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Preface 

Metallic materials are backbone of orthopedic surgical procedures. Titanium, cobalt-

chromium based alloys, stainless steel, tantalum, gold and niobium are widely used 

metallic biomaterials nowadays in medical applications. Implants are found to fail mainly 

due to fatigue, wear, corrosion, corrosion fatigue and their synergistic effect. Material 

debris resulting from corrosion and wear gets accumulated in the human body. The 316L 

austenitic stainless steel is a widely used steel for making medical devices, with many 

advantages such as easy processing, cost-effectiveness and favorable mechanical 

properties. However, appreciable amount of nickel (≥ 10 wt%) in the 316L causes 

allergic reactions resulting in eczema, swelling, itching, reddening, carcinogenic and 

teratogenic effects in human body. These harmful effects of nickel triggered a need for 

austenitic stainless steel without nickel. Nitrogen and manganese are austenite stabilizers. 

Austenitic grades of stainless steel are non-magnetic, which is one of the most crucial 

requirements of implant materials. Replacement of nickel by nitrogen and manganese 

provides a stable microstructure and facilitates better biocompatibility in respect of the 

conventional 316L. Nitrogen in stainless steel significantly enhances corrosion 

resistance, strength and work-hardening rate. Numerous studies have been carried out on 

development of nickel free grade of austenitic stainless steel, however, very few of them 

have been developed and studied in detail from the point of view of biomedical 

application. It was found that very high amount of nitrogen increases brittleness of the 

material and restricts the use of stainless steel for a wide temperature range. A very high 

amount of chromium in stainless steel stabilizes the ferrite phase. Mo is added in stainless 

steels to improve the pitting resistance, however, very high amount of Mo promotes 

formation of ferrite and σ-phase. Therefore, there is a need for design of a stainless steel 
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which is either free from nickel or has negligible amount of nickel with optimum amount 

of Cr, Mn, N and Mo.   

The present investigation deals with systematic study of two grades of nickel free 

austenitic stainless steels. One is based on the Fe-Cr-Mn-N system (HNS) and the other 

is based on Fe-Cr-Mn-Mo-N system (HNS-Mo). Initially, HNS was studied for 

mechanical properties (tensile, hardness, low cycle fatigue and high cycle fatigue), 

corrosion behavior in simulated body fluid (SBF) environment and biocompatibility, and 

its behavior was compared with that of the conventionally used 316L austenitic stainless 

steel, containing nickel. Ultrasonic Shot Peening (USP) is a novel technique of surface 

modification in which grain size in the surface region of materials gets refined to nano 

scale and compressive residual stresses are induced in the surface region, and surface 

related properties of metallic materials are significantly enhanced. The objective of the 

present study was development of a nickel free grade of austenitic stainless steel for the 

replacement of 316L. The effect of USP on microstructure, corrosion, fatigue and 

biocompatibility behavior of 316L stainless steel was well documented. However, for the 

nickel free stainless steel, no study had been performed. Therefore, in the present 

investigation, study on the USP effect was not conducted for the 316L. Study on this 

aspect, was carried out only for the nickel free austenitic stainless steels HNS and HNS-

Mo. In the present investigation, two different shot sizes of 2 mm and 3 mm were used 

for different durations of USP. HNS was characterized for the changes in microstructure, 

following USP, using the techniques like scanning electron microscopy, X-ray 

diffraction and transmission electron microscopy. It was also characterized for hardness, 

surface roughness and compressive residual stress. 

Chapter-1 presents the brief introduction along with the literature review on requirement 

and development of nickel-free austenitic stainless steels. It also includes the effect of 
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nitrogen on various properties. This chapter presents the description of USP and its effect 

on various properties of metallic materials. At the end of this chapter, the objectives of 

the present investigation are listed. 

Chapter-2 presents the chemical compositions of three types of stainless steels used for 

the study and the details of sample preparation for various testing. It includes the 

experimental procedure for various mechanical, corrosion and biocompatibility testing 

along with the details of USP. This chapter also presents the process of sample 

preparation and operational details of X-Ray Diffraction, Scanning Electron Microscopy 

and Transmission Electron Microscopy, used for phase analysis and microstructural 

characterization. 

Chapter-3 presents the comparison of various properties of HNS and 316L. HNS and 

316L were tested for mechanical properties, corrosion resistance and biocompatibility. 

The HNS and 316L stainless steels are austenitic, free from carbide precipitates at grain 

boundaries and have negligible ferrite content. The inclusion rating, an important 

requirement of the implant material, was found within the limit of ISO 5832-1. The 

microstructure was found free from intergranular corrosion and grain dropping according 

to standard ASTM A 262 practice A and E. The breakdown potentials of 316 mVSCE and 

196 mVSCE are found for the 316L and HNS steels, respectively, from potentiodynamic 

polarization tests in Ringer’s solution. The yield strength of the 316L and HNS was found 

279 MPa and 525 MPa, respectively in air. It should be noted that yield strength of the 

HNS is ⁓ 2 times that of the 316L. Also, the low cycle fatigue life of the HNS in air was 

nearly 2 times that of the 316L, irrespective of the strain amplitudes. However, the 

breakdown potential and endurance limit of the HNS were inferior to that of the 316L. 

The biocompatibility of HNS was studied in vitro and in vivo. The cell culture and 

proliferation study exhibited similar cell response for both HNS and 316L stainless steels. 
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Additionally, in vivo animal study of HNS did not show any adverse effect and was found 

biocompatible.   

Chapter-4 presents the characterization of a new grade of austenitic stainless steel, free 

from nickel, and stabilized by nitrogen and manganese, which was designed with small 

addition of Mo and developed with the help of M/s Mishra Dhatu Nigam Limited. This 

steel was characterized for microstructure, corrosion behavior, mechanical properties and 

biocompatibility. Its characterization showed austenite microstructure with some 

annealing twins, absence of grain boundary precipitates and negligible delta ferrite. The 

breakdown potential of the HNS-Mo was found 310 mVSCE, comparable to that of the 

316L (316 mVSCE). Its yield strength was found 540 MPa which is higher than that of 

HNS and ⁓ 2 times that of 316L. The endurance limit (maximum stress) corresponding 

to 107 cycles of the HNS-Mo decreased from 513 MPa in air to 475 MPa in simulated 

body fluid environment. HNS-Mo showed stress amplitude of ⁓ 213 MPa in SBF 

environment for 107 cycles at stress ratio of 0.1, higher than that of the reported value of 

200 MPa of 316L. The HNS-Mo showed better mechanical properties and exhibited cell 

adhesion and proliferation, similar to those of the 316L and HNS. It was further studied 

extensively for biocompatibility, both in vitro and in vivo, and showed acceptable in vitro 

cytotoxicity according to ISO 10993-5. The irritation and skin sensitization, acute 

systematic toxicity and implantation study showed acceptable biocompatibility. Overall, 

the performance of HNS-Mo was found better in comparison with those of HNS and 

316L, and was found comparatively more suitable for biomedical applications. 

Chapter-5 presents the effect of USP on microstructure, corrosion resistance, 

biocompatibility and low cycle fatigue of HNS. There was no deformation induced 

martensitic transformation of the HNS after USP. The surface grains of the HNS were 

refined to 15 nm, following USP for 2 minutes with 3 mm shots. Surface hardness was 
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increased by 42%, following USP for 2 minutes with 3 mm shots and there was a gradual 

decrease in hardness from surface to interior. Also, compressive residual stress was 

induced after USP and it increased with increase in the duration of USP. Corrosion 

resistance of HNS was increased, following USP for shorter duration. However, it 

decreased for 2 minutes of USP due to excessive surface damage. A peculiar effect of 

USP on LCF life of the HNS was observed. LCF life increased at lower strain amplitude 

but decreased at higher strain amplitude, following USP. LCF life of the HNS was 

increased to ⁓ 18 times by the USP with 3 mm shots for 18 minutes, it was mainly due 

to delay in crack initiation caused by nanostructured surface and associated compressive 

residual stress. 

Chapter-6 presents the effect of USP on electrochemical corrosion in SBF, 

biocompatibility (cell culture and proliferation), high cycle fatigue and corrosion fatigue 

of HNS-Mo. A significant improvement in corrosion resistance, biocompatibility, fatigue 

and corrosion fatigue was observed, following USP. The breakdown potential of the 

HNS-Mo was increased from 310 mVSCE to 370 mVSCE and 395 mVSCE, following USP 

for 30 seconds with 3 mm and 2 mm shots, respectively. Since, there was continuous 

increase in LCF life of the HNS at lower strain amplitude, with increase in the duration 

of USP, it shows higher positive effect of USP in the regime of high cycle fatigue. As, 

high cycle stress controlled fatigue life is more important for implant material, the effect 

of USP on high cycle fatigue life of the HNS-Mo was studied both in air and in SBF. 

High cycle fatigue life of the HNS-Mo improved significantly, following USP with 3 

mm shots for 3 minutes; the endurance limit (maximum stress) increased from 513 MPa 

to 572 MPa in air and from 475 MPa to 572 MPa in simulated body fluid environment.   

Chapter-7 presents the major conclusions drawn from the present investigation along 

with suggestions for future work. 
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