
OCP	Open Circuit Potential
PBS	Phosphate Buffer Saline
PREN	Pitting Resistance Equivalent Number
PS	Physiological Saline

RT	Room Temperature
SBF	Simulated Body Fluid
SCE	Saturated Calomel Electrode
SEM	Scanning Electron Microscope
SFE	Stacking Fault Energy
SMAT	Surface Mechanical Attrition Treatment
SMRT	Surface Mechanical Rolling Treatment
TEM	Transmission Electron Microscope
Ti	Titanium
USPed	Ultrasonic Shot Peened
USP	Ultrasonic Shot Peening
UHMWPE	Ultra-High Molecular Weight Polyethylene
UTS	Ultimate Tensile Strength
WHO	World Health Organization
XPS	X-ray Photoelectron Spectroscopy
XRD	X-ray Diffraction
YS	Yield Strength

Symbols

Hz	Hertz
°C	Degree Centigrade
mgL ⁻¹	Milligram Per Liter
gL ⁻¹	Gram Per Liter
molL ⁻¹	Moles Per Liter
$\mu g/cm^2/week$	Microgram Per Square Centimeter Per Week
mm	Millimeter
H_{v}	Vickers Hardness
wt%	Weight Percent
k	Kilo
μm	Micrometer
V	Volt
θ	Theta
kN	Kilo Newton
h	Hour
Sec	Second
Min	Minute
E _{corr}	Corrosion Potential
E _{bd}	Breakdown Potential
i _{cr}	Critical Current Density
icorr	Corrosion Current Density
$\Delta \epsilon_t/2$	Total Strain Amplitude
$\Delta \epsilon_{e}/2$	Elastic Strain Amplitude
$\Delta \epsilon_p/2$	Plastic Strain Amplitude
$\Delta\sigma/2$	Stress Amplitude
N_{f}	Fatigue Life
$2N_{\rm f}$	Number of Reversals to Failure
σ_t	Cyclic Tensile Stress

σ_c	Cyclic Compressive Stress
\leq	Less Than or Equals to
\geq	Greater Than or Equals to
=	Equals to
~	Approximately
R	Stress Ratio
Ni	Number of Cycles for Crack Initiation
N _p	Number of Cycles for Crack Propagation
mJ/m ²	Milli Joule per square meter