Chapter 5: Section 1

Results and Discussion

5. Results and Discussion

5.1. Section 1: Preliminary In-silico Studies

5.1.1. Off-target virtual screening and filtering of designed molecules

The design strategy was structural modification of neuroleptic phenothiazine drug chlorpromazine (CPZ), for improved antitubercular activity. The molecules were designed using CPZ as a template. Hence, the designed molecules were virtually screened against dopamine D2 (PDB code: 6CM4) and D3 (PDB code: 3PBL) receptors through high-throughput virtual screening module in Schrodinger [154]. Later, we filtered the molecules with cut-off of docking score $\leq 2.0 \mathrm{Kcal} / \mathrm{mol}$. The filtered molecules produced only least interaction with dopamine receptors (D2 \& D3) and may produce no/ less neuroleptic side effect. We obtained a total of 78 hit molecules having least interaction with dopamine receptors, out of 550 designed molecules. Risperidone, the co-crystallized ligand and CPZ, the template molecule, produced docking score of 9.0963 and $7.9910 \mathrm{Kcal} / \mathrm{mol}$ respectively, against D2 receptor (Figure 5-1). Risperidone and CPZ produced the essential interaction with ASP114, while such interaction was found missing with the hits. Docking poses of some hits obtained from off-target virtual screening and filtering against D2 receptor are depicted in Figure 5-1. Eticlopride, the co-crystallized ligand and CPZ produced docking score of -8.6115 and $8.6093 \mathrm{Kcal} / \mathrm{mol}$ respectively, against D3 receptor (Figure 5-2). Eticlopride and CPZ produced essential interaction with ASP110, while it was found missing with the hits. Docking poses of some hits obtained from this off-target virtual screening and filtering against D3 receptor are depicted in Figure 5-2.
Results and Discussion

Figure 5-1: Docking pose of risperidone, chlorpromazine and designed molecules against D2 receptor (PDB code: 6CM4)
Results and Discussion

		（\％） 5 ${ }^{1 \text { ²m }}$ 풍 \square 4造
Eticlopride Docking score：－ $8.6115 \mathrm{Kcal} / \mathrm{mol}$		Chlorpromazine Docking score：－ $8.6093 \mathrm{Kcal} / \mathrm{mol}$
	 㗊 （iiis	${ }^{710}$
Molecule 16p Docking score：－ $1.3852 \mathrm{Kcal} / \mathrm{mol}$	Molecule 16c Docking score：－1．1094 Kcal／mol	Molecule 16b Docking score：－1．0048 Kcal／mol

Figure 5－2：Docking pose of eticlopride，chlorpromazine and designed molecules against D3 receptor（PDB code：3PBL）

5.1.2. Preliminary in-silico study against NDH-2

5.1.2.1. Homology modelling

Phenothiazines viz. CPZ, TPZ and TZ were reported to inhibit NDH-2 with IC_{50} of 10 to $30 \mu \mathrm{M}$ [128]. Therefore, we hypothesized that the designed molecules could act by inhibiting NDH-2. It has a catalytic role in oxidation of NADH to NAD^{+}with concomitant reduction of quinone to quinol, involved in the energy metabolism for production of ATP. The 3D protein structure of Mtb NDH-2 was not available, therefore, we developed a 3D protein structure/model through homology modeling, using the deposited protein sequence of Mtb NDH-2 (strain CDC 1551) available in uniport database. Homology modeling was performed using ModFOLD, version 6.0 web server. The stereochemical property of the developed model was validated using RAMPAGE and PROCHECK server and found that the model is having more than 90% of residues in the most favoured region (Table 5-1).

Model	Package	Ramachandran Plot Quality (\%)		
		Favored	Allowed	Outlier
$A t b$ ndh-2	RAMPAGE	92.2	5.3	2.5
	PROCHECK	88.3	10.3	1.5

Table 5-1: Ramachandran quality parameter check for the developed homology model of Mtb NDH-2 using RAMPAGE and PROCHECK.

VERIFY_3D score of the model showed that 87.97% of residues have an average 3D1 D score ≥ 0.2, which is above the cutoff limit of 80%. The overall quality factor was determined by ERRAT and was found 82.24%, indicating good quality-resolution of the structure (2.5-4 \AA). The global model quality score was found to be 0.5948 , which is greater than 0.4 , indicating that the model is more complete and confident. It is also indicative that the model is more similar to the native structure. The p -value of the model was 1.434×10^{-6}, hence there is only 0.0001% chance of the model being incorrect.

5.1.2.2. Superimposition of protein structures of NDH-2 from different species

The developed protein model of $M t b$ NDH-2 was superimposed against the known protein structures of S. aureus NDH-2 (PDB code: 4 XDB) and C. thermarum NDH-2 (PDB code: 4NWZ) to check the similarity with the native structures (Figure 5-3). The quinone binding site is the critical part of the model so we calculated root mean square deviation (RMSD) for the residues forming the quinone binding motif and was found to be ≤ 0.151 and ≤ 0.558 against S. aureus and C. thermarum NDH-2, respectively (Table 5-2 \& Table 5-3). The RMSD value is very low, which is indicative that the quinone binding motif of $M t b$ NDH-2 is highly conserved. Hence, the model can be used for docking analysis to predict the active binding of the inhibitors.

Type-2 NADH dehydrogenase (NDH-2) of S. aureus (PDB code: 4XDB)	Type-2 NADH dehydrogenase (NDH- 2) of M. tuberculosis (developed through homology modeling)	RMSD
Ala-319	Ala-333	0.101
Gln-320	Gln-334	0.046
Ile-321	Gly-335	0.114
Ala-322	Ala-336	0.121
Met-323	Ile-337	0.148
Gln-324	Gln-338	0.151

Table 5-2: Superimposition of the developed homology model against the protein structure of S. aureus $\mathbf{N D H}-2$

Type-2 NADH dehydrogenase (NDH-2) of C. thermarum (PDB code:4NWZ)	Type-2 NADH dehydrogenase (NDH- 2) of M. tuberculosis (developed through homology modeling)	RMSD
Ala-316	Ala-333	0.117
Gln-317	Gln-334	0.338
Ile-318	Gly-335	0.254
Ala-319	Ala-336	0.344
Ile-320	Ile-337	0.423
Gln-321	Gln-338	0.558

Table 5-3: Superimposition of the developed homology model against the protein structure of C. thermarum NDH-2

Figure 5-3: Superimposition of S. aureus and C. thermarum NDH-2 over Mtb NDH-2: Complete protein (a) and active motif (b) of S. aureus NDH-2 over Mtb NDH-2. Followed by, complete protein (c) and active motif (d) of C. thermarum NDH-2 over Mtb NDH-2.

5.1.3. Preliminary in-silico study against ATP synthase

5.1.3.1. Docking of purchasable subset of ZINC database against ATP synthase

The purchasable subset of ZINC Database was screened against Mycobacterial ATP synthase. The bedaquiline co-crystallized protein (PDB code: 4V1F) was used for the purpose. Molecules ZINC39552534, ZINC39490094 and ZINC38959526 produced docking score of $-7.05852,-6.65839$ and $-6.10790 \mathrm{Kcal} / \mathrm{mol}$ respectively, while it was $6.067435 \mathrm{Kcal} / \mathrm{mol}$ for the standard drug Bedaquiline (Table 5-4). Essential hydrogen bond interaction was noticed with Glu65 in all the three molecules. Further, ZINC39552534 showed three hydrogen bond interactions with GLU 65 i.e. two from NH groups of tetrazole and one from NH group of piperidine. Similarly, ZINC39490094 also showed three hydrogen bond interactions i.e. two from NH groups of tetrazole and one from NH group of tetrahydropyrrole. While, ZINC38959526 showed only two hydrogen bond interactions with GLU 65 , from NH and OH group of tetrahydopyrimidine-4-one respectively. Lipophilic interactions were also found associated with all the molecules, but lesser than bedaquiline (Figure 5-4).

ZINC38959526 showed structural similarity with our designed molecules and also produced docking score $(-6.10790 \mathrm{Kcal} / \mathrm{mol})$ comparable to bedaquiline $(-6.067435$ $\mathrm{Kcal} / \mathrm{mol}$). Based on this pilot study, we hypothesized that our compounds could act by inhibiting ATP synthase. Later, we did extra-precision docking of the designed molecules against ATP synthase (PBD code: 4V1F) to understand the binding energy of the molecules against the target.

Figure 5-4: Docking of Bedaquiline and ZINC database hits against ATP synthase
5.1.3.2. Alignment of amino acid sequence of different mycobacterial and human ATP synthase c-subunits

Bedaquiline interacts with a stretch of nine residues viz. Gly 62, Leu 63, Glu 65, Ala 66, Ala 67, Tyr 68, Phe 69, Ile 70, and Leu 72 in M. pheli ATP synthase [157]. All the nine amino acids are conserved in Mtb and M. smegmatis ATP synthases, however, out of nine residues only three residues (Leu 63, Glu 65, Ala 66) are conserved in human counterpart (Figure 5-5). Human ATP synthase is more complex compared to
Results and Discussion

Table 5-4: Docking of purchasable subset of ZINC Database against ATP synthase

[^0]
Chapter 5: Section 2

Results and Discussion

5.2. Section 2: Molecular Docking, Synthesis, Characterization and Biological Profiling of Phenothiazine derivatives

5.2.1. Extra-precision molecular docking

Every molecule in the study was docked against the Mtb NDH-2 protein developed through homology modeling. The function of the NDH-2 enzyme/ protein can only be arrested, when the inhibitors bind to the quinone binding motif. Interestingly, all the molecules in the study entered the quinone binding tunnel to produce essential interactions with the quinone binding motif (formed by the residues Ala-333, Gln-334, Gly-335, Ala-336, Ile-337 \& Gln-338). A critical hydrogen bond interaction was observed against Ala-333, the essential residue for effective binding of the substrate (quinone) to the motif (Figure 5-6). Docking score is imperative to understand how effective the inhibitors bind to the motif. The score varies between -5.8194 and -3.4273 $\mathrm{Kcal} / \mathrm{mol}$. The molecules $\mathbf{1 5 p}, \mathbf{1 6 p}$ and $\mathbf{1 7 p}$ produced very good binding with minimum binding energy of $-5.5957,-5.8194$ and $-5.7346 \mathrm{Kcal} / \mathrm{mol}$, respectively (Table 5-5) and a better correlation with antitubercular MIC was noticed. The developed molecules could inhibit NDH-2, thereby the ATP production could be affected to produce antimicrobial activity.

5.2.2. Molecular property and toxicity prediction

The reduced bioavailability on oral administration and the associated toxicity are the prime factors for the failure of drug candidates at clinical development stage. About one-third of drug candidates fail due to their poor pharmacokinetic profiles. Hence, computational study was performed to predict the molecular property and toxicity of the developed compounds. Lipophilicity defines the pharmacokinetics and also pharmacodynamics of a drug molecule.

S.No	Ligand code	Lowest binding energy (Kcal/mol)	Residues forming the quinone binding motif (residues producing H -bonding with the ligand were indicated in bold)
1	1p	-3.9931	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
2	2p	-4.2298	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
3	3p	-4.2714	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
4	4 p	-4.2955	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
5	5p	-4.3046	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
6	6p	-4.3003	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
7	7 p	-4.3275	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
8	8p	-4.2990	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
9	9p	-4.3284	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
10	10p	-4.6584	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
11	11p	-4.6216	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
12	12p	-4.7313	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
13	13p	-4.6779	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
14	14p	-5.4481	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
15	15p	-5.5957	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
16	16p	-5.8194	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
17	17p	-5.7346	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
18	18p	-4.1018	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
19	19p	-3.4273	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
20	20p	-3.5119	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
21	S1	-2.0127	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
22	S2	-2.3924	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
23	S3	-2.5061	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
24	S4	-2.5033	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
25	S5	-2.5017	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
26	S6	-2.4602	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)

Table 5-5: Docking of designed phenothiazine molecules against NDH-2 of Mtb

Figure 5-6: Docking poses of molecules 15p and 16p against NDH-2
It was determined by calculating clogP using OSIRIS DataWarrior and was found in the range between 2.92 and 5.93. The clogP of molecules ($\mathbf{1 4} \mathbf{p}, \mathbf{1 5 p} \& \mathbf{1 6 p})$ was found impressive at 3.71, 3.41 and 4.32, respectively. Topological polar surface area (TPSA) was computed and was found to be 57.64 for compounds $\mathbf{2 p}$ to $\mathbf{1 3} \mathbf{p}$, and 103.46 for compounds $\mathbf{1 4} \mathbf{p}$ to $\mathbf{1 7} \mathbf{p}$, while $94.94,52.09$ and 97.91 for the compounds $\mathbf{1 8 p}, \mathbf{1 9 p}$ and $\mathbf{2 0 p}$, respectively. The good percentage of absorbance could lead to better oral bioavailability. Hence, the percentage absorption was calculated and was found to be over 73 percent for all the compounds. Molecular descriptors like hydrogen bond donor, hydrogen bond acceptor and drug likeness were computed and were found within the desired range. The results of the study are presented in Table 5-6. The fragments of a given molecule are the indicators of toxicity risk. Therefore, all the molecules were predicted for mutagenicity, tumorigenicity, and irritancy through OSIRIS DataWarrior. Except $\mathbf{1 p}$, none of the molecules in the study were predicted to be mutagenic and tumorigenic, but irritancy was noticed. Molecules $\mathbf{1 0 p}$ and $\mathbf{1 6 p}$ were indicated with low levels of irritancy and molecules $\mathbf{1 p}, \mathbf{1 9 p}$ and $\mathbf{2 0 p}$ were indicated with high level of irritancy (Table 5-6). The designed molecules were devoid of toxicity risks and further development of this class of molecules might be fruitful.
Results and Discussion

Table 5-6: Molecular properties and predicted toxicity of phenothiazine molecules. $\mathrm{HBA}=\mathrm{H}$-Acceptors; $\mathrm{HBD}=\mathrm{H}-\mathrm{Donor} ; \mathrm{TSA}=\mathrm{Total}$ surface area;
TPSA= Total Polar surface area; $\mathrm{DL}=$ Druglikeness; MU=Mutagenic; TU=Tumorigenic; IR=Irritant; SI=Shape Index; MF=Molecular Flexibility;
$\mathrm{MC}=$ Molecular Complexity; EA=Electronegative Atoms; RB=Rotatable Bonds; AR=Aromatic Rings; $\mathrm{SA}=\mathrm{Symmetric}$ atoms; $\mathrm{NR}=\mathrm{No}$. of Rings; $\mathrm{N}=$ none;

5.2.3. Synthesis and characterization

All the designed molecules were synthesized as shown in Scheme 1 i.e. synthesis of phenothiazine (b) followed by 2-chloro-1-(10H-phenothiazin-10-yl)ethan-1-one (1p). Later, the final derivatives were synthesized on reaction of $\mathbf{1 p}$ with different phenyl amines/phenyl piperazines/ cyclic amines. The progress of reaction was monitored by thin layer chromatography. Column chromatography was performed to obtain pure novel phenothiazine derivatives. The yield was obtained in the range of 45 to 95 percent. Melting point, elemental composition, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and Mass data of all the compounds in phenothiazine series are as follows,

5.2.3.1. 10H-phenothiazine (b)

Yield: 90%; MP: $181-183^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.533,7.517(\mathrm{~d}, \mathrm{~J}=$ $8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 1, \mathrm{C} 8-\mathrm{phenothiazine}$), 7.412-7.395 (dd, J $=8.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 4, \mathrm{C} 5-$ phenothiazine), 7.310-7.295 (td, J = 7.5, 1.1 Hz, 2H, C2, C7-phenothiazine), 7.2247.195 (td, J = 7.5, 1.1 Hz, 2H, C3, C6-phenothiazine); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 138.051, 133.405, 128.350, 127.619, 127.526, 126.738 (aromatic carbons); MS (ESI) m/z: 200.7 (100\%). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NS}: \mathrm{C}, 72.33$; H, 4.55; N, 7.03; Found: C, 72.54; H, 4.57; N, 7.08%.

5.2.3.2. 2-chloro-1-(10H-phenothiazin-10-yl) ethan-1-one (1p)

Yield: 95%; MP: $111-113^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.524,7.508(\mathrm{~d}, \mathrm{~J}$ $=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 1, \mathrm{C} 8-\mathrm{phenothiazine}$), 7.403-7.386 (dd, J $=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 4, \mathrm{C} 5-$ phenothiazine), 7.301-7.286 (td, $\mathrm{J}=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 2, \mathrm{C} 7$-phenothiazine), 7.2157.186 (td, $\mathrm{J}=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 3, \mathrm{C} 6-\mathrm{phenothiazine}$), 4.111 (s, 2H, methylene- CH_{2}); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 165.717(\mathrm{C}=\mathrm{O}), 138.111,133.405,128.353$, 127.626, 127.529, 126.743 (aromatic carbons), 41.994 (methylene carbon); MS (ESI)
m/z: 278.3 (25\%), 276. 5 (75\%). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNOS}: \mathrm{C}, 60.98 ; \mathrm{H}, 3.66$; N, 5.08; Found: C, 61.24; H, 3.69; N, 5.03 \%.

5.2.3.3. 1-(10H-phenothiazin-10-yl)-2-(phenylamino)ethan-1-one (2p)

Yield: 78%; MP: $145-147^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) ; 7.612,7.596(\mathrm{~d}$, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 1, \mathrm{C} 8$-phenothiazine), 7.548, $7.533(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 4, \mathrm{C} 5-$ phenothiazine), 7. 483-7.425 (td, J=14, 7.5 Hz, 2H, C2, C7-phenothiazine), 7.381-7.325 (td, J=14, 7.5 Hz, 2H, C3, C6-phenothiazine), 7.105-7.089 (d, J=8 Hz, 2H, C2, C6phenyl), 6.818-6.802 (t, J=8 Hz, 2H, C3, C5-phenyl), 6.634-6.618 (t, J=8 Hz, 1H, C4phenyl), 3.966 (s, 2H, methylene- CH_{2}), 3.497 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 167.328(\mathrm{C}=\mathrm{O}), 145.043,139.997,134.651,130.825,128.174,127.079$, 126.653, 123.138, 120.367, 115.552 (aromatic carbons), 55.672 (methylene carbon); MS (ESI) $m / z: 333.2$ (42.1\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 72.26$; H, 4.85; N, 8.43; Found: C, 72.41 ; H, 4.87; N, 8.47 \%.
5.2.3.4. 2-((2-chlorophenyl)amino)-1-(10H-phenothiazin-10-yl)ethan-1-one (3p)

Yield: 75\%; MP: $154-156{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.574,7.558(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 2H, C1, C8-phenothiazine), 7.442-7.427 (d, J=7.5 Hz, 2H, C4, C5-phenothiazine), 7.340-7.307 (td, J=7.5, 1.5 Hz, 2H, C2, C7-phenothiazine), 7.253-7.220 (m, 3H, C3, C6-phenothiazine, C3-phenyl), 7.153-7.127 (t, J=6.5 Hz, 1H, C5-phenyl), 6.718, 6.701 (d, J=8.5 Hz, 1H, C6-phenyl, 6.653-6.627 (t, J=6.5 Hz, 1H, C4-phenyl), 4.175 (s, 2H, methylene- CH_{2}) $3.864(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 168.005(\mathrm{C}=\mathrm{O})$, $145.971,140.135,134.883,131.099,130.455,128.238,127.654,126.342,123.214$, $121.535,119.958,114.822$ (aromatic carbons), 53.526 (methylene carbon); MS (ESI) $m / z: 369.5$ (25\%), 367.6 (74\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{OS}: \mathrm{C}, 65.48 ; \mathrm{H}, 4.12$; N, 7.64; Found: C, 65.61; H, 4.13; N, 7.67 \%.

5.2.3.5. 2-((3-chlorophenyl)amino)-1-(10H-phenothiazin-10-yl)ethan-1-one (4p)

Yield: 82%; MP: $155-156{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.577,7.561(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 2H, C1, C8-phenothiazine), 7.452-7.433 (dd, J=9.5, 1.5 Hz, 2H, C4, C5-phenothiazine), 7.348-7.314 (td, J=7.5, 1.5 Hz, 2H, C2, C7-phenothiazine), 7.261-7.230 (td, J=6, 1.5 Hz, 2H, C3, C6-phenothiazine), 7.014 (s, 1H, C2-phenyl), 6.718, 6.702 (d, J=8 Hz, 1H, C4-phenyl), 6.411, 6.395 (d, J= $8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6$-phenyl), 6.652-6.624 (t, J=7 Hz, 1H, C5phenyl), $4.177\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene $\left.\mathrm{CH}_{2}\right), 3.928(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 168.011(\mathrm{C}=\mathrm{O}), 147.975,140.141,134.891,135.455,130.457,128.246$, 127.066, 126.336, 123.212, 119.995, 115.902, 112.549 (aromatic carbons), 53.526 (methylene carbon); MS (ESI) m/z: 369.5 (25\%), 367.4 (75\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{OS}: \mathrm{C}, 65.48 ; \mathrm{H}, 4.12$; N, 7.64; Found: C, 65.57; H, 4.11; N, 7.68%.

5.2.3.6. 2-((4-chlorophenyl)amino)-1-(10H-phenothiazin-10-yl)ethan-1-one (5p)

Yield: 79\%; MP: $155-157^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.645,7.629(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 2H, C1, C8-phenothiazine), 7.521, 7.506 (d, J=7.5 Hz, 2H, C4, C5-phenothiazine), 7.448-7.415 (td, J=15, 1.5 Hz, 2H, C2, C7-phenothiazine), 7.550-7.517 (td, J=15, 1.5 Hz, 2H, C3, C6-phenothiazine), 7.112, 7.098 (d, J=6.5 Hz, 2H, C3, C5-phenyl), 6.622, 6.604 (d, J=8.5 Hz, 2H, C2, C6-phenyl), 4. 013 (s, 2H, methylene- CH_{2}) 3.582 (1H, $\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.972(\mathrm{C}=\mathrm{O}), 144.783,139.251,133.918$, $130.582,128.733,127.915,126.626,125.125,122.288,115.161$ (aromatic carbons), 52.651 (methylene carbon); MS (ESI) $m / z: 369.5$ (24\%), 367.6 (75\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{OS}: \mathrm{C}, 65.48 ; \mathrm{H}, 4.12$; N, 7.64; Found: C, $65.65 ; \mathrm{H}, 4.13 ; \mathrm{N}, 7.65 \%$. 5.2.3.7. 2-((3-fluorophenyl)amino)-1-(10H-phenothiazin-10-yl)ethan-1-one (6p) Yield: 67\%; MP: $151-153^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.575,7.559(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 2H, C1, C8-phenothiazine), 7.451-7.432 (dd, J=9.5, 1.5 Hz, 2H, C4, C5-phenothiazine),
7.351-7.317 (td, J=7.5, 1.5 Hz, 2H, C2, C7-phenothiazine), 7.258-7.227 (td, J=6, 1.5 Hz, 2H, C3,C6-phenothiazine), 7.009 (s, 1H, C2-phenyl) , 6.720,6.704 (d, J=8 Hz, 1H, C4-phenyl), 6.659-6.631 (t, J=7 Hz, 1H, C5-phenyl), 6.408, 6.392 (d, J= $8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-$ phenyl), $4.198\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene CH_{2}), $3.935(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 168.023(\mathrm{C}=\mathrm{O}), 147.805,141.041,135.991,134.432,130.762,128.421$, $126.973,126.181,124.002,120.086,116.109,112.330$ (aromatic carbons), 53.842 (methylene carbon); MS (ESI) $m / z: 351.3$ (78\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{OS}$: C, 68.55; H, 4.31; N, 7.99; Found: C, 68.62; H, 4.33; N, 8.03 \%.

5.2.3.8. 2-((4-fluorophenyl)amino)-1-(10H-phenothiazin-10-yl)ethan-1-one (7p)

Yield: 62%; MP: $152-154^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.634,7.618(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 2H, C1, C8-phenothiazine), $7.525,7.510$ (d, J=7.5 Hz, 2H, C4, C5-phenothiazine), 7.452-7.417 (td, J=15, 1.5 Hz, 2H, C2, C7-phenothiazine), 7.547-7.514 (td, J=15, 1.5 Hz, 2H, C3, C6-phenothiazine), 7.152, 7.138 (d, J=7 Hz, 2H, C3, C5-phenyl), 6.628, 6.610 (d, J=8.5 Hz, 2H, C2, C6-phenyl), 4.102 ($\mathrm{s}, 2 \mathrm{H}$, methylene- CH_{2}) 3.529 ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 167.041(\mathrm{C}=\mathrm{O}), 144.808,139.346,133.537$, $130.591,128.905,127.611,126.584,125.222,122.169,115.184$ (aromatic carbons), 53.563 (methylene carbon); MS (ESI) $m / z: 351.3$ (78\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{OS}$: C, 68.55; H, 4.31; N, 7.99; Found: C, 68.68; H, 4.25; N, 8.02 \%.

5.2.3.9. 2-((3-bromophenyl)amino)-1-(10H-phenothiazin-10-yl)ethan-1-one (8p)

Yield: 58\%; MP: $176-179^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.581,7.566(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, 2H, C1, C8-phenothiazine), 7.470-7.442 (dd, J=6, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 4, \mathrm{C} 5$-phenothiazine), 7.369-7.236 (m, 4H, C2, C3, C6, C7-phenothiazine), 6.991 (s, 1H, C2-phenyl), 6.8526.835 (d, J=8.5 Hz, 1H, C4-phenyl), 6.798-6.766 (t, J=8 Hz, 1H, C5-phenyl), 6.581$6.565\left(\mathrm{dd}, \mathrm{J}=8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6\right.$-phenyl), 4.178 (s, 2H, methylene- CH_{2}), 3.923 ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 169.225(\mathrm{C}=\mathrm{O}), 148.411,142.353,136.262$,
134.907, 131.071, 128.542, 127.009, 126.011, 124.134, 120.490, 116.717, 112.926 (aromatic carbons), 54.023 (methylene carbon); MS (ESI) m/z: 414.1 (49\%), 412.2 (50\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{OS}: \mathrm{C}, 58.40$; $\mathrm{H}, 3.68$; N, 6.81; Found: C, 58.52 ; H, 3.64; N, 6.82%.

5.2.3.10.2-((4-bromophenyl)amino)-1-(10H-phenothiazin-10-yl)ethan-1-one (9p)

Yield: 55%; MP: $177-189^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.593,7.578(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, 2H, C1, C8-phenothiazine), 7.476-7.458 (dd, J=9 Hz, 2H, C4, C5-phenothiazine), 7.372-7.357 (dd, J=7.5, 1.5 Hz, 2H, C3, C5-phenyl), 7.342-7.214 (m, 4H, C2, C3, C6, C7-phenothiazine), 6.571-6.549 (dd, J=11, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 2, \mathrm{C} 6-\mathrm{phenyl}$), 4.183 (s, 2H, methylene CH_{2}), $3.551(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 169.331(\mathrm{C}=\mathrm{O})$, $148.465,142.341,136.318,134.891,131.127,128.584,127.102,126.018,124.177$, 120.536, 116.520, 112.961 (aromatic carbons), 54.112 (methylene carbon); MS (ESI) m/z: 414.4 (49\%), 412.3 (50\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{OS}: \mathrm{C}, 58.40 ; \mathrm{H}, 3.68$; N, 6.81; Found: C, 58.51; H, 3.62; N, 6.80 \%.

5.2.3.11.2-((3,5-dichlorophenyl)amino)-1-(10H-phenothiazin-10-yl)ethan-1-one (10p)

 Yield: 58\%; MP: $185-187^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.592,7.577(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, 2H, C1, C8-phenothiazine), 7.471-7.453 (dd, J=9, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 4, \mathrm{C} 5-\mathrm{phenothiazine)}$, 7.369-7.336 (td, J=7.5, 1.5 Hz, 2H, C2, C7-phenothiazine), 7.282-7.252 (td, J=7.5, 1.5 Hz, 2H, C3, C6-phenothiazine), 6.824 (s, 2H, C2, C6-phenyl), 6.512 (s, 1H, C4phenyl), 4.183, (s, 2H, methylene- CH_{2}), 3.902, (s, 1H,NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 170.115(\mathrm{C}=\mathrm{O}), 147.863,142.231,136.781,132.315,130.848,128.511$, 126.456, 123.447, 121.619, 115.021 (aromatic carbons), 54.724 (methylene carbon); MS (ESI) $m / z: 406.1$ (5\%), 404.2 (32\%), 402.1 (74\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS}$: C, 59.86; H, 3.52; N, 6.98; Found: C, 59.91; H, 3.56; N, 6.96 \%.5.2.3.12.2-((3,5-dibromophenyl)amino)-1-(10H-phenothiazin-10-yl)ethan-1-one (11p)

Yield: 54\%; MP: $191-194^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.574-7.529$ (dd, $\mathrm{J}=22.5,8$ Hz, 2H, C1, C8-phenothiazine), 7.474-7.432 (dd, J=21, 7.5 Hz, 2H, C4, C5phenothiazine), 7.369-7.311 (td, J=14, $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 2, \mathrm{C} 7$-phenothiazine), 7.282-7.226 (m, 3H, C3, C6-phenothiazine, C4-phenyl), 6.518 (s, 2H, C2, C6-phenyl), 4.178, (s, 2H, methylene- CH_{2}), 3.462, (s, 1H, NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 170.462(\mathrm{C}=\mathrm{O})$, $147.281,142.515,136.388,133.407,130.933,127.738,126.102,123.623,120.009$, 115.648 (aromatic carbons), 54.852 (methylene carbon); MS (ESI) $m / z: 495.3$ (46\%), 493.2 (97\%), 491.4 (49\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 49.00 ; \mathrm{H}, 2.88 ; \mathrm{N}, 5.71$; Found: C, 49.11; H, 2.92; N, 5.74 \%.

5.2.3.13. 2-((3-chloro-4-fluorophenyl)amino)-1-(10H-phenothiazin-10-yl)ethan-1-one (12p)

Yield: 59%; MP: $175-177^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) ; 7.643,7.628$ (d, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 1, \mathrm{C} 8$-phenothiazine), 7.524, 7.509 (d, J=7.5 Hz, 2H, C4, C5phenothiazine), 7.438-7.375 (td, J=14, 7.5 Hz, 2H, C2, C7-phenothiazine), 7.291-7.227 (td, J=14, 7.5 Hz, 2H, C3, C6-phenothiazine), 7.105-6.889 (m, 3H, C2, C5, C6-phenyl), $4.261\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene- $\left.\mathrm{CH}_{2}\right), 3.568(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $167.328(\mathrm{C}=\mathrm{O}), 146.438,142.373,140.152,134.651,130.825,128.174,127.079$, 126.653, 123.138, 121.647, 120.367, 115.552 (aromatic carbons), 55.672 (methylene carbon); MS (ESI) m/z: 387.5 (24\%), 385.7 (75%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClFN}_{2} \mathrm{OS}$: C, 62.42; H, 3.67; N, 7.28; Found: C, 62.49; H, 3.67; N, 7.31 \%.
5.2.3.14. 2-((2-bromo-4-fluorophenyl)amino)-1-(10H-phenothiazin-10-yl)ethan-1-one (13p)

Yield: 56\%; MP: $189-191^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.578,7.561(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, 2H, C1, C8-phenothiazine), 7.448-7.430 (dd, J=9, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 4, \mathrm{C} 5-\mathrm{phenothiazine)}$, 7.345-7.311 (td, J=17, 7.5 Hz, 2H, C2, C7-phenothiazine) 7.255-7.224 (td, J=15.5, 7.5 Hz, 2H, C3, C6-phenothiazine), 7.135 (s, C3-phenyl), 6.821, 6.805 (d, J=8 Hz, 1H, C5-
phenyl), $6.512,6.497$, ($\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{phenyl}$), 4.180 ($\mathrm{s}, 2 \mathrm{H}$, methylene CH_{2}), 3.707 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 169.731(\mathrm{C}=\mathrm{O}), 146.085,141.727$, $135.325,132.411,130.319,128.324,127.227,126.210,124.463,122.302,120.694$, 115.049 (aromatic carbons), 53.522 (methylene carbon); MS (ESI) m/z: 432.6 (49\%), 430.4 (50\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{BrFN}_{2} \mathrm{OS}$: C, 55.96 ; H, 3.29; N, 6.53; Found: C, 56.03; H, 3.35; N, 6.54 \%.

5.2.3.15.2-((3-nitrophenyl)amino)-1-(10H-phenothiazin-10-yl)ethan-1-one (14p)

Yield: 56%; MP: $195-196^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.669,7.653(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 2H, C1, C8-phenothiazine), 7.581-7.562 (dd, J=9.5, 1.5 Hz, 2H, C4, C5-phenothiazine), 7.466-7.432 (td, J=7.5, 1.5 Hz, 2H, C2, C7-phenothiazine), 7.352-7.321 (td, J=6, 1.5 Hz, 2H, C3,C6-phenothiazine), 7.117 (s, 1H, C2-phenyl), 6.737,6.721 (d, J=8 Hz, 1H, C4-phenyl), 6.658, 6.644 (d, J=7 Hz, 1H, C6-phenyl), 6.432-6.400 (t, J= 8.0 Hz, 1H, C5-phenyl), 4.201 (s, 2H, methylene- CH_{2}), 3.931 (s, 1H, NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 171.802(\mathrm{C}=\mathrm{O}), 148.012,141.209,135.218,134.164,131.365,129.432$, 127.321, 126.299, 123.627, 120.613, 116.510, 112.388 (aromatic carbons), 53.258 (methylene carbon); MS (ESI) m/z: 378.5 (36\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: C, 63.65; H, 4.01; N, 11.13; Found: C, 63.71; H, 3.98; N, 11.16 \%.

5.2.3.16.2-((4-nitrophenyl)amino)-1-(10H-phenothiazin-10-yl)ethan-1-one (15p)

Yield: 52\%; MP: 192-194 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO-d6) $\delta ; 7.683,7.668$ (d, J=7.5 Hz, 2H, C1, C8-phenothiazine), 7.551, 7.535 (d, J=8 Hz, 2H, C4, C5-phenothiazine), 7.402-7.371 (t, J=7.5 Hz, 2H, C2, C7-phenothiazine), 7.310-7.280 (t, J=7.5 Hz, 2H, C3, C6-phenothiazine), 7.191, 7.174 (d, J=8.5 Hz, 2H, C3, C5-phenyl), 6.864, 6.846 (d, J=9 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C} 2, \mathrm{C} 6$-phenyl), 4.153 (s, 2H, methylene- CH_{2}) 3.395 (s, 1H, NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz, CDCl_{3}) $\delta: 165.717(\mathrm{C}=\mathrm{O}), 149.997,144.825,138.111,133.405,128.353$, $127.623,127.529,126.743,115.353$ (aromatic carbons), 51.194 (methylene carbon);

MS (ESI) $m / z: 378.8$ (48\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: C, 63.65; H, 4.01; N, 11.13; Found: C, 63.72; H, 4.02; N, 11.14 \%.

5.2.3.17. 2-((2-chloro-4-nitrophenyl)amino)-1-(10H-phenothiazin-10-yl)ethan-1-one (16p)

Yield: 56\%; MP: 201-205 ${ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.202$ (s, $1 \mathrm{H}, \mathrm{C} 3$-phenyl), 7.984-7.961 (dd, J=11.5, 2.5 Hz, 1H, C5-phenyl), 7.592, 7.577 (d, J=7.5 Hz, 2H, C1, C8-phenothiazine), 7.473-7.455 (dd, J=7.5, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 4, \mathrm{C} 5-\mathrm{phenothiazine)}, \mathrm{7.371-}$ 7.337 (td, J=8, 1.5 Hz, 2H, C2, C7-phenothiazine), 7.285-7.252 (td, J=9, $1.5 \mathrm{~Hz}, 2 \mathrm{H}$, C3, C6-phenothiazine), 6.728, 6.710 (d, J=9 Hz, 1H, C6-phenyl), 4.832 (s, 1H, NH), 4.189 ($\mathrm{s}, 2 \mathrm{H}$, methylene- CH_{2}); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 172.463(\mathrm{C}=\mathrm{O})$, $147.618,141.241,136.553,132.328,130.432,128.263,127.281,126.642,124.518$, 122.332, 120.174, 116.155 (aromatic carbons), 54.104 (methylene carbon); MS (ESI) $m / z: 414.7$ (25\%), 412.6 (74\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 58.33 ; \mathrm{H}, 3.43$; N, 10.20; Found: C, 58.41; H, 3.48; N, 10.24 \%.
5.2.3.18. 2-((4-chloro-2-nitrophenyl)amino)-1-(10H-phenothiazin-10-yl)ethan-1-one (17p) Yield: 49%; MP: $199-201^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.112$ (s, 1H, C3-phenyl), 7.593, 7.577 (d, J=8 Hz, 2H, C1, C8-phenothiazine), 7.473, 7.459 (d, J=7 Hz, 2H, C4, C5-phenothiazine), 7.372-7.347, (t, J=6 Hz, 2H, C2, C7-phenothiazine), 7.342-7.255 (m, 3H, C3, C6-phenothiazine, C5-phenyl), 6.774, 6.757 (d, J=8.5 Hz, 1H, C6-phenyl), $6.108(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.190\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene- $\left.\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ $171.961(\mathrm{C}=\mathrm{O}), 147.322,141.752,137.025,132.331,130.584,128.626,127.811$, 126.426, 124.733, 122.501, 120.227, 116.513 (aromatic carbons), 54.039 (methylene carbon); ESI-MS m/z: 414.2 (25\%), 412.5 (75\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}$, 58.33; H, 3.43; N, 10.20; Found: C, 58.38; H, 3.46; N, 10.22 \%.

5.2.3.19.2-((2-oxo-2-(10H-phenothiazin-10-yl)ethyl)amino)benzoic acid (18p)

Yield: 45%; MP: $165-167^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 12.283(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 7.837, 7.821 (d, J=8 Hz, 1H, C3-phenyl), 7.622, 7.606 (d, J=8 Hz, 2H, C1, C8phenothiazine), 7.531-7.516 (d, J=7.5 Hz, 2H, C4, C5-phenothiazine), 7.441-7.426 (td, $\mathrm{J}=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 2, \mathrm{C} 7-\mathrm{phenothiazine}), 7.355-7.340(\mathrm{td}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 3, \mathrm{C} 6-$ phenothiazine), 7.244-7.218 (t, J=6.5 Hz, 1H, C5-phenyl), 7.001-6.918 (m, 2H, C4, C6-phenyl), 4.246 (s, 2H, methylene- CH_{2}) $3.935(1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 184.128(\mathrm{COOH}), 170.132(\mathrm{C}=\mathrm{O}), 146.626,141.427,135.628,132.521$, $130.629,128.238,127.442,126.164,123.426,121.621,119.895,115.926$ (aromatic carbons), 53.811 (methylene carbon); MS (ESI) m/z: 377.9 (38\%); Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 67.01 ; \mathrm{H}, 4.28 ; \mathrm{N}, 7.44$; Found: C, 67.10; H, 4.31; N, 7.47%.
5.2.3.20. 2-(4-(4-chlorophenyl)piperazin-1-yl)-1-(10H-phenothiazin-10-yl)ethan-1-one (19p) Yield: 85%; MP: $177-180^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.671,7.655(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 2H, C1, C8-phenothiazine), 7.518, 7.503 (d, J=7.5 Hz, 2H, C4, C5-phenothiazine), 7.434-7.403 (td, J=15.5, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 2, \mathrm{C} 7-\mathrm{phenothiazine)}, \mathrm{7.253-7.220} \mathrm{(td}, \mathrm{J=15}$, Hz, 2H, C3, C6-phenothiazine), 7.121, 7.108 (d, J=6.5 Hz, 2H, C3, C5-phenyl), 6.631, 6.613 (d, J=9 Hz, 2H, C2, C6-phenyl), 4.135 ($\mathrm{s}, 2 \mathrm{H}$, methylene- CH_{2}) 3.212-3.188 (m, 4 H , piperazine); 2.712-2.689 (m, 4H, piperazine); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 169.731 ($\mathrm{C}=\mathrm{O}$), 145.549, 139.438, 134.726, 131.461, 129.612, 127.742, 126.514, 125.843, 122.472, 115.857 (aromatic carbons), 53.948 (methylene carbon); 52.482, 50.791 (piperazine carbons); MS (ESI) $m / z: 438.6$ (25\%), 436.3 (74\%); Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{OS}: \mathrm{C}, 66.12$; H, 5.09; N, 9.64; Found: C, 66.19; H, 5.15; N, 9.67%.
5.2.3.21.2-(4-(4-nitrophenyl)piperazin-1-yl)-1-(10H-phenothiazin-10-yl)ethan-1-one (20p)

Yield: 77%; MP: $181-182^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.690,7.674(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 2H, C1, C8-phenothiazine), 7.527, 7.510 (d, J=8.5 Hz, 2H, C4, C5-phenothiazine), 7.421-7.389 (td, J=16, 1.5 Hz, 2H, C2, C7-phenothiazine), 7.234-7.204 (td, J=15, 1.5 Hz, 2H, C3, C6-phenothiazine), 7.160, 7.146 (d, J=7 Hz, 2H, C3, C5-phenyl), 6.625, 6.607 (d, J=9 Hz, 2H, C2, C6-phenyl), 4. 182 (s, 2H, methylene- CH_{2}) 3.225-3.201 (m, 4 H , piperazine); 2.715-2.692 (m, 4 H , piperazine); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 169.769 ($\mathrm{C}=\mathrm{O}$), 146.128, 140.432, 135.583, 131.728, 129.835, 127.934, 126.623, 125.782, 122.681, 116.125 (aromatic carbons), 54.263 (methylene carbon); 53.573, 51.382 (piperazine carbons); MS (ESI) $m / z: 447.71$ (42\%); Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$: C, 64.56 ; H, 4.97; N, 12.55; Found: C, 64.65 ; H, 5.00; N, 12.57 \%.
5.2.3.22. 2-(cyclopropylamino)-1-(10H-phenothiazin-10-yl)ethan-1-one (S1)

Yield: 82%; MP: $115-117^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 7.562,7.547$ (d, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.434,7.418(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.303-7.268(\mathrm{t}, \mathrm{J}=8$ Hz, 2H, Ar-CH), 7.222-7.192 (t, J = 7.5 Hz, 2H, Ar-CH), 3.705 (s, 2H, methyleneCH_{2}), $3.102(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.512-0.998\left(\mathrm{~m}, 5 \mathrm{H}\right.$, cyclopropyl); ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d6) $\delta(\mathrm{ppm}): 169.191(\mathrm{C}=\mathrm{O}), 138.154,133.031,127.802,127.175,126.925$ (aromatic carbons), 55.316 (methylene carbon), 35.076, 7.111 (cycloproyl carbons); ESI-MS $(\mathrm{m} / \mathrm{z})=297.5(26 \%)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 68.89 ; \mathrm{H}, 5.44 ; \mathrm{N}, 9.45$; Found: C, 69.07; H, 5.47; N, 9.43 \%.

5.2.3.23. 2-(cyclobutylamino)-1-(10H-phenothiazin-10-yl)ethan-1-one (S2)

Yield: 75%; MP: $119-121^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 7.566,7.550(\mathrm{~d}$, $\mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.531,7.513$ (dd, J=8, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 7.370-7.339 (t, J=8 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 7.293-7.261 (td, J=7.5, 1 Hz, 2H, Ar-CH), 3.986 ($\mathrm{s}, 2 \mathrm{H}$, methyleneCH_{2}), $3.398(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.638-1.214\left(\mathrm{~m}, 7 \mathrm{H}\right.$, cyclobutyl); ${ }^{13} \mathrm{C}$ NMR (125 MHz ,

DMSO-d6) $\delta(\mathrm{ppm}): 169.191(\mathrm{C}=\mathrm{O}), 138.154,132.032,127.802,127.175,126.925$, (aromatic carbons), 55.316 (methylene carbon), 35.076, 14.192, 7.111 (cyclobutyl carbons); ESI-MS (m/z) $=311.8$ (25\%). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 69.65$; H , 5.85; N, 9.02; Found:C, 69.78; H, 5.87; N, 8.98%.
5.2.3.24. 2-(cyclopentylamino)-1-(10H-phenothiazin-10-yl)ethan-1-one (S3)

Yield: 78\%; MP:124-126C ${ }^{1}{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) δ (ppm):7.712,7.684 (d, $\mathrm{J}=15,2 \mathrm{H}, \operatorname{Ar}-\mathrm{CH}), 7.654,7.638(\mathrm{~d}, \mathrm{~J}=8,2 \mathrm{H}, \operatorname{Ar}-\mathrm{CH}), 7.488-7.458$ (t, J=7.5, 2H, Ar$\mathrm{CH})$, 7.412-7.382 (t, J=8, 2H, Ar-CH), 3.957 ($\mathrm{s}, 2 \mathrm{H}$, methylene CH_{2}), $3.450(\mathrm{~s}, 1 \mathrm{H}$, NH), 1.842-1.145 (m, 9H, cyclopentyl); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, DMSO-d6) δ (ppm): $170.213(\mathrm{C}=\mathrm{O}), 141.287,134.011,130.416,129.752,129.614$ (aromatic carbons), 62.981 (methylene carbon), 51.467, 32.371, 27.213 (cyclopentyl carbons); ESI-MS $(\mathrm{m} / \mathrm{z})=325.4(25 \%)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 70.34 ; \mathrm{H}, 6.21 ; \mathrm{N}, 8.63$; Found: C, $70.58 ; \mathrm{H}, 6.22 ; \mathrm{N}, 8.65 \%$.
5.2.3.25. 2-(cyclohexylamino)-1-(10H-phenothiazin-10-yl)ethan-1-one (S4)

Yield: 85%; MP: $127-128^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.554,7.539(\mathrm{~d}, \mathrm{~J}=$ 7.5 Hz, 2H, Ar-CH), 7.426, $7.410(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.295-7.260(\mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}$, 2H, Ar-CH), 7.214-7.184 (t, J = $10 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 3.685 (s, 2H, methylene- CH_{2}), $3.245(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.942-1.036\left(\mathrm{~m}, 11 \mathrm{H}\right.$, cyclohexyl); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $(\mathrm{ppm}): 168.713(\mathrm{C}=\mathrm{O}), 137.111,133.841,126.336,125.648$, 125.492 (aromatic carbons), 58.251 (methylene carbon), 48.152, 31.474, 24.598, 22.111 (cyclohexyl carbons); ESI-MS (m/z) = 339.2 (26\%). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 70.97$; H , 6.55; N, 8.28; Found: C, 71.22; H, 6.56; N, 8.24 \%.
5.2.3.26.2-(cycloheptylamino)-1-(10H-phenothiazin-10-yl)ethan-1-one (S5)

Yield: 71\%; MP: 132-135 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta(\mathrm{ppm}): 7.678,7.662(\mathrm{~d}$, $\mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.643,7.625(\mathrm{dd}, \mathrm{J}=8,3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.482-7.451$ (t, J=8
$\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 7.405-7.373 (td, J=7.5, 1 Hz, 2H, Ar-CH), 3.898 (s, 2H, methyleneCH_{2}), 3.510 (s, 1H, NH), 2.138-1.088 (m, 13H, cycloheptyl); ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d6) $\delta(\mathrm{ppm}): 171.038(\mathrm{C}=\mathrm{O}), 139.726,134.001,128.961,128.305,128.068$ (aromatic carbons), 54.735 (methylene carbon), 46.572, 31.118, 25.829, 21.324 (cycloheptyl carbons); ESI-MS (m/z) = 353.1 (25\%). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OS}$: C, 71.56 ; H, 6.86; N, 7.95; Found: C, 71.68; H, 6.88; N, 7.92 \%.

5.2.3.27.2-(cyclooctylamino)-1-(10H-phenothiazin-10-yl)ethan-1-one (S6)

Yield: 66\%; MP:139-141 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 7.632,7.617$ (d, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.504,7.488(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-CH$), 7.373-7.338(\mathrm{t}, \mathrm{J}=10$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 7.292-7.262 (t, J = $10 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 3.986 (s, 2H, methylene-CH2), 3.672 (s, 1H, NH), 2.356-1.108 (m, 15H, cyclooctyl); ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d6) $\delta(\mathrm{ppm}): 171.691(\mathrm{C}=\mathrm{O}), 140.032,133.893,130.010,129.297,129.008$ (aromatic carbons), 57.868 (methylene carbon), 49.692, 35.165, 25.790, 24.137, 21.234 (cyclooctyl carbons); ESI-MS (m/z) = 367.3 (26\%). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OS}$: C, 72.09; H, 7.15; N, 7.64; Found: C, 72.24; H, 7.16; N, 7.62 \%.

5.2.4. Antitubercular screening

All the synthesized compounds were screened against Mtb (H37Rv) by using Microplate Alamar Blue assay (MABA) [165] and the result is presented in Table 5-7. Structure-activity relationship (SAR) was established from the results of antitubercular screening. The nitro compounds were found to be more active among all the derivatives. Further, the meta- and para-substituted nitro compounds (14p, 15p, 16p) showed better activity $(1.56 \mu \mathrm{~g} / \mathrm{ml})$ in comparison to ortho-substituted compound ($\mathbf{(1 7 p}$) $(3.13 \mu \mathrm{~g} / \mathrm{ml})$. The meta-substituted halogen compounds ($\mathbf{1 0 p - 1 2 p}$) were found to show better activity in comparison to ortho- or para-substituted halogen compound (13p). The number of halogen substitution seems to play a significant role, as the di-
substituted halogen compounds ($\mathbf{1 0} \mathbf{p}$ to $\mathbf{1 3 p}$) produced better activity than mono substituted. The electron withdrawing nature of halogen and nitro groups seems to be important for the activity of the compounds. In compounds $\mathbf{1 9 p}$ and $\mathbf{2 0 p}$, the acyl linker was replaced with piperazinyl linker that caused reduction in activity. Further, the compound with nitro substitution at para-position (19p) was found more active in comparison to chloro substitution ($\mathbf{2 0 p}$). It indicated that the piperazinyl linker might not have major role in improving the activity.

5.2.5. Antibacterial screening

The compounds were also screened for antibacterial activity by disc diffusion method [166]. The compounds $(\mathbf{1 4 p}, \mathbf{1 5 p}, \mathbf{1 6 p})$ displayed maximum inhibition against S. aureus and E. coli at MIC of $0.98 \mu \mathrm{~g} / \mathrm{ml}$ and $3.91 \mu \mathrm{~g} / \mathrm{ml}$, respectively (Table 5-7). The activity was better against S. aureus in comparison to E. coli and Mtb. The nitro substituted compounds (14p, 15p, 16p) were more active in comparison to halogen substituted compounds (3p to 13p) and also the para- and meta-substitution was found essential to produce antibacterial activity.

5.2.6. BBB permeability screening

BBB permeability determines the possible CNS effect of the compounds and all the newly designed phenothiazine derivatives were screened for BBB permeability by Parallel artificial membrane permeability assay (PAMPA). The permeability of the compounds was compared with commercial drugs and classified as high permeable (CNS+), low permeable (CNS-) and permeable uncertain (CNS+/-). The chlorpromazine and diazepam produced effective permeability (Pe) of 6.1×10^{-6} and $12.4 \times 10^{-6} \mathrm{~cm} / \mathrm{s}$ respectively and were classified as high permeable drugs, whereas, atenolol, verapamil and levofloxacin produced effective permeability of $1.1 \times 10^{-6}, 0.0$ and $0.0 \mathrm{~cm} / \mathrm{s}$ respectively and classified as low permeable drugs.

 19p, 20p				
Code	R/n	$\begin{gathered} \text { MIC in } \\ \mu \mathrm{g} / \mathrm{mL}(\mu \mathrm{M})^{\mathrm{a}} \end{gathered}$	$\begin{gathered} \text { MIC in } \\ \mu \mathrm{g} / \mathrm{mL}(\mu \mathrm{M}))^{b} \end{gathered}$	$\begin{gathered} \text { MIC in } \\ \mu \mathrm{g} / \mathrm{mL}(\mu \mathrm{M}){ }^{\mathrm{c}} \end{gathered}$
1p	-	62.50 (226.65)	62.50 (226.65)	50 (181.32)
2p	H	15.63 (47.01)	31.25 (94.00)	25 (75.20)
3 p	$2-\mathrm{Cl}$	15.63 (46.39)	31.25 (92.76)	25 (74.21)
4p	$3-\mathrm{Cl}$	7.81 (23.18)	31.25 (92.76)	12.5 (37.10)
5p	$4-\mathrm{Cl}$	7.81 (23.18)	31.25 (92.76)	12.5 (37.10)
6p	3-F	7.81 (22.28)	31.25 (89.18)	12.5 (35.67)
7 p	4-F	7.81 (22.28)	31.25 (89.18)	12.5 (35.67)
8p	$3-\mathrm{Br}$	7.81 (18.98)	31.25 (75.97)	12.5 (30.38)
9p	$4-\mathrm{Br}$	7.81 (18.98)	31.25 (75.97)	12.5 (30.38)
10p	3,5-diCl	3.91 (9.74)	7.81 (19.46)	6.25 (15.57)
11p	$3,5-\mathrm{diBr}$	3.91 (7.97)	7.81 (15.93)	6.25 (12.74)
12p	3-Cl,4-F	3.91 (10.15)	7.81 (20.29)	6.25 (16.24)
13p	2-Br,4-F	3.91 (9.10)	15.63 (36.40)	6.25 (14.55)
14 p	$3-\mathrm{NO}_{2}$	0.98 (2.59)	3.91 (10.35)	1.56 (4.13)
15p	$4-\mathrm{NO}_{2}$	0.98 (2.59)	3.91 (10.35)	1.56 (4.13)
16p	$2-\mathrm{Cl}, 4-\mathrm{NO}_{2}$	0.98 (2.37)	3.91 (9.49)	1.56 (3.78)
17p	$2-\mathrm{NO}_{2}, 4-\mathrm{Cl}$	1.96 (4.75)	15.63 (37.94)	3.13 (7.59)
18p	$2-\mathrm{COOH}$	7.81 (20.74)	15.63 (41.52)	12.5 (33.20)
19p	4-Cl	7.81 (17.91)	15.63 (35.85)	12.5 (28.67)
20p	$4-\mathrm{NO}_{2}$	3.91 (8.75)	7.81 (17.49)	3.13 (7.00)
S1	1	31.25 (105.43)	125 (421.74)	25 (84.34)
S2	2	15.63 (50.35)	62.50 (201.34)	25 (80.53)
S3	3	7.81 (24.07)	62.50 (192.63)	12.5 (38.52)
S4	4	3.90 (11.52)	31.25 (92.32)	12.5 (36.93)
S5	5	7.81 (22.15)	62.50 (117.30)	25 (70.92)
S6	6	15.63 (42.64)	125 (341.04)	50 (136.41)
Chlorpromazine	-	7.81 (24.49)	15.63 (49.01)	12.5 (39.20)
Ciprofloxacin	-	1.95 (5.88)	3.91 (11.80)	3.13 (9.44)
Pyrazinamide	-	-	-	3.13 (25.42)

Table 5-7: Antitubercular and antibacterial activities of phenothiazine derivatives
${ }^{a}$ Minimum Inhibitory Concentration (MIC) against S. aureus (ATCC 25323)
${ }^{\mathrm{b}}$ Minimum Inhibitory Concentration (MIC) against E. coli (ATCC35218)
${ }^{c}$ Minimum Inhibitory Concentration (MIC) against M. tuberculosis H37Rv (ATCC 27294)

The effective permeability (Pe) of the screened compounds ($\mathbf{1 p}$ to 18p) was found in the range of 2.8×10^{-6} to $3.8 \times 10^{-6} \mathrm{~cm} / \mathrm{s}$ and were classified as permeability uncertain. The compounds $\mathbf{1 9} \mathbf{p}$ and $\mathbf{2 0}$ p produced effective permeability (Pe) of 4.5×10^{-6} and 4.2 $\times 10^{-6} \mathrm{~cm} / \mathrm{s}$ respectively and were classified as permeability high (Table 5-8). The reduced BBB permeability could reduce the CNS effect of the developed compounds $(1 p$ to $18 p)$ in comparison to chlorpromazine.

5.2.7. In-vitro cytotoxicity screening

The antimicrobial drugs should be free from toxicity towards normal mammalian cells. Therefore, all the compounds were screened against VERO (monkey kidney epithelial) cells to check their toxicity. The concentration required to produce 50% inhibition $\left(\mathrm{CC}_{50}\right)$ was determined and was found in the range of 84.7 to $201.8 \mu \mathrm{~g} / \mathrm{mL}$ (Table 5-9). All the compounds were found to be non-toxic to mammalian cells. The selectivity of drug molecules towards a desired activity is a challenging task in drug discovery. The compounds should be toxic only towards Mtb and other microbial species rather than the normal human cells. The selectivity index (SI) was calculated from the obtained mammalian cell cytotoxicity $\left(\mathrm{CC}_{50}\right)$ and tubercular cytotoxicity (MIC). The potent compounds $(\mathbf{1 4} \mathbf{p}, \mathbf{1 5 p} \& \mathbf{1 6 p})$ from antitubercular screening showed SI more than 57, indicating their selectivity towards $M t b$ rather against normal human cells.

Compound Code	$\mathrm{P}_{\mathrm{e}} \times 10^{-6} \mathrm{~cm} / \mathrm{s}$	Classification
Chlorpromazine	6.1 ± 0.059	CNS+
Atenolol	1.1 ± 0.021	CNS-
Verapamil	0.0	CNS-
Diazepam	12.4 ± 0.263	CNS+
Levofloxacin	0.0	CNS-
1p	2.8 ± 0.038	CNS+/-
2p	3.0 ± 0.041	CNS+/-
3p	3.2 ± 0.167	CNS+/-
4 p	3.3 ± 0.062	CNS+/-
5p	3.2 ± 0.251	CNS+/-
6 p	3.0 ± 0.040	CNS+/-
7p	3.0 ± 0.174	CNS+/-
8p	3.5 ± 0.262	CNS+/-
9p	3.5 ± 0.386	CNS+/-
10p	3.6 ± 0.158	CNS+/-
11p	3.8 ± 0.053	CNS+/-
12p	3.6 ± 0.326	CNS+/-
13p	3.8 ± 0.213	CNS+/-
14p	3.4 ± 0.091	CNS+/-
15p	3.4 ± 0.023	CNS+/-
16p	3.7 ± 0.291	CNS+/-
17p	3.7 ± 0.082	CNS+/-
18p	3.2 ± 0.109	CNS+/-
19p	4.5 ± 0.080	CNS+
20p	4.2 ± 0.315	CNS+
S3	4.9 ± 0.117	CNS+
S4	5.2 ± 0.382	CNS+

Table 5-8: BBB permeability of commercial drugs and phenothiazine derivatives
Data are expressed as mean $\pm \operatorname{SEM}(\mathrm{n}=3)$
CNS $+=$ high BBB permeation compounds, i.e. $\mathrm{Pe}=>4.0 * 10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}$
CNS- =low BBB permeation compounds, i.e. $\mathrm{Pe}=<2.0 * 10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}$
$\mathrm{CNS}+/-=\mathrm{BBB}$ permeation uncertain compounds, i.e. $\mathrm{Pe}=4.0-2.0 * 10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}$

Compound Code 2	$\mathbf{C C 5 0}^{(\boldsymbol{\mu g} / \mathbf{m l})^{\text {a }}}$	Selectivity Index $^{\mathbf{b}}$
1 p	201.82 ± 2.476	4.0
2 p	164.35 ± 2.891	6.6
3 p	166.91 ± 9.739	6.7
4 p	154.43 ± 1.924	12.3
5 p	155.07 ± 1.563	12.4
6 p	160.97 ± 10.615	12.9
7 p	157.52 ± 6.291	12.6
8 p	153.28 ± 10.860	12.3
9 p	124.75 ± 2.132	10.0
10 p	129.20 ± 2.728	20.7
11 p	117.64 ± 4.945	18.8
12 p	120.12 ± 2.974	19.2
13 p	115.85 ± 1.846	18.5
14 p	95.91 ± 1.663	61.47
15 p	90.18 ± 2.781	57.8
16 p	97.34 ± 5.126	62.4
17 p	92.76 ± 5.370	29.6
18 p	108.94 ± 4.212	8.7
19 p	89.52 ± 2.618	7.1
20 p	84.71 ± 1.331	27.0
S 3	117.80 ± 2.471	9.4
S 4	102.33 ± 4.057	16.4

Table 5-9: Cytotoxicity of phenothiazine derivatives against VERO cells; ${ }^{\text {a }}$ Data are expressed as mean $\pm \operatorname{SEM}(\mathrm{n}=3) ;{ }^{\mathrm{b}}$ Selectivity index is ratio of cytotoxicity $\left(\mathrm{CC}_{50}\right)$ to Mtb MIC.

5.2.8. NDH-2 inhibitory screening

The compounds ($\mathbf{1 0 p}$ to $\mathbf{1 7} \mathbf{p}$) with strong growth inhibition against the whole $M t b$ H 37 Rv were screened for NDH-2 inhibitory action to establish their molecular mechanism. NDH-2 inhibition screening was performed through NADH:menadione oxidoreduction assay. Percentage inhibition of residual NADH oxidation activity was recorded at $50 \mu \mathrm{M}$ concentrations. Compounds $\mathbf{1 6 p}, \mathbf{1 5}$ p, 13p and $\mathbf{1 7 p}$ produced 30.09 , 28.42, 26.85 and 24.56 percent inhibitions respectively. Rest of the compounds produced ≤ 20 percent inhibitions at that concentration (Table 5-10). Percentage inhibition of all the test compounds was found to be less than 50 percent at $50 \mu \mathrm{M}$ concentrations. Hence, the IC_{50} was recorded as greater than 50 micromolar ($>50 \mu \mathrm{M}$).

Compound Code	\% inhibition of residual NADH oxidation activity at $\mathbf{5 0 \mu M}$ concentration
10 p	7.42 ± 0.602
11 p	15.43 ± 1.326
12 p	8.28 ± 0.101
13 p	26.85 ± 2.232
14 p	20.71 ± 1.119
15 p	28.42 ± 1.916
16 p	30.09 ± 1.925
17 p	24.56 ± 1.028
HQNO	$82.8 \pm 0.524^{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{Q}, \#, \mathrm{~S}, \%, \&}$

Table 5-10: NDH-2 inhibitory study of phenothiazine derivatives. Data expressed as a Mean \pm SEM (n=3). ${ }^{\mathrm{x}} \mathrm{P}<0.05$ compared to $10 \mathrm{p},{ }^{\mathrm{y}} \mathrm{P}<0.05$ compared to $11 \mathrm{p},{ }^{\mathrm{z}} \mathrm{P}<0.05$ compared to 12 p , ${ }^{@} \mathrm{P}<0.05$ compared to $13 \mathrm{p}, \stackrel{\text { P }}{\mathrm{P}}<0.05$ compared to $14 \mathrm{p}, \stackrel{\$}{\mathrm{P}}<0.05$ compared to $15 \mathrm{p},{ }^{\%} \mathrm{P}<0.05$ compared to $16 \mathrm{p},{ }^{\&} \mathrm{P}<0.05$ compared to 17 p [One-way ANOVA followed by Newmann-Keuls test].

Chapter 5: Section 3
 Results and Discussion

5.3. Section 3: Molecular Docking, Synthesis, Characterization and Biological Profiling of Carbazole derivatives

5.3.1. Extra precision molecular docking

Docking was performed on the protein structure of Mtb NDH-2 that was obtained through homology modeling. The inhibitors can cease the function of NDH-2 when bind only to the quinone binding motif. All the molecules in the study reached the quinone binding tunnel and produced the essential interactions with the amino acid residues forming the quinone binding motif " $333-\mathrm{AQxAxQ}-338$ ". Hydrogen bond interaction was observed with Ala-333, a critical residue in quinone binding (Figure 5-7, Table 5-11). The docking scores, observed in the range of -6.1925 to -3.6134 $\mathrm{Kcal} / \mathrm{mol}$, are indicator of effective binding of inhibitors to the binding motif. The best binding was observed with the molecules $15 \mathbf{c}, 16 \mathbf{c}$ and 17 c with minimum binding energy of $-6.1925,-6.1912$ and $-6.0253 \mathrm{Kcal} / \mathrm{mol}$, respectively. A better correlation between the docking score and antitubercular MIC was observed, which indicates that the antitubercular activity may be due to the arrest of ATP synthesis by the inhibition of NDH-2.

5.3.2. Molecular property and toxicity prediction

The molecular property and toxicity of designed molecules were predicted by OSIRIS DataWarrior. The clogP of the compounds was found in the range of 2.19 to 5.36. The clogP of the potent compounds (14c, 15c, 16c, 17c) was impressive at $2.99,2.99,3.59$ and 3.59 , respectively and this optimum clogP could have increased biological activities of the compounds. Topological polar surface area (TPSA) was found to be 34.03 for compounds $\mathbf{2 c}$ to $\mathbf{1 3} \mathbf{c}, 79.85$ for compounds $\mathbf{1 4} \mathbf{c}$ to $\mathbf{1 7} \mathbf{c}$, and $71.33,28.48$ and 74.3 for the compounds $18 \mathrm{c}, \mathbf{1 9 c}$ and $\mathbf{2 0} \mathbf{c}$, respectively.

Ligand code	Lowest binding energy (Kcal/mol)	Residues forming the quinone binding motif (residues producing H-bonding with the ligand were indicated in bold)
1c	-4.0123	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
2c	-4.3882	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
3c	-4.2916	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
4c	-4.3974	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
5c	-4.5590	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
6c	-4.3718	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
7c	-4.5326	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
8c	-4.3183	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
9c	-4.5679	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
10c	-4.9368	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
11c	-4.9734	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
12c	-5.0003	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
13c	-4.9668	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
14c	-5.8362	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
15c	-6.1925	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
16c	-6.1912	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
17c	-6.0253	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
18c	-4.6294	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
19c	-3.6134	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
20c	-3.9251	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
S13	-1.9614	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
S14	-1.9938	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
S15	-2.0168	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
S16	-2.0411	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
S17	-2.0035	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
S18	-1.9471	
(no hydrogen bond interaction)		

Table 5-11: Docking of designed carbazole molecules against NDH-2 of Mtb

All the compounds showed above 83 percent of absorption, which is an indicator of their good oral bioavailability. The number of hydrogen bond donor, hydrogen bond acceptor and drug likeness value were also found within the limit (Table 5-12).

Figure 5-7: Docking poses of molecules 13c and 15c against NDH-2
Results and Discussion
Table 5-12: Molecular properties and predicted toxicity of carbazole molecules; $\mathrm{HBA}=\mathrm{H}$-Acceptors; $\mathrm{HBD}=\mathrm{H}$-Donor; TSA=Total surface area; TPSA=
Total Polar surface area; $\mathrm{DL}=$ Drug likeness; $\mathrm{MU}=$ Mutagenic; TU=Tumorigenic; $\mathrm{IR}=\mathrm{Irritant}$; SI=Shape Index; MF=Molecular Flexibility; MC=Molecular
Complexity; EA=Electronegative Atoms; $\mathrm{RB}=$ Rotatable Bonds; $\mathrm{AR}=$ Aromatic Rings; $\mathrm{SA}=$ Symmetric atoms; $\mathrm{NR}=\mathrm{No}$. of Rings; $\mathrm{N}=\mathrm{none} ; \mathrm{H}=\mathrm{High} ; \mathrm{L}=\mathrm{low}$

5.3.3. Synthesis and Characterization

The designed carbazole molecules were synthesized as shown in Scheme 2, involving the synthesis of first intermediate carbazole (c) followed by the second intermediate 1-(9H-carbazol-9-yl)-2-chloroethan-1-one (1c). The reaction of second intermediate (1c) with different phenyl amines/phenyl piperazines/ cyclic amines afforded the final derivatives of carbazole. The progress of reaction was closely monitored and completion was established by thin layer chromatography. Column chromatography was performed to get pure derivatives of carbazole. The yield of the compounds was found in the range of 45 to 79 percent. Melting point, elemental composition, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and Mass data of all the compounds in carbazole series are as follows,

5.3.3.1. Synthesis of Carbazole (c)

Yield: 75%; MP: $245-246{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta(\mathrm{ppm}): 8.127,8.111(\mathrm{~d}, \mathrm{~J}$ $=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 1, \mathrm{C} 8$-carbazole), 7.569, 7.753 (dd, J = 8, 3.5 Hz, 2H, C4, C5- carbazole), 7.471-7.456 (td, J=7.5, 1.5 Hz, 2H, C2, C7- carbazole), 7.132-7.118 (td, J=7, $1 \mathrm{~Hz}, 2 \mathrm{H}$, C3, C6- carbazole); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 139.755,126.055,123.631$, 120.545, 119.681, 110.792; MS (ESI) m/z: 168.3 (100\%). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}: \mathrm{C}$, 86.20; H, 5.43; N, 8.38; Found: C, 86.48; H, 5.44; N, 8.35%.

5.3.3.2. Synthesis of 1-(9H-Carbazol-9-yl)-2-chloroethan-1-one (1c)

Yield: 40%; MP: $102-103^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.183(\mathrm{~d}, \mathrm{~J}=8.4$ Hz, 2H, C1, C8-carbazole), 7.523-7.501 (dd, J =11, 1.5 Hz, 2H, C4, C5-carbazole), 7.436-7.390 (td, J = 11.5, 1.5 Hz, 2H, C2, C7-carbazole), 7.213-7.184 (td, J=7.5, 1.1 Hz, $2 \mathrm{H}, \mathrm{C} 3, \mathrm{C} 6$-carbazole), $4.855\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene $\left.\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $165.68,138.02,127.71,126.73,124.43,120.03,116.24$ (aromatic carbons) 44.85 (methylene carbon); MS (ESI) m/z: 246.5 (25\%), 244.5 (75\%). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}: \mathrm{C}, 69.00 ; \mathrm{H}, 4.14$; N, 5.75; Found: C, $69.23 ; \mathrm{H}, 4.16$; N, 5.69%.

5.3.3.3. 1-(9H-carbazol-9-yl)-2-(phenylamino)ethan-1-one (2c)

Yield: 64%; MP: $151-152{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) ; 7.927,7.911(\mathrm{~d}$, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 1, \mathrm{C} 8$-carbazole), 7.816, 7.801 (d, J=7.5 Hz, 2H, C4, C5- carbazole), 7. 329-7.271 (td, J=14, 7.5 Hz, 2H, C2, C7- carbazole), 7.194-7.138 (td, J=14, 7.5 Hz, 2H, C3, C6- carbazole), 7.109-7.093 (t, J=8 Hz, 2H, C3, C5-phenyl), 6.815-6.799 (t, J=8 Hz, 2H, C2, C6-phenyl), 6.631-6.615 (t, J=8 Hz, 1H, C4-phenyl), 4.121 (s, 2H, methylene- CH_{2}), $3.491(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 168.422(\mathrm{C}=\mathrm{O})$, 145.128, 138.691, 135.748, 130.914, 128.216, 127.134, 126.659, 123.205, 120.358, 115.425 (aromatic carbons), 54.351 (methylene carbon); MS (ESI) $m / z: 301.1$ (39.4\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$: C, 79.98; H, 5.37; N, 9.33; Found: C, 80.11; H, 5.41; N, 9.37%.

5.3.3.4. 1-(9H-carbazol-9-yl)-2-((2-chlorophenyl)amino)ethan-1-one (3c)

Yield: 62%; MP: $149-151^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.941,7.925(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 2H, C1, C8- carbazole), 7.826,7.801 (d, J=7.5 Hz, 2H, C4, C5- carbazole), 7.344-7.311 (td, J=7.5, 1.5 Hz, 2H, C2, C7- carbazole), 7.142-7.109 (m, 3H, C3, C6- carbazole, C3phenyl), 7.155-7.129 (t, J=6.5 Hz, 1H, C4-phenyl), $6.721,6.704$ (d, J=8.5 Hz, 1H, C6phenyl), 6.661-6.635 (t, J=6.5 Hz, 1H, C5-phenyl), 4. 123 (s, 2H, methylene- CH_{2}) $3.526(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 168.595(\mathrm{C}=\mathrm{O}), 145.436,139.961$, $135.761,130.926,130.164,128.221,127.523,126.421,123.270,121.617,119.862$, 114.438 (aromatic carbons), 54.415 (methylene carbon); MS (ESI) m/z: 337.2 (25\%), 335.1 (74\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}, 71.75$; $\mathrm{H}, 4.52$; $\mathrm{N}, 8.37$; Found: C, 71.81; H, 4.55; N, 8.37 \%.

5.3.3.5. 1-(9H-carbazol-9-yl)-2-((3-chlorophenyl)amino)ethan-1-one (4c)

Yield: 65%; MP: $154-156^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 8.136,8.120(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C} 1, \mathrm{C} 8$ - carbazole), 7.931-7.912 (dd, J=9.5, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 4, \mathrm{C} 5$ - carbazole), 7.3267.292 (td, J=7.5, 1.5 Hz, 2H, C2, C7- carbazole), 7.159-7.128 (td, J=6, 1.5 Hz, 2H, C3,C6- carbazole), 6.998 (s, 1H, C2-phenyl), 6.751, 6.735 (d, J=8 Hz, 1H, C4-phenyl), 6.592-6.564 (t, J=7 Hz, 1H, C5-phenyl), 6.398, 6.382 (d, J= $8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6$-phenyl), $4.201\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene- $\left.\mathrm{CH}_{2}\right), 3.762(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $168.194(\mathrm{C}=\mathrm{O}), 146.092,140.125,134.916,135.851,130.473,128.291,127.132$, $126.253,123.277,119.854,114.973,112.325$ (aromatic carbons), 53.526 (methyleneCH_{2}); MS (ESI) $m / z: 337.4$ (24\%), 335.2 (74\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}$: C, 71.75 ; H, 4.52; N, 8.37; Found: C, 71.83; H, 4.56; N, 8.36 \%.

5.3.3.6. 1-(9H-carbazol-9-yl)-2-((4-chlorophenyl)amino)ethan-1-one (5c)

Yield: 67%; MP: $154-155^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 8.118,8.102(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 2H, C1, C8- carbazole), 7.957, 7.942 (d, J=7.5 Hz, 2H, C4, C5- carbazole), 7.413-7.380 (td, J=15, 1.5 Hz, 2H, C2, C7- carbazole), 7.137-7.104 (td, J=15, 1.5 Hz, 2H, C3, C6carbazole), $7.115,7.102$ (d, J=6.5 Hz, 2H, C3, C5-phenyl), $6.625,6.607$ (d, J=8.5 Hz, 2H, C2, C6-phenyl), 4.189 (s, 2H, methylene- CH_{2}) 3.661 ($1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 168.932(\mathrm{C}=\mathrm{O}), 145.736,139.235,133.873,130.579,128.461$, 127.992, 126.931, $125.134,122.119,115.174$ (aromatic carbons), 54.981 (methylene carbon); MS (ESI) $m / z: 337.3$ (24\%), 335.3 (75\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}$, 71.75 ; H, 4.52; N, 8.37; Found: C, 71.82; H, 4.51; N, 8.39 \%.

5.3.3.7. 1-(9H-carbazol-9-yl)-2-((3-fluorophenyl)amino)ethan-1-one (6c)

Yield: 61%; MP: $155-156^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 8.029,8.013(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 2H, C1, C8- carbazole), 7.943-7.924 (dd, J=9.5, 1.5 Hz, 2H, C4, C5- carbazole), 7.3837.349 (td, J=7.5, 1.5 Hz, 2H, C2, C7- carbazole), 7.153-7.122 (td, J=6, 1.5 Hz, 2H, C3,

C6-carbazole), 7.012 (s, 1H, C2-phenyl), 6.732, 6.716 (d, J=8 Hz, 1H, C4-phenyl), 6.621-6.593 (t, J=7 Hz, 1H, C5-phenyl), 6.412, 6.396 (d, J=8 Hz, 1H, C6-phenyl), 4.201 (s, 2H, methylene CH_{2}), 3.823 (s, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $166.371(\mathrm{C}=\mathrm{O}), 146.097,140.983,135.692,134.321,130.657,128.239,126.984$, 126.186, 124.903, 120.004, 115.735, 112.364 (aromatic carbons), 54.299 (methylene carbon); MS (ESI) $m / z: 319.2$ (78\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}: \mathrm{C}, 75.46$; H, 4.75; N, 8.80; Found: C, 75.55 ; H, 4.77; N, 8.83 \%.

5.3.3.8. 1-(9H-carbazol-9-yl)-2-((4-fluorophenyl)amino)ethan-1-one (7c)

Yield: 61%; MP: $157-159^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 8.176,8.160(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C} 1, \mathrm{C} 8$ - carbazole), $7.983,7.968$ (d, J=7.5 Hz, 2H, C4, C5- carbazole), 7.351-7.316 (td, J=15, 1.5 Hz, 2H, C2, C7- carbazole), 7.146-7.113 (td, J=15, 1.5 Hz, 2H, C3, C6carbazole), $7.093,7.079$ (d, J=7 Hz, 2H, C3, C5-phenyl), 6.691, 6.673 (d, J=8.5 Hz, 2H, C2, C6-phenyl), 4. 105 (s, 2H, methylene- CH_{2}) 3.701 (s, 1H, NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.943(\mathrm{C}=\mathrm{O}), 145.532,138.443,133.519,130.563,128.904$, 127.527, 126.781, 125.212, 122.654, 115.181 (aromatic carbons), 54.397 (methylene carbon); MS (ESI) $m / z: 319.4$ (75\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}: \mathrm{C}, 75.46$; H, 4.75; N, 8.80; Found: C, 75.52; H, 4.74; N, 8.81 \%.

5.3.3.9. 2-((3-bromophenyl)amino)-1-(9H-carbazol-9-yl)ethan-1-one (8c)

Yield: 52\%; MP: $163-165^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.132,8.117(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, 2H, C1, C8-carbazole), 7.948-7.920 (dd, J=6, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 4, \mathrm{C} 5-\mathrm{carbazole}$), 7.3517.218 (m, 4H, C2, C3, C6, C7-carbazole), 6.939 (s, 1H, C2-phenyl), 6.824-6.807 (d, $\mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{phenyl}), 6.703-6.673$ (t, J=7.5 Hz, 1H, C5-phenyl), 6.536-6.520 (dd, $\mathrm{J}=8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6$-phenyl), 4.192 ($\mathrm{s}, 2 \mathrm{H}$, methylene- CH_{2}), $3.761(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 167.393(\mathrm{C}=\mathrm{O}), 148.327$, 142.394, 136.725, 134.903, $131.695,128.328,127.101,126.139,124.245,120.863,115.993,112.715$ (aromatic
carbons), 54.023 (methylene carbon); MS (ESI) m/z: 382.3 (49\%), 380.2 (50\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}: \mathrm{C}, 63.34 ; \mathrm{H}, 3.99$; N, 7.39; Found: C, 63.42; H, 4.04; N, 7.42 \%.

5.3.3.10. 2-((4-bromophenyl)amino)-1-(9H-carbazol-9-yl)ethan-1-one (9c)

Yield: 49%; MP: $169-171^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.196,8.181(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, 2H, C1, C8- carbazole), 7.954-7.934 (dd, J=9,1.5 Hz, 2H, C4, C5- carbazole), 7.3917.376 (dd, J=7.5, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 3, \mathrm{C} 5-\mathrm{phenyl}$), 7.344-7.219 (m, 4H, C2, C3, C6, C7carbazole), 6.663-6.641 (dd, $\mathrm{J}=11,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 2, \mathrm{C} 6-\mathrm{phenyl}), 4.215$ (s, 2H, methylene- CH_{2}), $3.766(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 167.312(\mathrm{C}=\mathrm{O})$, 148.652, 142.744, 136.285, 134.914, 131.004, 128.061, 127.429, 126.103, 124.189, $120.631,116.534,112.875$ (aromatic carbons), 54.328 (methylene carbon); MS (ESI) m/z: 382.3 (50\%), 380.2 (48\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}: \mathrm{C}, 63.34 ; \mathrm{H}, 3.99$; N, 7.39; Found: C, 63.40; H, 4.02; N, 7.41 \%.

5.3.3.11.1-(9H-carbazol-9-yl)-2-((3,5-dichlorophenyl)amino)ethan-1-one (10c)

Yield: 55%; MP: $170-173^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.109,8.094(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, 2H, C1, C8- carbazole), 7.914-7.896 (dd, J=9, 1.5 Hz, 2H, C4, C5- carbazole), 7. 3627.347 (td, J=7.5, 1.5 Hz, 2H, C2, C7- carbazole), 7.136-7.106 (td, J=7.5, $1.5 \mathrm{~Hz}, 2 \mathrm{H}$, C3, C6- carbazole), 6.811 (s, 2H, C2, C6-phenyl), 6.563 (s, 1H, C4-phenyl), 4.241, (s, 2 H , methylene- CH_{2}), 3.819, (s, 1H, NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 169.220$ $(\mathrm{C}=\mathrm{O}), 148.832,142.334,136.540,132.312,130.422,128.438,126.392,123.659$, $121.966,115.054$ (aromatic carbons), 54.612 (methylene carbon); MS (ESI) $m / z: 374.2$ (5\%), 372.4 (32\%), 370.3 (74\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 65.06 ; \mathrm{H}, 3.82$; N , 7.59; Found: C, 65.15; H, 3.86; N, 7.57 \%.
5.3.3.12.1-(9H-carbazol-9-yl)-2-((3,5-dibromophenyl)amino)ethan-1-one (11c)

Yield: 54%; MP: $182-184^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.062,8.017(\mathrm{dd}, \mathrm{J}=22.5$, $8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 1, \mathrm{C} 8-$ carbazole), $7.972-7.930$ (dd, J=21, $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 4, \mathrm{C} 5-$ carbazole), 7.371-7.313 (td, J=14, $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 2, \mathrm{C} 7-$ carbazole), 7.211-7.155 (m, 3H, C3, C6carbazole, C4-phenyl), 6.524 (s, 2H, C2, C6-phenyl), 4.235, (s, 2H, methylene-CH2), 3.629, (s, 1H, NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 169.625(\mathrm{C}=\mathrm{O}), 147.274,142.526$, $136.311,133.401,130.828,127.421,126.264,123.616,120.108,115.324$ (aromatic carbons), 54.771 (methylene carbon); MS (ESI) m/z: 463.2 (46\%), 461.1 (97\%), 459.3 (49\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}$: C, 52.43 ; H, 3.08; N, 6.11; Found: C, 52.51; H, 3.09; N, 6.14 \%.
5.3.3.13.1-(9H-carbazol-9-yl)-2-((3-chloro-4-fluorophenyl)amino)ethan-1-one (12c)

Yield: 52%; MP: $171-172^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) ; 8.069,8.024(\mathrm{~d}$, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 1, \mathrm{C} 8$ - carbazole), 7.921-7.906 (d, J=7.5 Hz, 2H, C4, C5- carbazole), 7.372-7.309 (td, J=14, 7.5 Hz, 2H, C2, C7- carbazole), 7.195-7.131 (td, J=14, 7.5 Hz, 2H, C3, C6-carbazole), 7.108-6.892 (m, 3H, C2, C5, C6-phenyl), 4.178 (s, 2H, methylene- CH_{2}), $3.862(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 169.241(\mathrm{C}=\mathrm{O})$, $146.424,142.389,140.174,134.668,130.914,128.553,127.166,126.321,123.632$, 121.326, 120.339, 115.228 (aromatic carbons), 54.417 (methylene carbon); MS (ESI) $m / z: 355.2$ (24\%), 353.4 (75\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClFN}_{2} \mathrm{O}: \mathrm{C}, 68.09 ; \mathrm{H}, 4.00$; N, 7.94; Found: C, 68.16; H, 3.98; N, 7.97 \%.
5.3.3.14.2-((2-bromo-4-fluorophenyl)amino)-1-(9H-carbazol-9-yl)ethan-1-one (13c)

Yield: 57%; MP: $179-182^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.138,8.121(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, 2H, C1, C8- carbazole), 7.926-7.908 (dd, J=9, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 4, \mathrm{C} 5$ - carbazole), 7.3417.307 (td, J=17, $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 2, \mathrm{C} 7$ - carbazole) 7.197-7.166 (td, J=15.5, $7.5 \mathrm{~Hz}, 2 \mathrm{H}$, C3,C6- carbazole), 7.021 (s, C3-phenyl), 6.852, 6.836 (d, J=8 Hz, 1H, C5-phenyl),
$6.439,6.424$, (d, J=7.5 Hz, 1H, C6-phenyl), 4.185 ($\mathrm{s}, 2 \mathrm{H}$, methylene- CH_{2}), 3.793 (s, $1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 169.392(\mathrm{C}=\mathrm{O}), 146.501,142.263,134.354$, 132.632, 130.126, 128.941, 127.138, 126.235, 124.432, 122.435, 120.527, 115.008 (aromatic carbons), 53.522 (methylene carbon); MS (ESI) m/z: 400.4 (49\%), 398.3 (49\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{BrFN}_{2} \mathrm{O}: \mathrm{C}, 60.47$; H, 3.55; N, 7.05; Found: C, 60.53 ; H, 3.57; N, 7.04%.
5.3.3.15. 1-(9H-carbazol-9-yl)-2-((3-nitrophenyl)amino)ethan-1-one (14c)

Yield: 48%; MP: $189-191^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 8.261,8.245(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C} 1, \mathrm{C} 8$ - carbazole), 7.913-7.894 (dd, J=9.5, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 4, \mathrm{C} 5-$ carbazole), 7.3627.328 (td, J=7.5, 1.5 Hz, 2H, C2, C7-carbazole), 7.274-7.243 (td, J=6, 1.5 Hz, 2H, C3,C6-carbazole), 6.932 (s, 1H, C2-phenyl), 6.813, 6.797 (d, J=8 Hz, 1H, C4-phenyl), 6.661-6.633 (t, J=7 Hz, 1H, C5-phenyl), 6.592, 6.575 (d, J=8.5 Hz, 1H, C6-phenyl), $4.220\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene- $\left.\mathrm{CH}_{2}\right), 3.815(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $169.931(\mathrm{C}=\mathrm{O}), 148.136,141.520,135.391,134.145,132.515,129.219,127.835$, 126.301, 123.664, 120.392, 116.523, 112.839 (aromatic carbons), 54.229 (methylene carbon); MS (ESI) $m / z: 346.4$ (37\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 69.56; H, 4.38; N, 12.17; Found: C, 69.61; H, 4.38; N, 12.16 \%.

5.3.3.16.1-(9H-carbazol-9-yl)-2-((4-nitrophenyl)amino)ethan-1-one (15c)

Yield: 50\%; MP: 191-192 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 8.259,8.243(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C} 1, \mathrm{C} 8$ - carbazole), 7.931, 7.916 (d, J=7.5 Hz, 2H, C4, C5- carbazole), 7.314-7.294 (td, J=15, 1.5 Hz, 2H, C2, C7- carbazole), 7.251-7.221 (td, J=15, 1.5 Hz, 2H, C3, C6carbazole), 6.992, 6.978 (d, J=7 Hz, 2H, C3, C5-phenyl), 6.621, 6.602 (d, J=9.5 Hz, $2 \mathrm{H}, \mathrm{C} 2, \mathrm{C} 6-\mathrm{phenyl}), 4.162\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene- $\left.\mathrm{CH}_{2}\right) 3.839$ (s, 1H, NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 170.285(\mathrm{C}=\mathrm{O}), 146.517,140.913,134.381,132.155,130.516$, $128.835,126.253,124.793,122.141,116.723$ (aromatic carbons), 54.233 (methylene
carbon); MS (ESI) $m / z: 346.5$ (35\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 69.56; H, 4.38; N, 12.17; Found: C, 69.63; H, 4.39; N, 12.19 \%.

5.3.3.17.1-(9H-carbazol-9-yl)-2-((2-chloro-4-nitrophenyl)amino)ethan-1-one (16c)

Yield: 51%; MP: $195-198^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.312$ (s, $1 \mathrm{H}, \mathrm{C} 3$-phenyl), 8.279-8.256 (dd, J=11.5, 2.5 Hz, 1H, C5-phenyl), 8.091, 8.076 (d, J=7.5 Hz, 2H, C1, C8- carbazole), 7.469-7.451 (dd, J=7.5, 1.5 Hz, 2H, C4, C5- carbazole), 7.378-7.344 (td, J=8, 1.5 Hz, 2H, C2, C7- carbazole), 7.191-7.158 (td, J=9, 1.5 Hz, 2H, C3, C6carbazole), $6.713,6.695(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6$-phenyl), 6.219 (s, 1H, NH), 4.232 (s, 2H, methylene- CH_{2}); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 171.832(\mathrm{C}=\mathrm{O}), 147.413,141.122$, 136.559, 132.642, 130.129, 128.231, 127.243, 126.321, 124.424, 122.111, 120.132, 116.198 (aromatic carbons), 54.332 (methylene carbon); MS (ESI) m/z: 382.6 (25\%), 380.4 (74\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{3}$: C, 63.25 ; H, 3.72; N, 11.06; Found: C, 63.31; H, 3.74; N, 11.04 \%.

5.3.3.18.1-(9H-carbazol-9-yl)-2-((4-chloro-2-nitrophenyl)amino)ethan-1-one (17c)

Yield: 45%; MP: $197-198^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.293$ (s, $1 \mathrm{H}, \mathrm{C} 3$-phenyl), $8.131,8.115$ (d, J=8 Hz, 2H, C1, C8- carbazole), 7.919, 7.905 (d, J=7 Hz, 2H, C4, C5carbazole), 7.371-7.346, (t, J=6 Hz, 2H, C2, C7- carbazole), 7.289-7.202 (m, 3H, C3, C6- carbazole, C5-phenyl), $6.862,6.845(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6$-phenyl), 6.193 (s, 1H, NH), $4.235\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene- $\left.\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 171.635(\mathrm{C}=\mathrm{O})$, $147.715,141.631,137.323,132.893,130.889,128.713,127.617,126.114,124.311$, $122.510,120.113,116.232$ (aromatic carbons), 54.126 (methylene carbon); MS (ESI) $m / z: 382.2$ (24\%), 380.4 (74\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{3}: \mathrm{C}, 63.25$; H, 3.72; N, 11.06; Found: C, 63.33; H, 3.71; N, 11.07 \%.

5.3.3.19.2-((2-(9H-carbazol-9-yl)-2-oxoethyl)amino)benzoic acid (18c)

Yield: 48%; MP: $170-171^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 12.197(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 8.191, 8.175 (d, J=8 Hz, 1H, C3-phenyl), 8.039, 8.023 (d, J=8 Hz, 2H, C1, C8carbazole), 7.842-7.827 (d, J=7.5 Hz, 2H, C4, C5- carbazole), 7.353-7.338 (td, J=7.5, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 2, \mathrm{C} 7$ - carbazole), 7.361-7.346 (td, J=7.5, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 3, \mathrm{C} 6-\mathrm{carbazole})$, 7.256-7.230 (t, J=6.5 Hz, 1H, C5-phenyl), 6.995, 6.918 (m, 2H, C4, C6-phenyl, 6.7186.692 (t, J=6.5 Hz, 1H, C5-phenyl), 4.251 ($\mathrm{s}, 2 \mathrm{H}$, methylene- CH_{2}) $3.813(1 \mathrm{H}, \mathrm{NH})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 183.835(\mathrm{COOH}), 171.117(\mathrm{C}=\mathrm{O}), 146.318,141.216$, 135.314, 132.553, 130.616, 128.219, 127.438, 126.431, 123.192, 121.896, 118.935, 115.361 (aromatic carbons), 53.228 (methylene carbon); MS (ESI) m/z: 345.5 (36\%); Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 73.24; H, 4.68; N, 8.13; Found: C, 73.30; H, 4.69; N, 8.14 \%.
5.3.3.20.1-(9H-carbazol-9-yl)-2-(4-(4-chlorophenyl)piperazin-1-yl)ethan-1-one (19c) Yield: 79%; MP: $172-175^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 8.192,8.176(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 2H,C1, C8- carbazole), 7.941, 7.926 (d, J=7.5 Hz, 2H, C4, C5- carbazole), 7.381-7.350 (td, J=15.5, 1.5 Hz, 2H, C2, C7- carbazole), 7.259-7.226 (td, J=15, 1.5 Hz, 2H, C3, C6carbazole), $7.103,7.090$ (d, J=6.5 Hz, 2H, C3, C5-phenyl), 6.664, 6.646 (d, J=9 Hz, $2 \mathrm{H}, \mathrm{C} 2, \mathrm{C} 6$-phenyl), 4.294 ($\mathrm{s}, 2 \mathrm{H}$, methylene- CH_{2}) 3.223-3.209 (m, 4H, piperazine); 2.739-2.716 (m, 4H, piperazine); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 169.928(\mathrm{C}=\mathrm{O})$, $146.135,139.402,134.815,131.823,129.119,127.325,126.411,125.428,122.385$, 115.459 (aromatic carbons), 53.948 (methylene carbon); 53.334, 50.183 (piperazine carbons); MS (ESI) $m / z: 406.4$ (24\%), 404.1 (74\%); Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}$: C, 71.37; H, 5.49; N, 10.40; Found: C, 71.44; H, 5.47; N, 10.43 \%.
5.3.3.21.1-(9H-carbazol-9-yl)-2-(4-(4-nitrophenyl)piperazin-1-yl)ethan-1-one (20c)

Yield: 71%; MP: $185-187{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 8.168,8.152(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 2H, C1, C8- carbazole), 7.953, 7.936 (d, J=8.5 Hz, 2H, C4, C5- carbazole), 7.485-7.453 (td, J=16, 1.5 Hz, 2H, C2, C7- carbazole), 7.281-7.251 (td, J=15, 1.5 Hz, 2H, C3, C6carbazole), $7.193,7.179$ (d, J=7 Hz, 2H, C3, C5-phenyl), $6.651,6.633$ (d, J=9 Hz, 2H, C2, C6-phenyl), 4. 297 (s, 2H, methylene- CH_{2}) 3.251-3.227 (m, 4H, piperazine); 2.7382.715 ($\mathrm{m}, 4 \mathrm{H}$, piperazine); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 169.893(\mathrm{C}=\mathrm{O})$, 146.201, $139.919,134.631,131.725,129.334,127.452,126.591,125.762,122.492,115.629$ (aromatic carbons), 54.339 (methylene carbon); 52.034, 50.214 (piperazine carbons); MS (ESI) $m / z: 415.1$ (42\%); Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 69.55; H, 5.35; N, 13.52; Found: C, 69.64; H, 5.36; N, 13.56 \%.

5.3.3.22. 1-(9H-carbazol-9-yl)-2-(cyclopropylamino)ethan-1-one (S13)

Yield: 72%; MP: $105-106{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta(\mathrm{ppm}): 8.112,8.096(\mathrm{~d}$, $\mathrm{J}=13 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.483-7.466(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-CH$), 7.390-7.358(\mathrm{t}, \mathrm{J}=4.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 7.163-7.134 (t, J=6 Hz, 2H, Ar-CH), 5.754 (s, 2H, methylene-CH2), $3.909(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.569-0.593\left(\mathrm{~m}, 5 \mathrm{H}\right.$, cyclopropyl); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): $169.905(\mathrm{C}=\mathrm{O}), 139.808,125.901,123.490,120.459,119.426,110.745$ (aromatic carbons), 53.435 (methylene carbon), 24.067, 7.756 (cyclopropyl carbons); ESI-MS (m/z) $=265.6(35 \%)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 77.25 ; \mathrm{H}, 6.10 ; \mathrm{N}, 10.60$; Found: C, 77.48 ; H, 6.12; N, 10.58 \%.

5.3.3.23. 1-(9H-carbazol-9-yl)-2-(cyclobutylamino)ethan-1-one (S14)

Yield: 67%; MP: $109-110^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.025,8.010(\mathrm{~d}$, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.376-7.334(\mathrm{dd}, \mathrm{J}=13,6.5 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{CH}), 7.196-7.183(\mathrm{t}$, $\mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 7.171-7.155 (t, J=8 Hz, 2H, Ar-CH), 3.578 ($\mathrm{s}, 2 \mathrm{H}$, methyleneCH_{2}), $3.158(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.113-0.950\left(\mathrm{~m}, 7 \mathrm{H}\right.$, cyclobutyl); ${ }^{13} \mathrm{C}$ NMR (125 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 169.791(\mathrm{C}=\mathrm{O}), 139.642,125.708,123.260,120.292,119.193$, 110.529 (aromatic carbons), 52.919 (methylene carbon), 38.451, 24.067, 15.123 (cyclobutyl carbons); ESI-MS (m/z) = 279.3 (25\%). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$: C, 77.67 ; H, 6.52; N, 10.06; Found: C, 77.82; H, 6.54; N, 09.99 \%.

5.3.3.24.1-(9H-carbazol-9-yl)-2-(cyclopentylamino) ethan-1-one (S15)

Yield: 71%; MP: $112-113{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.016,8.001$ (d, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.367-7.325(\mathrm{dd}, \mathrm{J}=13,6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.187-7.174(\mathrm{t}$, $\mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 7.162-7.146 (t, J=8 Hz, 2H, Ar-CH), 3.569 ($\mathrm{s}, 2 \mathrm{H}$, methyleneCH_{2}), $3.149(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.369-1.250\left(\mathrm{~m}, 9 \mathrm{H}\right.$, cyclopentyl); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 168.992(\mathrm{C}=\mathrm{O}), 139.352,125.428,122.995,120.089,119.057$, 110.243 (aromatic carbons), 54.028 (methylene carbon), 47.571, 33.159, 24.067 (cyclopentyl carbons); ESI-MS (m/z) = 293.2 (25\%). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$: C, $78.05 ;$ H, 6.90 ; N, 9.58; Found: C, 78.29; H, 6.93; N, 9.54 \%.
5.3.3.25. 1-(9H-carbazol-9-yl)-2-(cyclohexylamino)ethan-1-one (S16)

Yield: 65\%; MP: $115-116{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta(\mathrm{ppm}): 8.112,8.096$ (d, $\mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 7.483-7.466 (d, J=8.5 Hz, 2H, Ar-CH), 7.390-7.358 (td, J=8, 1 Hz, 2H, Ar-CH), 7.163-7.134 (td, J=7.5, $1 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-CH), 3.551 (s, 2H, methyleneCH_{2}), $3.165(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.113-1.018\left(\mathrm{~m}, 11 \mathrm{H}\right.$, cyclohexyl); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 169.325(\mathrm{C}=\mathrm{O}), 139.819,125.883,123.480,120.454,119.400$, 110.745 (aromatic carbons), 52.921 (methylene carbon), 38.582, 28.256, 24.280, 20.122 (cyclohexyl carbons); ESI-MS (m/z) $=307.2$ (25\%). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 78.40 ; \mathrm{H}, 7.24$; N, 9.14; Found: C, 78.62 ; H, 7.25; N, 9.16%.
5.3.3.26. 1-(9H-carbazol-9-yl)-2-(cycloheptylamino)ethan-1-one (S17)

Yield: 63%; MP: $118-119^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 8.121,8.105(\mathrm{~d}$, $\mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar-CH}), 7.492-7.475$ (d, J=8.5 Hz, 2H, Ar-CH), 7.399-7.367 (td, J=8, 1
$\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 7.172-7.143 (td, J=7.5, $1 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-CH), 3.572 (s, 2H, methyleneCH_{2}), 3.128 (s, 1H, NH), 2.109-0.996 (m, 13H, cycloheptyl); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 169.725(\mathrm{C}=\mathrm{O}), 139.552,125.521,122.294,120.102,119.268$, 110.313 (aromatic carbons), 53.169 (methylene carbon), 37.975, 30.091, 25.274, 19.879 (cycloheptyl carbons); ESI-MS (m/z) = 321.5 (25\%). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 78.71 ; \mathrm{H}, 7.55 ; \mathrm{N}, 8.74$; Found: C, $78.90 ; \mathrm{H}, 7.57 ; \mathrm{N}, 8.68 \%$.

5.3.3.27. 1-(9H-carbazol-9-yl)-2-(cyclooctylamino)ethan-1-one (S18)

Yield: 61%; MP: $121-123^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.006,7.981(\mathrm{~d}$, $\mathrm{J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.459-7.434(\mathrm{dd}, \mathrm{J}=12.5,6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.180-7.167(\mathrm{t}$, $\mathrm{J}=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 7.155-7.139 (t, J=6 Hz, 2H, Ar-CH), 3.312 ($\mathrm{s}, 2 \mathrm{H}$, methyleneCH_{2}), $2.891(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.467-0.954\left(\mathrm{~m}, 15 \mathrm{H}\right.$, cyclooctyl); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 168.698(\mathrm{C}=\mathrm{O}), 139.691,125.702,122.578,119.971,118.997$, 110.025 (aromatic carbons), 56.005 (methylene carbon), 49.794, 36.215, 27.193, 26.532, 20.384 (cyclooctyl carbons); ESI-MS $(\mathrm{m} / \mathrm{z})=335.4$ (25\%). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 79.00 ; \mathrm{H}, 7.84 ; \mathrm{N}, 8.38$; Found: C, $79.21 ; \mathrm{H}, 7.85 ; \mathrm{N}, 8.35 \%$.

5.3.4. Antitubercular screening

The synthesized compounds were screened for antitubercular activity against Mtb H37Rv by MABA method. The potency of the compounds was recorded as MIC (Table 5-13). The relationship between the structure and activity was established and was found that the nitro compounds ($\mathbf{1 4 c}, \mathbf{1 5 c}, \mathbf{1 6 c}$ and $\mathbf{1 7} \mathbf{c}$) were most active among all the screened compounds at MIC of $1.56 \mu \mathrm{~g} / \mathrm{mL}$. The strong electron withdrawing nature of nitro group might have influenced the biological activity of the compounds. The di-substituted halogen compounds (10c, 11c, 12c) were better over the mono substituted halogen compounds (3c, 4c, 5c, 6c, 7c, 8c, 9c) at MIC $3.13 \mu \mathrm{~g} / \mathrm{mL}$ and this
could be due to effective binding into the active site of the target. Further, the nitro compounds were more active in comparison to the di-halogen compounds. The linker was also found to have an essential role in the activity. A drastic reduction in activity was observed in compounds 19c and 20c, where the acyl linker was replaced with piperazinyl type linker and this could be due restricted rotation of single bond in piperazinyl linker. Different substitutions on the phenyl ring altered the activity, while the carbazole core maintained the activity at micro molar range. Therefore, it can be inferred that the carbazole core and nitro substitution on the phenyl ring are important for producing antitubercular activity.

5.3.5. Antibacterial screening

The chlorpromazine and several phenothiazines were also reported to be effective against other bacterial strains. Therefore, we extended our study to screen our compounds against S. aureus and E. coli by disc diffusion method. Compounds $\mathbf{1 4} \mathbf{c}$, 15c, 16c and 17 c were most active among all the compounds screened against S. aureus, having MIC of $0.98 \mu \mathrm{~g} / \mathrm{mL}$. The activity was reduced against E. coli and the most active compounds produced MIC of $7.81 \mu \mathrm{~g} / \mathrm{mL}$ (Table 5-13). It was observed that the nitro compounds were more active against S. aureus than the di-halogen substituted compounds, but it remained same in E. coli. The difference in activity between S. aureus and E. coli could be due to their difference in permeability of the compounds across the cell wall.

Code	R/n	MIC in $\mu \mathrm{g} / \mathbf{m L}(\boldsymbol{\mu} \mathbf{M})^{\mathrm{a}}$	MIC in $\mu \mathrm{g} / \mathrm{mL}(\mu \mathrm{M})^{\mathrm{b}}$	MIC in $\mu \mathrm{g} / \mathrm{mL}(\mu \mathrm{M})^{\mathrm{c}}$
1 c	-	62.50 (256.47)	62.50 (256.47)	50 (205.17)
2c	H	15.63 (52.03)	31.25 (104.04)	25 (83.23)
3 c	$2-\mathrm{Cl}$	15.63 (46.68)	31.25 (93.33)	25 (74.67)
4 c	$3-\mathrm{Cl}$	7.81 (23.32)	15.63 (46.68)	12.5 (37.33)
5 c	$4-\mathrm{Cl}$	7.81 (23.32)	15.63 (46.68)	12.5 (37.33)
6 c	3-F	7.81 (24.53)	15.63 (49.09)	12.5 (39.26)
7 c	4-F	7.81 (24.53)	15.63 (49.09)	12.5 (39.26)
8 c	$3-\mathrm{Br}$	7.81 (20.59)	15.63 (41.21)	12.5 (32.95)
9c	$4-\mathrm{Br}$	7.81 (20.59)	15.63 (41.21)	12.5 (32.95)
10c	3,5-diCl	1.95 (5.28)	7.81 (21.15)	3.13 (8.47)
11c	$3,5-\mathrm{diBr}$	1.95 (4.25)	7.81 (17.04)	3.13 (6.83)
12c	3-Cl,4-F	1.95 (5.52)	7.81 (22.13)	3.13 (8.87)
13 c	$2-\mathrm{Br}, 4-\mathrm{F}$	3.91 (9.84)	7.81 (19.66)	6.25 (15.73)
14 c	$3-\mathrm{NO}_{2}$	0.98 (2.83)	7.81 (22.61)	1.56 (4.51)
15 c	$4-\mathrm{NO}_{2}$	0.98 (2.83)	7.81 (22.61)	1.56 (4.51)
16c	$2-\mathrm{Cl}, 4-\mathrm{NO}_{2}$	0.98 (2.58)	7.81 (20.56)	1.56 (4.10)
17 c	$2-\mathrm{NO}_{2}, 4-\mathrm{Cl}$	0.98 (2.58)	7.81 (20.56)	1.56 (4.10)
18c	$2-\mathrm{COOH}$	7.81 (22.67)	15.63 (45.38)	12.5 (36.29)
19c	4-Cl	7.81 (19.33)	15.63 (38.69)	12.5 (30.94)
20c	$4-\mathrm{NO}_{2}$	3.91 (9.43)	7.81 (18.84)	3.13 (7.55)
S13	1	15.63 (59.13)	125 (472.89)	25 (94.57)
S14	2	15.63 (56.15)	125 (449.05)	25 (89.81)
S15	3	7.81 (26.71)	62.50 (213.76)	25 (85.50)
S16	4	3.90 (12.72)	31.25 (101.98)	12.5 (40.79)
S17	5	15.63 (48.77)	62.50 (195.04)	25 (78.01)
S18	6	15.63 (46.73)	125 (373.73)	50 (149.49)
Chlorpromazine	-	7.81 (24.49)	15.63 (49.01)	12.5 (39.20)
Ciprofloxacin	-	1.95 (5.88)	3.91 (11.80)	3.13 (9.44)
Pyrazinamide	-	-	-	3.13 (25.42)

Table 5-13: Antitubercular and antibacterial activities of carbazole derivatives
${ }^{a}$ Minimum Inhibitory Concentration (MIC) against S. aureus (ATCC 25323)
${ }^{\mathrm{b}}$ Minimum Inhibitory Concentration (MIC) against E. coli (ATCC35218)
${ }^{c}$ Minimum Inhibitory Concentration (MIC) against M. tuberculosis H37Rv (ATCC 27294)

5.3.6. BBB permeability screening

BBB permeability is an important determinant of drugs to produce CNS effects and therefore, it is imperative to check the BBB permeability of compounds required to act peripherally. It is particularly to avoid inadvertent side effects and possible toxicity. Therefore, all the developed carbazole derivatives were screened for BBB permeability by Parallel artificial membrane permeability assay (PAMPA) to ascertain their effect on CNS. The permeability of the compounds was compared with commercial drugs and classified as high permeable (CNS+), low permeable (CNS-) and permeable uncertain (CNS+/-). The effective permeability (Pe) of chlorpromazine and diazepam was found as 6.1×10^{-6} and $12.4 \times 10^{-6} \mathrm{~cm} / \mathrm{s}$, respectively and were classified as high permeable drugs, whereas, the effective permeability of atenolol, verapamil and levofloxacin was found at $1.1 \times 10^{-6}, 0.0$ and $0.0 \mathrm{~cm} / \mathrm{s}$, respectively and were classified as low permeable drugs. The test compounds ($\mathbf{1 c}$ to $\mathbf{2 0} \mathbf{c}$) have produced effective permeability in the range from 2.5×10^{-6} to $4 \times 10^{-6} \mathrm{~cm} / \mathrm{s}$ and were classified as permeability uncertain (Table 5-14). The reduced BBB permeability of the test compounds is expected to diminish the CNS effects in comparison to chlorpromazine.

5.3.7. In-vitro cytotoxicity screening

A drug entering the human system should be free from toxicity towards normal cells. Therefore, all the compounds were tested against kidney epithelial (VERO) cells to check their toxicity. The 50% cytotoxicity concentration $\left(\mathrm{CC}_{50}\right)$ determined was in the range of 90.7 to $207.3 \mu \mathrm{~g} / \mathrm{mL}$ (Table 5-15), indicating that the compounds were free from toxicity towards mammalian cells. The drug molecules should be selective towards a desired activity to avoid unwanted side effects. Here, the compounds should kill the microbial organisms but not the normal human cells. The selectivity index (SI) was calculated by dividing the obtained cytotoxicity $\left(\mathrm{CC}_{50}\right)$ with the antitubercular

MIC. The potent compounds ($\mathbf{1 4} \mathbf{c}$ to $\mathbf{1 7 c}$) showed SI more than 63 , therefore, they were selective towards $M t b$ with less or no mammalian cell toxicity.

Compound Code	$\mathrm{P}_{\mathrm{e}} \times 10^{-6} \mathrm{~cm} / \mathrm{s}$	Classification
Chlorpromazine	6.1 ± 0.059	CNS+
Atenolol	1.1 ± 0.021	CNS-
Verapamil	0.0	CNS-
Diazepam	12.4 ± 0.263	CNS+
Levofloxacin	0.0	CNS-
1 c	2.5 ± 0.020	CNS+/-
2c	2.6 ± 0.128	CNS+/-
3 c	2.8 ± 0.047	CNS+/-
4 c	2.8 ± 0.025	CNS+/-
5c	2.7 ± 0.061	CNS+/-
6 c	2.6 ± 0.103	CNS+/-
7 c	2.6 ± 0.058	CNS+/-
8 c	3.0 ± 0.033	CNS+/-
9 c	3.0 ± 0.084	CNS+/-
10c	3.2 ± 0.391	CNS+/-
11c	3.3 ± 0.075	CNS+/-
12c	3.3 ± 0.419	CNS+/-
13c	3.4 ± 0.088	CNS+/-
14 c	2.9 ± 0.026	CNS+/-
15 c	2.9 ± 0.035	CNS+/-
16c	3.3 ± 0.071	CNS+/-
17 c	3.3 ± 0.233	CNS+/-
18c	2.8 ± 0.086	CNS+/-
19c	4.0 ± 0.152	CNS+/-
20c	3.9 ± 0.069	CNS+/-
S16	5.1 ± 0.271	CNS+

Table 5-14: BBB permeability of commercial drugs and carbazole derivatives
Data are expressed as mean $\pm \operatorname{SEM}(\mathrm{n}=3)$
CNS $+=$ high BBB permeation compounds, i.e. $\mathrm{Pe}=>4.0 * 10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}$
CNS- $=$ low BBB permeation compounds, i.e. $\mathrm{Pe}=<2.0 * 10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}$
$\mathrm{CNS}+/-=\mathrm{BBB}$ permeation uncertain compounds, i.e. $\mathrm{Pe}=4.0-2.0 * 10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}$

Compound Code	CC $_{\mathbf{5 0}}(\boldsymbol{\mu g} / \mathbf{m L})^{\mathbf{a}}$	Selectivity Index ${ }^{\mathbf{b}}$
1c	207.31 ± 9.825	4.1
2c	171.24 ± 0.451	6.8
3c	167.68 ± 0.637	6.7
4c	161.35 ± 0.781	12.9
5c	162.13 ± 0.732	13.0
6c	168.20 ± 0.747	13.4
7c	165.29 ± 10.542	13.2
8c	168.71 ± 0.768	13.5
9c	133.45 ± 0.393	10.7
10 c	138.18 ± 10.189	44.1
11 c	125.33 ± 0.806	40.0
12 c	129.17 ± 0.781	41.2
13 c	122.72 ± 0.625	19.6
14 c	104.56 ± 0.753	67.0
15 c	98.44 ± 0.788	63.1
16 c	105.10 ± 10.190	67.4
17 c	99.42 ± 10.167	63.7
18 c	115.28 ± 0.691	9.2
19 c	95.89 ± 0.554	7.7
20 c	90.77 ± 8.332	29.0
S16	135.04 ± 2.597	10.8

Table 5-15: Cytotoxicity study of carbazole derivatives against VERO cells
${ }^{\text {a }}$ Data are expressed as mean $\pm \operatorname{SEM}(\mathrm{n}=3)$
${ }^{\mathrm{b}}$ Selectivity index is ratio of cytotoxicity $\left(\mathrm{CC}_{50}\right)$ to $M t b$ MIC

5.3.8. NDH-2 inhibitory screening

Compounds that produced strongest growth inhibition against whole $M t b$ were screened for NDH-2 inhibition to understand their mechanism of action. Percentage inhibition of residual NADH oxidation activity was recorded through NADH:menadione oxidoreduction assay. Among the screened compounds, 15c produced the highest percentage inhibition (25.80%) at $50 \mu \mathrm{M}$ concentrations, followed by $\mathbf{1 4 c}, \mathbf{1 6 c}$ and $\mathbf{1 7 c}$ with $17.84,16.23$ and 15.51 percent inhibitions respectively. Rest of the compounds produced around 10 percent inhibitions at $50 \mu \mathrm{M}$ concentration (Table 5-16). None of
the compounds in the study produced greater than 50% inhibition at $50 \mu \mathrm{M}$ concentration. The IC_{50} was recorded as greater than 50 micromolar $(>50 \mu \mathrm{M})$.

Compound Code	\% inhibition of residual NADH oxidation activity at $\mathbf{5 0 \mu M}$ concentration
10 c	13.09 ± 2.134
11 c	10.48 ± 1.082
12 c	7.92 ± 1.590
13 c	10.86 ± 1.061
14 c	17.84 ± 8.735
15 c	25.80 ± 1.771
16 c	16.23 ± 4.931
17 c	15.51 ± 2.082
HQNO	$82.81 \pm 0.524^{\mathrm{x}, \mathrm{y}, \mathrm{z}, @, \#, \mathrm{~S}, \%, \&}$

Table 5-16: NDH-2 inhibitory study of carbazole derivatives. Data expressed as a Mean \pm SEM (n=3). ${ }^{\mathrm{x}} \mathrm{P}<0.05$ compared to $10 \mathrm{c},{ }^{\mathrm{y}} \mathrm{P}<0.05$ compared to $11 \mathrm{c},{ }^{\mathrm{z}} \mathrm{P}<0.05$ compared to 12 c , ${ }^{@} \mathrm{P}<0.05$ compared to $13 \mathrm{c}, \stackrel{ }{ }{ }^{\#} \mathrm{P}<0.05$ compared to $14 \mathrm{c},{ }^{\$} \mathrm{P}<0.05$ compared to $15 \mathrm{c},{ }^{\%} \mathrm{P}<0.05$ compared to $16 \mathrm{c},{ }^{\&} \mathrm{P}<0.05$ compared to 17 c [One- way ANOVA followed by Newmann-Keuls test].

Chapter 5: Section 4

Results and Discussion

5.4. Section 4: Molecular Docking, Synthesis, Characterization and Biological Profiling of Biphenyl Derivatives

5.4.1. Extra precision molecular docking

The biphenyl derivatives were docked against the protein structure of Mtb NDH-2 that was obtained through homology modeling. All the molecules in the study reached quinone binding motif ("333-AQxAxQ-338") and produced the essential interactions. The docking scores were observed in the range of -5.2194 to $-1.5277 \mathrm{Kcal} / \mathrm{mol}$. Molecules 15b, 16b and 17b bind to the active site with binding energy of -5.2023, 5.2194 and $-5.1905 \mathrm{Kcal} / \mathrm{mol}$, respectively. The essential hydrogen bond interaction with Ala-333, a critical residue in quinone binding, was conserved (Figure 5-8 \& Table 5-17). The molecules can arrest the synthesis of ATP by inhibiting NDH-2.

6b

14b

Figure 5-8: Docking poses of molecules 6b and 14b against NDH-2

Ligand code	Lowest binding energy (Kcal/mol)	Residues forming the quinone binding motif (residues forming H-bonding with ligand were indicated in bold)
1b	-3.1018	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
2b	-3.5661	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
3b	-3.5824	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
4b	-3.5710	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
5b	-3.4999	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
6b	-3.6014	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
7b	-3.6028	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
8b	-3.6132	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
9b	-3.5907	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
Alab	-3.8011	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
11b	-3.8146	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
12b	-3.9038	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
13b	-4.1121	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
14b	-4.5008	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
15b	-5.2023	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 16b-5.2194
17b	-5.1905	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338
18b	-3.5851	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
hydrogen	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)	
S12	-2.9814	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
20b	-2.9055	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
S7	-1.5277	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
S8	-1.6082	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
S9	-1.9906	Ala-333,Gln-334,Gly-335, Ala-336,Ile-337,Gln-338 (no hydrogen bond interaction)
hydrogen bond interaction)		

Table 5-17: Docking of designed biphenyl molecules against NDH-2 of Mtb

5.4.2. Molecular property and toxicity prediction

Computational study was performed using OSIRIS DataWarrior to predict the molecular property of the designed compounds. Different molecular properties could alter the biological activity. The designed molecules should follow 'Lipinski's rule' to be drug-like. All the molecules in biphenyl series followed all the rules viz. molecular weight, partition coefficient (LogP), hydrogen bond donor and hydrogen bond acceptor. cLog P of the molecules was found in the range between 1.2907 and 4.4578. Molecules $\mathbf{1 4 b}, \mathbf{1 5 b}, \mathbf{1 6}$, and $\mathbf{1 7 b}$ showed cLogP of $2.0858,2.0858,2.6918,2.6918$ respectively. Topological polar surface area (TPSA) was also calculated for all the molecules in biphenyl series. It was found in the range between 20.31 and 78.16 . Molecules $\mathbf{1 4 b}$, $\mathbf{1 5 b} \mathbf{1 6}$, and $\mathbf{1 7 b}$ showed the highest TPSA at 78.16 , while molecules $\mathbf{2 b}$ to $\mathbf{1 3 b}$ at 32.34. The cycloalkane derivatives (S7-S12) also showed TPSA at 32.34. Druglikeness was also found in the desired range (Table 5-18). Toxicities viz. mutagenicity, tumorigenicity, and irritancy were predicted through OSIRIS DataWarrior. None of the molecules in the study were found mutagenic and tumorigenic, except $\mathbf{1 b}$. Molecules 1b, 19b, 20b, and S10 were predicted for some kind of associated irritancy (Table 518). Druglikeness and reduced toxicity of biphenyl molecules could be rewarded in further development as drug.
Results and Discussion

U	∞	O	∞	∞	\bigcirc	∞	\bigcirc	∞	응		$=$	∞	∞	∞	응	∞	∞	∞	\sim	\sim	の	\bigcirc	－	O	
$\frac{\boxed{4}}{2}$	\sim	m	n	m	N	N	\sim	N																	
$\frac{\mathbf{N}}{\mathbf{Z}}$	\sim	m	\cdots	m	n	m	ナ	ナ	m	m	m	n													
$\stackrel{\underset{\sim}{\boldsymbol{n}}}{ }$	m	n	n	n	in	in	in	n	in	n	in	in	in	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	in	\bigcirc	in	n	in	0	
\vec{y}	m	m	ナ	\checkmark	\checkmark	\checkmark	－	ナ	－	\cdots	in	in	n	\bigcirc	\bigcirc	N	N	in	in	N	m	m	m	\cdots	n
$\underset{X}{U}$	$\left\|\begin{array}{l} n \\ n \\ 0 \end{array}\right\|$	$\begin{aligned} & \overrightarrow{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & t \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & t \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \text { U } \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left.\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{n}{c}$	$\stackrel{\star}{\underset{o}{s}}$	$\stackrel{O}{\underset{0}{0}}$	$\begin{aligned} & 0 \\ & \underset{0}{2} \end{aligned}$	$\stackrel{N}{\mathrm{~N}}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		
\sum	$\begin{aligned} & \infty \\ & n \\ & 0 \\ & 0 \end{aligned}$	$\left.\begin{aligned} & \infty \\ & n \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\stackrel{n}{n}$	$\begin{aligned} & 0 \\ & n \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & \hat{n} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & n \\ & 0 \end{aligned}$	$\left.\begin{aligned} & 0 \\ & n \\ & 0 \end{aligned} \right\rvert\,$	$\begin{aligned} & 2 \\ & \tilde{0} \end{aligned}$	$\begin{aligned} & \infty \\ & n \\ & 0 \end{aligned}$	$\left\|\begin{array}{c} \infty \\ n \\ 0 \end{array}\right\|$	$\stackrel{\infty}{n}$	$\begin{aligned} & 0 \\ & n \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & n \\ & 0 \end{aligned}$	$\stackrel{n}{n}$	$\left\|\begin{array}{l} n \\ \hat{n} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ n \\ 0 \end{array}\right\|$	$\stackrel{n}{n}$	$\begin{aligned} & \infty \\ & ? \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} \infty \\ n \\ 0 \end{array}\right\|$	$\begin{aligned} & 0 \\ & n \\ & 0 \\ & 0 \end{aligned}$	n^{∞}	
－	$\begin{aligned} & n \\ & n \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & n \\ & 0 \end{aligned}$	$?$	n	$\left\lvert\, \begin{aligned} & 7 \\ & \\ & 0 \end{aligned}\right.$	$?$	$\left\lvert\, \begin{gathered} \underset{\sim}{n} \\ 0 \end{gathered}\right.$	$\left\|\begin{array}{l} t \\ n \\ 0 \end{array}\right\|$	$\stackrel{t}{n}$	$\begin{gathered} \infty \\ \dot{0} \\ 0 \end{gathered}$	$\stackrel{\infty}{\infty}+$	$\stackrel{N}{n}$	$\begin{aligned} & n \\ & n \\ & 0 \end{aligned}$	$\left.\begin{aligned} & 0 \\ & n \\ & 0 \end{aligned} \right\rvert\,$	$\underset{n}{n}$	\bar{n}	$\left\lvert\, \begin{gathered} \infty \\ \substack{\infty \\ \hline} \end{gathered}\right.$	$\left\|\begin{array}{l} 0 \\ \vdots \\ 0 \end{array}\right\|$	$\begin{gathered} n \\ n \\ 0 \end{gathered}$	－	\because	$\begin{aligned} & n \\ & n \\ & 0 \end{aligned}$	\mathfrak{n}		
$\underset{\sim}{\sim}$	エ	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	I	\pm	Z	Z	Z		Z
	エ	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	乙	Z
\sum	エ	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
$\overline{\mathrm{a}}$	$\stackrel{\sim}{n}$	$\left\|\begin{array}{c} \infty \\ \underset{\sim}{n} \end{array}\right\|$	$\underset{\substack{n \\ \underset{N}{2} \\ \hline}}{ }$	$\left\|\begin{array}{c} m \\ n \\ i \end{array}\right\|$	$\left\|\begin{array}{c} m \\ n \\ i \end{array}\right\|$	$\begin{aligned} & \pm \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \pm \\ & 0 \end{aligned}$	$\stackrel{0}{9}$	$\stackrel{\rightharpoonup}{\dot{0}}$	$\stackrel{m}{n} \underset{i}{n}$	$\stackrel{\rightharpoonup}{\dot{0}}$	ڤ.	$\begin{aligned} & \pm \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{\infty} \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \hat{\infty} \\ & \underset{1}{\mathrm{i}} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\infty} \\ & i \end{aligned}$	$\left\|\begin{array}{l} \bar{\infty} \\ i \\ i \end{array}\right\|$	$\frac{N}{\sim}$	$\left\|\begin{array}{c} m \\ \dot{0} \end{array}\right\|$	$\stackrel{m}{n}$	$\begin{aligned} & \infty \\ & \infty \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{-}{2} \end{aligned}$	$0 .$		
$\left\lvert\, \begin{aligned} & \overrightarrow{6} \\ & \omega \\ & \hat{l} \end{aligned}\right.$	$\begin{aligned} & \bar{n} \\ & \underset{N}{\lambda} \end{aligned}$	$\left\|\begin{array}{c} j \\ m \\ i \\ m \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \vec{r} \\ & \tilde{j} \\ & \underset{n}{n} \end{aligned}\right.$	$\left\|\begin{array}{l} \underset{\sim}{n} \\ \underset{n}{n} \end{array}\right\|$	$\left\|\begin{array}{c} \mathbf{j} \\ n \\ i \\ m \end{array}\right\|$	$\left\|\begin{array}{l} \underset{\sim}{n} \\ \underset{\sim}{n} \end{array}\right\|$	$\left\|\begin{array}{c} \dot{c} \\ \underset{~}{n} \\ m \end{array}\right\|$	$\left\|\begin{array}{l} \underset{\sim}{n} \\ \underset{\sim}{n} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \mathbf{r} \\ & \mathbf{n} \\ & \mathrm{i} \\ & \mathrm{~m} \end{aligned}\right.$	$\begin{aligned} & \dot{j} \\ & \underset{\sim}{i} \\ & \underset{m}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{n} \\ \mathrm{~m} \end{gathered}$	$\begin{gathered} \underset{\sim}{c} \\ \underset{\sim}{u} \end{gathered}$	$\begin{aligned} & \mathbf{j} \\ & \mathbf{m} \\ & \mathrm{j} \\ & \mathrm{~m} \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \\ \underset{\sim}{\infty} \\ \hline \end{gathered}\right.$	$\frac{0}{\infty} \underset{\sim}{\infty}$	$\frac{0}{\substack{\infty \\ r}}$		$\left\|\begin{array}{l} \mathbf{t} \\ \mathbf{0} \\ \mathbf{O} \end{array}\right\|$	$\begin{aligned} & \underset{\sim}{2} \\ & \stackrel{0}{2} \\ & \stackrel{1}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{0} \\ & \stackrel{y}{\mathrm{~N}} \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \mathbf{y} \\ m \\ \mathrm{j} \\ m \end{gathered}\right.$	$\left\|\begin{array}{c} \vec{j} \\ \mathbf{n} \\ \mathrm{j} \end{array}\right\|$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \underset{\sim}{i} \\ & m \end{aligned}$		＋
$\left\|\begin{array}{l} 4 \\ \sqrt{2} \end{array}\right\|$	$\frac{0}{N}$	$\left\lvert\, \begin{aligned} & \underset{\sim}{\infty} \\ & \hline \end{aligned}\right.$	$\underset{N}{N}$	$\overline{\mathrm{a}}$	৯ী	$\left\lvert\, \begin{aligned} & 0 \\ & \infty \\ & \underset{N}{\infty} \end{aligned}\right.$	$\stackrel{N}{\mathrm{~N}}$	$\begin{aligned} & \text { הे } \\ & \text { N } \end{aligned}$	$\frac{0}{N}$	$\frac{\bar{m}}{m}$	$\underset{\sim}{\underset{N}{2}}$	$\stackrel{2}{\lambda}$	ò	$\frac{0}{m}$	$\underset{\sim}{\mathrm{O}}$	$\frac{\infty}{m}$	$\left.\frac{0}{m} \right\rvert\,$	$\left\|\begin{array}{c} \text { הे } \end{array}\right\|$	$\left.\begin{gathered} 0 \\ m \\ m \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} \text { of } \\ \text { m } \end{array}\right\|$	$\stackrel{\rightharpoonup}{n}$	$\left\|\begin{array}{c} \overrightarrow{0} \\ \underset{N}{2} \end{array}\right\|$	$\underset{\mathrm{N}}{\mathrm{~N}}$		\sim
$\stackrel{\hat{\mu}}{\boldsymbol{\theta}}$	0					－					－			－	－	－	－	N	－	－					
$\stackrel{\rightharpoonup}{n}$	N	m	m	m	m	m	n	m	m	m	n	m	m	\bigcirc	\bigcirc	\bigcirc	\bigcirc	n	\checkmark	N	m	m	n	\cdots	n
$\left\|\begin{array}{l} 0 \\ 00 \\ 00 \\ 0 \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & n \\ & n \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0 \\ & \underset{~}{1} \\ & \underset{~}{1} \end{aligned}\right.$	$\begin{aligned} & \underset{\sim}{\infty} \\ & 0 \\ & \vdots \\ & i \\ & i \end{aligned}$	$\left\|\begin{array}{c} \underset{o}{o} \\ 0 \\ \cdots \\ i \end{array}\right\|$	$\left\|\begin{array}{c} N \\ \infty \\ 0 \\ n \\ n \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \cdots \\ n \\ n \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \\ n \\ 1 \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \stackrel{\infty}{n} \\ i \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{\sim}{n} \\ & 1 \end{aligned}\right.$	$\begin{aligned} & \infty \\ & \underset{\sim}{t} \\ & \stackrel{1}{2} \end{aligned}$	$\left.\begin{aligned} & \pm \\ & \vdots \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{2} \\ & \stackrel{1}{r} \end{aligned}$	$\begin{aligned} & t \\ & 0 \\ & 0 \\ & 0 \\ & i \end{aligned}$	$\left\|\begin{array}{c} 0 \\ 0 \\ \vdots \\ i \\ i \end{array}\right\|$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & i \\ & i \end{aligned}$			$\left\|\begin{array}{l} \underset{2}{2} \\ \underset{~}{1} \end{array}\right\|$	$\begin{gathered} \underset{N}{N} \\ \underset{i}{n} \end{gathered}$	$\left\|\begin{array}{c} \bar{n} \\ \underset{~}{i} \end{array}\right\|$	$\stackrel{\stackrel{\circ}{\mathrm{N}}}{+}$	$\stackrel{\substack{\dot{f} \\ \dot{f} \\ \hline}}{ }$	$\stackrel{ \pm}{\underset{\sim}{7}}$	$\stackrel{1}{0}$	\sim
$\begin{aligned} & 200 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & - \\ & \underset{n}{2} \\ & \underset{n}{2} \end{aligned}$	$\left.\begin{gathered} \pm \\ \stackrel{\rightharpoonup}{3} \\ \vdots \\ \dot{n} \end{gathered} \right\rvert\,$	$\begin{gathered} \dot{m} \\ m \\ 0 \\ \dot{m} \end{gathered}$	$\begin{gathered} \pm \\ m \\ 0 \\ \dot{m} \end{gathered}$	$\left.\begin{gathered} \dot{m} \\ m \\ \vdots \\ \dot{m} \end{gathered} \right\rvert\,$	$\left\lvert\, \begin{gathered} N \\ \infty \\ \underset{\sim}{9} \\ \underset{m}{2} \end{gathered}\right.$	$\begin{array}{\|c\|} \hline \\ \infty \\ 0 \\ \underset{m}{n} \\ \hline \end{array}$	$\left\|\begin{array}{c} 0 \\ \underset{N}{n} \\ \underset{m}{n} \end{array}\right\|$	$\begin{array}{\|c} \mathbf{o} \\ \underset{N}{n} \\ \underset{\sim}{n} \\ \hline \end{array}$		$\begin{gathered} \infty \\ \stackrel{\infty}{n} \\ \stackrel{7}{f} \\ \dot{r} \\ \hline \end{gathered}$	$\begin{gathered} \underset{\sim}{\underset{r}{n}} \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \dot{m} \\ & m \\ & \infty \\ & m \end{aligned}$	$\left\|\begin{array}{l} \infty \\ n \\ \infty \\ 0 \\ i \end{array}\right\|$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & \infty \\ & \frac{\infty}{0} \\ & \dot{i} \end{aligned}$	$\begin{aligned} & \infty \\ & \frac{\infty}{\hat{a}} \\ & \dot{n} \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{a}{a} \\ \underset{\sim}{a} \\ \underset{\sim}{2} \end{gathered}\right.$	$\begin{aligned} & \infty \\ & \underset{\sim}{f} \\ & \underset{\sim}{d} \end{aligned}$	$\begin{array}{\|c} \hat{o} \\ \stackrel{\rightharpoonup}{2} \\ \vdots \end{array}$	$\begin{aligned} & \infty \\ & \infty \\ & - \\ & \hline \end{aligned}$	$\frac{\mathrm{N}}{\mathrm{i}}$	$\stackrel{n}{n}$		$\frac{\partial}{m}$
－	二	N	m	ค	in	6	상	∞	2	\bigcirc	\cdots	へి	n	$\stackrel{\square}{\square}$	n	\bigcirc	ㄴ	∞	\bigcirc	$\left\lvert\, \begin{aligned} & \stackrel{0}{\mathrm{~N}} \\ & \hline \end{aligned}\right.$	\hat{n}	$\left\|\begin{array}{l} \infty \\ \sim \end{array}\right\|$	\cdots		\cdots

Table 5－18：Molecular properties and predicted toxicity of biphenyl molecules． $\mathrm{HBA}=\mathrm{H}$－Acceptors； $\mathrm{HBD}=\mathrm{H}-\mathrm{Donor}$ ；TSA＝Total surface area；TPSA＝ Total Polar surface area；DL＝Druglikeness；MU＝Mutagenic；TU＝Tumorigenic；IR＝Irritant；SI＝Shape Index；MF＝Molecular Flexibility；MC＝Molecular Complexity；EA＝Electronegative Atoms；RB＝Rotatable Bonds；AR＝Aromatic Rings；SA＝Symmetric atoms；NR＝No．of Rings；PA＝Percentage of absorbance； $\mathrm{N}=$ none $; \mathrm{H}=$ High； $\mathrm{L}=$ low．

5.4.3. Synthesis and characterization

The designed biphenyl molecules were synthesized as shown in Scheme 3, involving the synthesis of intermediate, 2-chloro-N,N-diphenylacetamide (1b). The intermediate (1b) was then reacted with different phenyl amines/ phenyl piperazines/ cyclic amines to afford the final derivatives of biphenyl scaffold. The progress and completion of reaction was closely monitored through thin layer chromatography. Column chromatography was performed to get pure biphenyl derivatives. The yield of the compounds was found in the range of 43 to 97 percent. Melting point, elemental composition, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and Mass data of all the compounds in biphenyl series are as follows,

5.4.3.1. 2-chloro-N,N-diphenylacetamide (1b)

Yield: 97%; MP: $105-107^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.392-7.257(\mathrm{~m}$, 10 H , biphenyl-CH), 4.027 (s, 2 H , Methylene- CH_{2}); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 166.289 (C=O), 141.889, 141.678, 130.620, 130.102, 129.334, 128.662, 127.212, 126.838, 126.185 (aromatic carbons), 42.744 (methylene carbon); MS (ESI) m/z: 248.3 (25\%), 246.3 (75\%). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}: \mathrm{C}, 68.44 ; \mathrm{H}, 4.92$; N, 5.70; Found: C, 68.53; H, 4.91; N, 5.72 \%.

5.4.3.2. N,N-diphenyl-2-(phenylamino)acetamide (2b)

Yield: 78\%; MP: $132-135^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) ; 7.395-7.259(\mathrm{~m}$, 10H, biphenyl-CH), 7.224-7.208 (t, 2H, J=8, C3, C5-phenyl), 7.125,7.110 (d, 2H, $\mathrm{J}=7.5, \mathrm{C} 2$, C6-phenyl), 7.096-7.080 (t, 1H, J=8, C4-phenyl), 4.031 (s, 2H, methyleneCH_{2}); $3.328(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz} \mathrm{CDCl} 3)$) $167.323(\mathrm{C}=\mathrm{O}), 142.012$, $141.884,130.624,130.108,129.337,128.670,127.215,126.843,126.197$ (aromatic carbons), 43.297 (methylene carbon); MS (ESI) $m / z: 303.5$ (45.2\%);

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 79.44 ; \mathrm{H}, 6.00$; N, 9.26; Found: C, 79.49; H, 6.02; N, 9.27%.

5.4.3.3. 2-((2-chlorophenyl)amino)-N,N-diphenylacetamide (3b)

Yield: 79\%; MP: $143-145^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.377-7.290(\mathrm{~m}, 10 \mathrm{H}$, biphenyl-CH), 7.253-7.220 (m, 3H, C3, C5, C6-phenyl), 7.153-7.140 (t, 1H, J=6.5, C4phenyl), $4.018\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene- $\left.\mathrm{CH}_{2}\right) 3.791(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 166.308(\mathrm{C}=\mathrm{O}), 143.079,141.946,129.986,129.679,129.468,129.228$, 128.854, 128.633, 128.268, 127.711, 126.761, 126.262, 125.772, 119.332, 119.159, $119.025,115.991$ (aromatic carbons), 42.801 (methylene carbon); MS (ESI) m/z: 339.8 (25\%), 337.7 (74\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}, 71.32$; H, 5.09; N, 8.32; Found: C, 71.41 ; H, 5.10; N, 8.36 \%.

5.4.3.4. 2-((3-chlorophenyl)amino)-N,N-diphenylacetamide (4b)

Yield: 77%; MP: $144-146{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.381-7.293(\mathrm{~m}, 10 \mathrm{H}$, biphenyl-CH), 7.058 (s, 1H, C2-phenyl), 6.714, 6.697 (d, 1H, J=8.5, C4-phenyl), 6.5636.512 (m, 2H, C5, C6-phenyl), 4. 025 (s, 2H, methylene- CH_{2}) $3.804(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-$ NMR (125 MHz, CDCl_{3}) $\delta: 166.312(\mathrm{C}=\mathrm{O}), 143.084,141.952$, 129.991, 129.683, 129.472, 129.235, 128.857, 128.639, 128.274, 127.715, 126.763, 126.266, 125.778, $119.333,119.165,119.028,116.002$ (aromatic carbons), 42.810 (methylene carbon); MS (ESI) m/z: 339.7 (25\%), 337.7 (74\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}, 71.32 ; \mathrm{H}$, 5.09; N, 8.32; Found: C, 71.43; H, 5.11; N, 8.35%.
5.4.3.5. 2-((4-chlorophenyl)amino)-N,N-diphenylacetamide (5b)

Yield: 75%; MP: $147-148^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.383-7.248(\mathrm{~m}, 10 \mathrm{H}$, biphenyl-CH), 7.091-7.068 (dd, J=9, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 3, \mathrm{C} 5-\mathrm{phenyl}$), 6.605-6.576 (dd, $\mathrm{J}=8.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 2, \mathrm{C} 6$-phenyl), 4. 018 ($\mathrm{s}, 2 \mathrm{H}$, methylene- CH_{2}) $3.397(1 \mathrm{H}, \mathrm{NH})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.289(\mathrm{C}=\mathrm{O}), 145.018,141.889,141.668,130.999$,
130.236, 130.025, 129.727, 129.410, 129.190, 128.575, 128.364, 128.115, 126.819, $126.579,126.291,126.003,123.248,116.337$ (aromatic carbons), 42.744 (methylene carbon); MS (ESI) m / z : 339.7 (24\%), 337.5 (75\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}$: C, 71.32; H, 5.09; N, 8.32; Found: C, 71.45; H, 5.10; N, 8.33 \%.
5.4.3.6. 2-((3-fluorophenyl)amino)-N,N-diphenylacetamide (6b)

Yield: 68%; MP: $146-148^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.384-7.296(\mathrm{~m}, 10 \mathrm{H}$, biphenyl-CH), 7.052 (s, 1H, C2-phenyl), 6.710, 6.693 (d, 1H, J=8.5, C4-phenyl), 6.5596.508 (m, 2H, C5, C6-phenyl), 4.021 ($\mathrm{s}, 2 \mathrm{H}$, methylene CH_{2}), $3.293(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-$ NMR (125 MHz CDCl_{3}) $\delta: 166.298(\mathrm{C}=\mathrm{O}), 147.725,141.937,134.910,130.370$, $130.063,129.689,129.410,129.199,128.700,128.124,126.809,126.300,126.070$, $125.859,125.542,118.506,115.051,113.323$ (aromatic carbons), 42.763 (methylene carbon); MS (ESI) m/z: 321.2 (72\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}: \mathrm{C}, 74.98$; $\mathrm{H}, 5.35$;

N, 8.74; Found: C, 75.09; H, 5.34; N, 8.75 \%.

5.4.3.7. 2-((4-fluorophenyl)amino)-N,N-diphenylacetamide (7b)

Yield: 65%; MP: $151-152^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.384-7.308(\mathrm{~m}, 10 \mathrm{H}$, biphenyl-CH), 7.250, 7.235 (d, 2H, J=7.5, C3, C5-phenyl), 6.855, 6.838 (d, 2H, J=8.5, C 2 , C6-phenyl), 4.021 ($\mathrm{s}, 2 \mathrm{H}$, methylene- CH_{2}) 3.173 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.289(\mathrm{C}=\mathrm{O}), 143.770,142.455,141.908,130.102,129.785$, 129.401, 129.055, 128.700, 126.560, 126.195, 125.792, 116.164, 115.799, 115.627, $113.985,113.928$ (aromatic carbons), 42.763 (methylene carbon); MS (ESI) $m / z: 321.3$
(74\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}: \mathrm{C}, 74.98$; H, 5.35 ; N, 8.74; Found: C, 75.05 ; H, 5.33; N, 8.78 \%.
5.4.3.8. 2-((3-bromophenyl)amino)-N,N-diphenylacetamide (8b)

Yield: 55%; MP: $164-166^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.384-7.296(\mathrm{~m}, 10 \mathrm{H}$, biphenyl-CH), 7.034 (s, 1H, C2-phenyl), 6.811, 6.794 (d, 1H, J=8.5, C4-
phenyl), 6.534-6.482 (m, 2H, C5, C6-phenyl), 4.022 (s, 2H, methylene- CH_{2}), 3.299 (s, $1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.298(\mathrm{C}=\mathrm{O}), 147.926,141.937,130.658$, $130.543,130.044,129.766,129.410,128.959,128.585,128.115,127.040,126.665$, $126.195,125.734,123.104,121.386,117.921,113.736$ (aromatic carbons), 42.753 (methylene carbon); MS (ESI) m/z: 384.2 (49\%), 382.4 (50\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}: \mathrm{C}, 63.00$; H, 4.49; N, 7.35; Found: C, 63.12; H, 4.52; N, 7.32%.

5.4.3.9. 2-((4-bromophenyl)amino)-N,N-diphenylacetamide (9b)

Yield: 52%; MP: $169-171^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.389-7.308(\mathrm{~m}, 10 \mathrm{H}$, biphenyl-CH), 7.253-7.226 (dd, J=11.5, $3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 3$, C5-phenyl), 6.564-6.549 (dd, $\mathrm{J}=11,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 2$, C6-phenyl), $4.183\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene CH_{2}), $3.551(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.289(\mathrm{C}=\mathrm{O}), 145.546,141.937,132.079,130.159$, 129.977, 129.785, 129.410, 129.209, 128.662, 128.537, 128.297, 127.942, 127.385, 126.636, 126.291, 126.108, 125.888, 116.798, 110.242 (aromatic carbons), 42.753 (methylene carbon); MS (ESI) $m / z: 384.3$ (49\%), 382.3 (50\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}: \mathrm{C}, 63.00 ; \mathrm{H}, 4.49 ; \mathrm{N}, 7.35$; Found:C, $63.14 ; \mathrm{H}, 4.52 ; \mathrm{N}, 7.33 \%$. 5.4.3.10.2-((3,5-dichlorophenyl)amino)-N,N-diphenylacetamide (10b)

Yield: 50%; MP: $167-168^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.392-7.258(\mathrm{~m}, 10 \mathrm{H}$, biphenyl-CH), 7.194 (s, 1H, C4-phenyl), 6.535 (s, 2H, C2, C6-phenyl), 4.027 (s, 2H, methylene CH_{2}), $3.824(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz} \mathrm{CDCl} 3) ~ \delta: 166.289(\mathrm{C}=\mathrm{O})$, 148.329, 142.157, 141.927, 135.477, 130.236, 129.977, 129.410, 128.969, 128.220, $128.009,127.855,127.510,126.876,126.233,125.830,118.372,113.294$ (aromatic carbons), 42.725 (methylene carbon); MS (ESI) $m / z: 376.5$ (5\%), 374.3 (32\%), 372.4 (74\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$: C, 64.70; $\mathrm{H}, 4.34$; N, 7.55; Found: C, 64.82; H, 4.30; N, 7.58%.

5.4.3.11.2-((3,5-dibromophenyl)amino)-N,N-diphenylacetamide (11b)

Yield: 45%; MP: $174-175^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.392-7.301(\mathrm{~m}, 10 \mathrm{H}$, biphenyl-CH), 7.256 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{C} 4$-phenyl), 6.732 (s, 2H, C2, C6-phenyl), 4.026 (s, 2H, methylene CH_{2}), $3.891(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz} \mathrm{CDCl}_{3}\right) \delta: 166.289(\mathrm{C}=\mathrm{O})$, $148.771,141.927,141.860,130.015,129.823,129.458,129.055,128.710,128.355$, 128.057, 126.963, 126.694, 126.243, 126.003, 125.619, 123.709, 123.402, 116.587 (aromatic carbons), 42.725 (methylene carbon); MS (ESI) m/z: 465.2 (46\%), 463.2 (97\%), 461.4 (49\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 52.20$; H, 3.50; N, 6.09; Found: C, $52.32 ; \mathrm{H}, 3.51 ; \mathrm{N}, 6.11 \%$.

5.4.3.12.2-((3-chloro-4-fluorophenyl)amino)-N,N-diphenylacetamide (12b)

Yield: 55%; MP: $168-169^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) ; 7.394-7.258(\mathrm{~m}$, 10H, biphenyl-CH), 6.927-6.892 (m, 2H, C2, C6-phenyl), 6.696-6.680 (dd, J=8, 2 Hz , 1H, C5-phenyl) 4.027 (s, 2H, methylene- CH_{2}), 3.328 (s, 1H, NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.289(\mathrm{C}=\mathrm{O}), 152.649,150.748,143.204,141.908,130.169$, 129.257, 128.595, 128.259, 126.761, 126.204, 125.926, 121.117, 120.973, 116.999, 116.827, 116.491, 114.312 (aromatic carbons), 42.734 (methylene carbon); MS (ESI) $m / z: 357.4$ (24\%), 355.4 (75\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClFN}_{2} \mathrm{O}: \mathrm{C}, 67.70 ; \mathrm{H}, 4.55$; N, 7.90; Found: C, 67.78; H, 4.52; N, 7.95 \%.

5.4.3.13.2-((2-bromo-4-fluorophenyl)amino)-N,N-diphenylacetamide (13b)

Yield: 48%; MP: $175-176{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.391-7.256(\mathrm{~m}, 10 \mathrm{H}$, biphenyl-CH), 7.036 (s, 1H, C3-phenyl), 6.943, 6.927 (d, 1H, J=8, C5-phenyl), 6.602, 6.588, (d, 1H, J=7, C6-phenyl), 4.026 ($\mathrm{s}, 2 \mathrm{H}$, methylene CH_{2}), 3.871 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta: ~ 166.289(\mathrm{C}=\mathrm{O}), 141.917,141.754,130.505,130.082$, $129.506,129.410,128.930,128.575,128.335,127.155,126.876,126.550,126.070$, 125.696, 119.389, 119.188, 116.107, 115.416 (aromatic carbons), 42.744
(methylene carbon); MS (ESI) m/z: 402.2 (49\%), 400.2 (49\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrFN}_{2} \mathrm{O}: \mathrm{C}, 60.17$; H, 4.04; N, 7.02; Found: C, 60.26 ; H, 4.07; N, 7.06%.

5.4.3.14.2-((3-nitrophenyl)amino)-N,N-diphenylacetamide (14b)

Yield: 43%; MP: $181-182^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.375-7.258(\mathrm{~m}, 10 \mathrm{H}$, biphenyl-CH), 7.030 (s, 1H, C2-phenyl), 6.891, 6.875 (d, 1H, J=8, C4-phenyl), 6.6736.632 (m, 2H, C5, C6-phenyl), 4.063 (s, 2H, methylene CH_{2}), 3.419 (s, 1H, NH); ${ }^{13} \mathrm{C}-$ NMR (125 MHz CDCl_{3}) $\delta: 166.356(\mathrm{C}=\mathrm{O}), 152.754,142.071,141.879,141.754$, 139.086, 130.284, 130.140, 129.689, 129.410, 128.921, 128.633, 128.326, 127.155, 126.742, 126.425, 126.137, 113.429 (aromatic carbons), 42.763 (methylene carbon); MS (ESI) $m / z: 348.2$ (68\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 69.15; H, 4.93; N, 12.10; Found: C, 69.29; H, 4.94; N, 12.14 \%.

5.4.3.15.2-((4-nitrophenyl)amino)-N,N-diphenylacetamide (15b)

Yield: 45%; MP: $182-184^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.371-7.253(\mathrm{~m}, 10 \mathrm{H}$, biphenyl-CH), 7.251, 7.237 (d, 2H, J=7, C3, C5-phenyl), 6.852, 6.836 (d, 2H, J=8, C2, C6-phenyl), $4.104\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene- $\left.\mathrm{CH}_{2}\right) 3.569(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 166.356(\mathrm{C}=\mathrm{O}), 152.753,142.102,141.881,141.754,139.095,130.285$, 130.141, 129.691, 129.464, 128.936, 128.630, 128.321, 127.251, 126.447, 126.421, 126.034, 113.668 (aromatic carbons), 42.763 (methylene carbon); MS (ESI) $m / z: 348.3$ (70\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 69.15; H, 4.93; N, 12.10; Found: C, 69.29; H, 4.94; N, 12.14 \%.
5.4.3.16.2-((2-chloro-4-nitrophenyl)amino)-N,N-diphenylacetamide (16b)

Yield: 49%; MP: $186-188^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.115$ (s, 1H, C3-phenyl), 8.003-7.987 (d, J=8 Hz, 1H, C5-phenyl), 7.389-7.252 (m, 10H, biphenyl-CH), 6.895, 6.881 (d, J=8 Hz, 1H, C6-phenyl), 4.845 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 4.027 (s, 2H, methylene- CH_{2}); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.317(\mathrm{C}=\mathrm{O}), 149.059,141.937,141.678,138.798$,
$129.353,128.710,128.489,128.143,127.932,126.867,126.329,126.032,125.868$, $125.475,124.390,117.690,113.803$ (aromatic carbons), 42.744 (methylene carbon); MS (ESI) $m / z: 384.4$ (26\%), 382.4 (75\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{3}$: C, 62.92; H, 4.22; N, 11.01; Found: C, 63.05; H, 4.25; N, 11.06 \%.
5.4.3.17.2-((4-chloro-2-nitrophenyl)amino)-N,N-diphenylacetamide (17b)

Yield: 51%; MP: $186-187^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.120$ (s, $1 \mathrm{H}, \mathrm{C} 3$-phenyl), 7.394-7.259 (m, 11H, biphenyl-CH, C5-phenyl); 6.780, 6.762 (d, J=9 Hz, 1H, C6phenyl), $6.106(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.029\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene- $\left.\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 166.317(\mathrm{C}=\mathrm{O}), 143.338,141.908,135.909,132.127,130.322,130.034$, 129.814, 129.487, 129.151, 128.700, 128.076, 126.867, 126.646, 126.233, 125.916, 125.398, 121.559, 120.167 (aromatic carbons), 42.715 (methylene carbon); MS (ESI) $m / z: 384.5$ (26\%), 382.6 (75\%); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{3}: \mathrm{C}, 62.92 ; \mathrm{H}, 4.22$; N, 11.01; Found: C, 63.02; H, 4.23; N, 11.04 \%.

5.4.3.18.2-((2-(diphenylamino)-2-oxoethyl)amino)benzoic acid (18b)

Yield: 43%; MP: $170-171^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 12.203(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 7.814, 7.798 (d, J=8 Hz, 1H, C3-phenyl), 7.587-7.550 (m, 10H, biphenyl-CH), 7.013, 6.988 (m, 2H, C4, C6-phenyl, 6.794-6.768 (t, J=6.5 Hz, 1H, C5-phenyl), 4.138 ($\mathrm{s}, 2 \mathrm{H}$, methylene- CH_{2}) $3.743(1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 182.373(\mathrm{COOH})$, $170.948(\mathrm{C}=\mathrm{O}), 151.364,143.205,141.879,141.748,139.095,130.291,130.143$, $129.695,129.329,128.718,128.631,128.323,127.254,126.447,126.428,126.034$, 1143.281 (aromatic carbons), 42.369 (methylene carbon);MS (ESI) $m / z: 347.4$ (38\%); Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 72.82; H, 5.24; N, 8.09; Found: C, 72.90; H, 5.26; N, 8.13 \%.

5.4.3.19. 2-(4-(4-chlorophenyl)piperazin-1-yl)-N,N-diphenylacetamide (19b)

Yield: 71\%; MP: $162-165^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.391-7.254(\mathrm{~m}, 10 \mathrm{H}$, biphenyl-CH), 7.116, 7.102 (d, J=7 Hz, 2H, C3, C5-phenyl), 6.692, 6.678 (d, J=7 Hz, 2H, C2, C6-phenyl), 4.303 (s, 2H, methylene- CH_{2}) 3.219-3.205 (m, 4H, piperazine); 2.728-2.705 (m, 4H, piperazine); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 167.293(\mathrm{C}=\mathrm{O})$, $145.018,141.889,141.668,130.999,130.236,130.025,129.727,129.410,129.190$, $128.575,128.364,128.115,126.819,126.579,126.291,126.003,123.248,116.337$ (aromatic carbons), $48.739,48.627$ (piperazine carbons); 43.932 (methylene carbon); MS (ESI) $m / z: 408.4$ (24\%), 406.4 (74\%); Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{C}, 71.01$; H , 5.96; N, 10.35; Found: C, 71.14; H, 5.97; N, 10.32 \%.

5.4.3.20.2-(4-(4-nitrophenyl)piperazin-1-yl)-N,N-diphenylacetamide (20b)

Yield: 71%; MP: $169-171^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.380-7.243(\mathrm{~m}, 10 \mathrm{H}$, biphenyl-CH), 7.121, 7.107 (d, J=7 Hz, 2H, C3, C5-phenyl), 6.701, 6.687 (d, J=7 Hz, $2 \mathrm{H}, \mathrm{C} 2$, C6-phenyl), 4.311 ($\mathrm{s}, 2 \mathrm{H}$, methylene- CH_{2}) 3.225-3.210 (m, 4H, piperazine); 2.731-2.711 (m, 4H, piperazine); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 168.319(\mathrm{C}=\mathrm{O})$, 145.109, 141.901, 141.521, 131.104, 130.452, 130.148, 129.865, 129.410, 129.213, $128.599,128.367,128.119,126.822,126.584,126.298,125.999,123.245,116.332$ (aromatic carbons), 49.432, 49.339 (piperazine carbons); 44.562 (methylene carbon); MS (ESI) $m / z: 417.2$ (31\%); Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 69.21; H, 5.81; N, 13.45; Found: C, 69.32; H, 5.82; N, 13.43 \%.
5.4.3.21. 2-Cyclopropylamino-N,N-diphenyl-acetamide (S7)

Yield: 82%; MP: $121-123^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.336-7.253(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), $3.646\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene CH_{2}), $2.888(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.888-1.872(\mathrm{~m}, 1 \mathrm{H}$, cyclopropane-CH), 0.882-0.869 (m, 2 H , cyclopropane- CH_{2}), 0.763-0.750 (m, 2 H , cyclopropane- CH_{2}); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.25(\mathrm{C}=\mathrm{O}), 142.60$,
129.36, 126.78 (aromatic carbons), 55.87 (methylene carbon), 36.29, 7.63 (cyclopropyl carbons); MS (ESI) m/z: 267.5 (27\%). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 76.66$; H, 6.81; N, 10.52; Found: C, 76.85; H, 6.83; N, 10.55%.

5.4.3.22.2-Cyclobutylamino-N,N-diphenyl-acetamide (S8)

Yield: 75%; MP: $126-128^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.324-7.189(\mathrm{~m}$, 10H, Ar-CH), 3.954 (s, 2H, methylene- CH_{2}), 2.914 (s, 1H, NH) 2.530-2.446 (m, 1H, cyclobutane-CH), 1.333-1.230 (m, 6H, cyclobutane- CH_{2}); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 169.23(\mathrm{C}=\mathrm{O}), 140.62,129.73,126.61$ (aromatic carbons), 54.16 (methylene carbons), 47.69, 24.13, 10.78 (cyclobutane carbons) MS (ESI) m/z: 281.6 (22\%). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 77.11$; H, 7.19; N, 9.99; Found: C, 77.38; H, $7.21 ;$ N, 10.03 \%.
5.4.3.23.2-Cyclopentylamino-N,N-diphenyl-acetamide (S9)

Yield: 79%; MP: $131-132^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.332-7.250(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), $3.584\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene CH_{2}), $3.259(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.637-1.143(\mathrm{~m}, 9 \mathrm{H}$, cyclopentane); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.25(\mathrm{C}=\mathrm{O}), 142.60,129.36$, 126.78 (aromatic carbons), 55.87 (methylene carbon), 36.29, 29.80, 7.63 (cyclopentyl carbons); MS (ESI) m/z: 295.5 (25\%). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 77.52 ; \mathrm{H}, 7.53$; N, 9.52; Found: C, 77.71; H, 7.55; N, 9.49 \%.

5.4.3.24. 2-Cyclohexylamino-N,N-diphenyl-acetamide (S10)

Yield: 87%; MP: $137-139^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.461-7.379(\mathrm{~m}$, 10H, Ar-CH), 4.143 (s, 2H, methylene CH_{2}), $3.698(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.221-3.195(\mathrm{~m}, 1 \mathrm{H}$, cyclohexane-CH), 1.632-1.098 (m, 10H, cyclohexane- CH_{2}); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.25(\mathrm{C}=\mathrm{O}), 141.96,129.43,126.72$ (aromatic carbons), 62.83 (methylene carbon), 54.36, 35.27, 24.99, 24.12 (cyclohexyl carbons); MS (ESI) m/z:
309.2 (27\%). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 77.89 ; \mathrm{H}, 7.84 ; \mathrm{N}, 9.08$; Found: C, 78.12; H, 7.85; N, 9.05%.

5.4.3.25.2-Cycloheptylamino-N,N-diphenyl-acetamide (S11)

Yield: 81%; MP: $143-145^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.306-7.240(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), $3.940\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene CH_{2}), $3.600(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.913-2.876(\mathrm{~m}, 1 \mathrm{H}$, cycloheptyl-CH), 1.736-1.236 (m, 12H, cycloheptyl- CH_{2}); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 168.26(\mathrm{C}=\mathrm{O}), 140.16,129.26,126.22$ (aromatic carbons), 62.17 (cycloheptyl carbon), 55.92 (methylene carbon), 36.81, 31.89, 26.67 (cycloheptyl carbons); MS (ESI) m/z: 323.6 (27\%). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 78.22 ; \mathrm{H}, 8.13$; N, 8.69; Found: C, 78.45; H, 8.15; N, 8.65 \%.

5.4.3.26.2-Cyclooctylamino-N,N-diphenyl-acetamide (S12)

Yield: 72%; MP: $147-149^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.332-7.186(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 3.951\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylene $\left.\mathrm{CH}_{2}\right), 3.319(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.733-2.716(\mathrm{~m}, 1 \mathrm{H}$, cyclooctyl-CH) 1.689-1.243 (m, 14H, cyclooctyl- CH_{2}); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $(\mathrm{ppm}): 169.19(\mathrm{C}=\mathrm{O}), 141.28,129.14,126.51$ (aromatic carbons), 61.98 (methylene carbon), 55.23, 34.95, 26.19, 23.84 (cyclohexyl carbons); MS (ESI) m/z: 337.3 (27\%). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$: C, 78.53; H, 8.39; N, 8.33; Found: C, 78.77; H, 8.41; N, 8.36 \%.

5.4.4. Antitubercular Screening

The antitubercular activity of biphenyl derivatives was assessed against Mtb H37Rv by Microplate Alamar Blue Assay (MABA) and the results are depicted in Table 5-19. Compounds $\mathbf{1 5 b}$ and $\mathbf{1 6 b}$ were the most active with MIC of $0.78 \mu \mathrm{~g} / \mathrm{mL}$. They were followed by the compounds $\mathbf{1 4 b}$ and $\mathbf{1 7 b}$ with MIC of $1.56 \mu \mathrm{~g} / \mathrm{mL}$. The activity was stronger than the template molecule chlorpromazine $(12.5 \mu \mathrm{~g} / \mathrm{mL})$ and standard drugs pyrazinamide and ciprofloxacin $(3.13 \mu \mathrm{~g} / \mathrm{mL})$. Substitution of a nitro group on the
phenyl ring at para position ($\mathbf{1 5 b}$ and $\mathbf{1 6 b}$) was found essential for the activity. Disubstituted halogen compounds ($\mathbf{1 0 b} \mathbf{- 1 3 b}$) were found active with MIC of $3.13 \mu \mathrm{~g} / \mathrm{mL}$, followed by mono-substituted halogen compounds (3b-9b) with MIC $\geq 6.25 \mu \mathrm{~g} / \mathrm{mL}$. Among the cycloalkane compounds, the cyclopentane (S9) and cyclohexane (S10) derivatives produced better inhibition with MIC of $6.25 \mu \mathrm{~g} / \mathrm{mL}$. Thus, the modification of phenothiazine ring to biphenyl ring produced interesting results, where the activity has significantly improved.

5.4.5. Antibacterial Screening

The biphenyl derivatives were further screened against a gram positive (S. aureus) and a gram negative (E. coli) strain to understand the spectrum of activity. Compound $\mathbf{1 6 b}$ was the most effective against S. aureus with MIC of $0.49 \mu \mathrm{~g} / \mathrm{mL}$, followed by $\mathbf{1 4 b} \mathbf{~} \mathbf{1 5 b}$ and $\mathbf{1 7 b}$ with MIC of $0.98 \mu \mathrm{~g} / \mathrm{mL}$. Compounds $\mathbf{1 4 b} \mathbf{- 1 7 b}$ were the most effective against E. coli with MIC of $7.81 \mu \mathrm{~g} / \mathrm{mL}$. It was observed that the activity was substantially higher against S. aureus than against E. coli. This may be due to increased permeability of the compounds through gram positive organism (S. aureus) over the gram negative one. The standard drug ciprofloxacin produced marginally higher inhibition against E. coli than the tested compounds, while the case is reverse against S. aureus (Table 5-19). Among cycloalkane derivatives, compound $\mathbf{S 1 0}$ was found to be the most effective with MIC of 3.90 and $31.25 \mu \mathrm{~g} / \mathrm{mL}$ against S. aureus and E. coli respectively. A drastic reduction in activity was observed on varying the cyclohexane ring to cyclopropyl or cyclooctyl (Table 5-19).

	R/n	MIC in $\mu \mathrm{g} / \mathrm{mL}(\mu \mathrm{M})^{\mathrm{a}}$	$\begin{gathered} \text { MIC in } \\ \mu \mathrm{g} / \mathrm{mL}(\mu \mathrm{M}){ }^{\mathrm{b}} \\ \hline \end{gathered}$	MIC in $\mu \mathrm{g} / \mathrm{mL}(\boldsymbol{\mu} \mathrm{M})^{\mathrm{c}}$
1 b	-	62.50 (254.36)	125 (508.72)	50 (203.49)
2b	H	15.63 (51.68)	31.25 (103.34)	25 (82.67)
3b	$2-\mathrm{Cl}$	7.81 (23.18)	31.25 (92.77)	12.5 (37.11)
4b	$3-\mathrm{Cl}$	7.81 (23.18)	31.25 (92.77)	12.5 (37.11)
5b	$4-\mathrm{Cl}$	7.81 (23.18)	31.25 (92.77)	6.25 (18.55)
6 b	3-F	7.81 (24.37)	31.25 (97.54)	6.25 (19.50)
7 b	4-F	7.81 (24.37)	31.25 (97.54)	6.25 (19.50)
8 b	$3-\mathrm{Br}$	3.91 (10.25)	15.63 (40.99)	6.25 (16.39)
9 b	$4-\mathrm{Br}$	3.91 (10.25)	15.63 (40.99)	6.25 (16.39)
10b	3,5-diCl	1.95 (5.25)	15.63 (42.09)	3.13 (8.43)
11 b	$3,5-\mathrm{diBr}$	1.95 (4.23)	7.81 (16.91)	3.13 (6.80)
12b	3-Cl,4-F	1.95 (5.49)	15.63 (44.05)	3.13 (8.82)
13b	$2-\mathrm{Br}, 4-\mathrm{F}$	3.91 (9.79)	15.63 (39.14)	3.13 (7.83)
14b	$3-\mathrm{NO}_{2}$	0.98 (2.82)	7.81 (22.48)	1.56 (4.49)
15b	$4-\mathrm{NO}_{2}$	0.98 (2.82)	7.81 (22.48)	0.78 (2.24)
16b	$2-\mathrm{Cl}, 4-\mathrm{NO}_{2}$	0.49 (1.28)	7.81 (20.45)	0.78 (2.04)
17 b	$2-\mathrm{NO}_{2}, 4-\mathrm{Cl}$	0.98 (2.56)	7.81 (20.45)	1.56 (4.08)
18b	$2-\mathrm{COOH}$	7.81 (22.54)	15.63 (45.12)	6.25 (18.04)
19b	$4-\mathrm{Cl}$	3.91 (9.63)	15.63 (38.50)	6.25 (15.39)
20b	$4-\mathrm{NO}_{2}$	1.95 (4.68)	15.63 (37.52)	3.13 (7.51)
S7	1	15.63 (58.68)	125 (469.32)	25 (93.86)
S8	2	15.63 (55.74)	125 (445.83)	25 (89.16)
S9	3	7.81 (26.52)	31.25 (106.14)	6.25 (21.22)
S10	4	3.90 (12.64)	31.25 (101.31)	6.25 (20.26)
S11	5	31.25 (96.91)	125 (387.65)	25 (77.53)
S12	6	31.25 (92.87)	125 (371.49)	50 (148.59)
Chlorpromazine	-	7.81 (24.49)	15.63 (49.01)	12.5 (39.20)
Ciprofloxacin	-	1.95 (5.88)	3.91 (11.80)	3.13 (9.44)
Pyrazinamide	-	-	-	3.13 (25.42)

Table 5-19: Antitubercular and antibacterial activities of biphenyl derivatives
${ }^{\text {a }}$ Minimum Inhibitory Concentration (MIC) against S. aureus (ATCC 25323)
${ }^{\mathrm{b}}$ Minimum Inhibitory Concentration (MIC) against E. coli (ATCC35218)
${ }^{\text {c }}$ Minimum Inhibitory Concentration (MIC) against M. tuberculosis H37Rv (ATCC 27294)

5.4.6. BBB Permeability Screening

BBB permeability is an indicator for possible CNS effects of the drugs. Therefore, biphenyl derivatives were screened for BBB permeability to understand the effect(s) of structural modification of the template molecule, chlorpromazine on CNS activity. The effective permeability (Pe) was determined for some commercial drugs and biphenyl derivatives. Pe of commercial drugs was compared and classified as high permeable (CNS+), low permeable (CNS-) and permeable uncertain (CNS+/-). Chlorpromazine and diazepam were classified as high permeable drugs with Pe of $6.1 \times 10-6$ and 12.4 x $10-6 \mathrm{~cm} / \mathrm{s}$, respectively. Atenolol, verapamil and levofloxacin were classified as low permeable drugs with Pe of $1.1 \times 10^{-6}, 0.0$ and $0.0 \mathrm{~cm} / \mathrm{s}$, respectively. The screened biphenyl derivatives were classified as permeability uncertain with Pe in the range between 2.1×10^{-6} and $3.0 \times 10^{-6} \mathrm{~cm} / \mathrm{s}$. The most potent compounds in whole cell antitubercular screening ($\mathbf{1 5 b}$ and $\mathbf{1 6 b}$) produced Pe of 2.5 and $2.7 \times 10-6 \mathrm{~cm} / \mathrm{s}$, respectively (Table 5-20). A drastic reduction in BBB permeability of biphenyl derivatives was observed in comparison to chlorpromazine. CNS effect(s) of all the biphenyl derivatives is expected to be reduced.

5.4.7. In-vitro cytotoxicity screening

The antimicrobial drugs should be devoid of toxicity to normal mammalian cells. Therefore, biphenyl derivatives were screened against VERO (monkey kidney epithelial) cells for their toxicity. The concentration that reduced the cell viability by $50 \%\left(\mathrm{CC}_{50}\right)$ was determined and was found to be $>100 \mu \mathrm{~g} / \mathrm{mL}$ for all the compounds in the study (Table 5-21). The most potent compounds in whole cell antitubercular screening ($\mathbf{1 5 b}$ and $\mathbf{1 6 b}$) produced CC_{50} of 114 and $121 \mu \mathrm{~g} / \mathrm{mL}$ respectively. The selectivity of a drug molecule towards desired activity is a major challenge in antitubercular drug discovery, where the compound should be toxic only towards Mtb
rather than normal human cell. Selectivity index (SI) was calculated by dividing VERO cell CC_{50} to $M t b$ MIC and was found to be >70 with compounds $\mathbf{1 4 b}$ to $\mathbf{1 7 b}$, indicating their higher selectivity towards $M t b$ rather than normal mammalian cells.

Compound Code	$P_{\text {e }} \times 10^{-6} \mathrm{~cm} / \mathrm{s}$	Classification
Chlorpromazine	6.1 ± 0.059	CNS+
Atenolol	1.1 ± 0.021	CNS-
Verapamil	0.0	CNS-
Diazepam	12.4 ± 0.263	CNS+
Levofloxacin	0.0	CNS-
1b	2.2 ± 0.029	CNS+/-
2b	2.3 ± 0.107	CNS+/-
3b	2.4 ± 0.083	CNS+/-
4b	2.5 ± 0.214	CNS+/-
5 b	2.2 ± 0.068	CNS+/-
6 b	2.1 ± 0.051	CNS+/-
7 b	2.1 ± 0.070	CNS+/-
8 b	2.6 ± 0.065	CNS+/-
9 b	2.6 ± 0.033	CNS+/-
10b	2.8 ± 0.320	CNS+/-
11b	2.8 ± 0.057	CNS+/-
12b	2.8 ± 0.083	CNS+/-
13b	3.0 ± 0.311	CNS+/-
14 b	2.5 ± 0.072	CNS+/-
15b	2.5 ± 0.089	CNS+/-
16b	2.7 ± 0.091	CNS+/-
17b	2.8 ± 0.062	CNS+/-
18b	2.4 ± 0.074	CNS+/-
19b	3.5 ± 0.138	CNS+/-
20b	3.3 ± 0.202	CNS+/-
S9	2.7 ± 0.071	CNS+/-
S10	3.0 ± 0.093	CNS+/-

Table 5-20: BBB permeability of commercial drugs and biphenyl derivatives
Data are expressed as mean \pm SEM ($\mathrm{n}=3$)
CNS $+=$ high BBB permeation compounds, i.e. $\mathrm{Pe}=>4.0 * 10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}$
CNS- =low BBB permeation compounds, i.e. $\mathrm{Pe}=<2.0 * 10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}$
$\mathrm{CNS}+/-=\mathrm{BBB}$ permeation uncertain compounds, i.e. $\mathrm{Pe}=4.0-2.0 * 10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}$

Compound Code	$\mathbf{C C}_{\mathbf{5 0}}(\mathbf{\mu g} / \mathbf{m l})^{\mathbf{a}}$	Selectivity Index $^{\mathbf{b}}$
1 b	222.53 ± 10.642	4.5
2 b	187.15 ± 3.825	7.5
3 b	182.39 ± 9.361	7.3
4 b	177.81 ± 14.538	14.2
5 b	176.46 ± 2.831	14.1
6 b	184.74 ± 2.429	14.8
7 b	181.18 ± 2.662	14.5
8 b	183.84 ± 1.264	14.7
9 b	148.29 ± 4.831	11.9
10 b	152.81 ± 1.216	48.8
11 b	141.20 ± 2.557	45.1
12 b	144.54 ± 10.491	46.2
13 b	137.86 ± 2.818	44.0
14 b	120.22 ± 2.439	77.0
15 b	114.28 ± 5.452	73.2
16 b	121.31 ± 1.294	77.8
17 b	115.15 ± 6.716	73.8
18 b	130.91 ± 1.384	10.5
19 b	111.37 ± 1.822	17.8
20 b	108.45 ± 1.715	34.6
S9	131.90 ± 3.261	21.1
S10	150.43 ± 7.055	24.0

Table 5-21: Cytotoxicity of biphenyl derivatives against VERO cells
${ }^{\text {a }}$ Data are expressed as mean $\pm \operatorname{SEM}(\mathrm{n}=3)$
${ }^{\mathrm{b}}$ Selectivity index is ratio of cytotoxicity $\left(\mathrm{CC}_{50}\right)$ to Mtb MIC

5.4.8. NDH-2 inhibitory screening

Compounds with strongest growth inhibition against whole $M t b$ were selected for NDH-2 inhibition screening. Percentage inhibition of residual NADH oxidation activity was recorded through NADH:menadione oxidoreduction assay. Among the screened compounds (14b to $\mathbf{1 7 b}$), 16b produced highest percentage inhibition (22.55\%) at $50 \mu \mathrm{M}$ concentrations, followed by $\mathbf{1 5 b}, \mathbf{1 4 b}$ and $\mathbf{1 7 b}$ with $13.41,10.64$ and 8.63 percent inhibitions respectively (Table 5-22). All the compounds produced <50 percent inhibitions at $50 \mu \mathrm{M}$ concentration. Therefore, it was concluded that the IC_{50} of these biphenyl compounds could be $>50 \mu \mathrm{M}$.

Code	\% inhibition of residual NADH oxidation activity at $\mathbf{5 0} \boldsymbol{\mu} \mathbf{M}$ concentration
14 b	10.64 ± 1.003
15 b	13.41 ± 1.481
16 b	22.55 ± 2.714
17 b	8.63 ± 2.112
HQNQ	$82.81 \pm 0.524^{\#, \mathrm{~S}, \%, \&}$

Table 5-22: NDH-2 inhibitory study of biphenyl derivatives.
Data expressed as a Mean \pm SEM $(\mathrm{n}=3)$. ${ }^{\#} \mathrm{P}<0.05$ compared to $14 \mathrm{~b},{ }^{\$} \mathrm{P}<0.05$ compared to 15 b , ${ }^{\%} \mathrm{P}<0.05$ compared to $16 \mathrm{~b},{ }^{\&} \mathrm{P}<0.05$ compared to 17 b [One- way ANOVA followed by Newmann-Keuls test].

Chapter 5: Section 5

Results and Discussion

5.5. ATP synthase inhibition study

5.5.1. Extra-precision molecular docking

In a pilot study in Section 5.1.3.1, the purchasable subset of ZINC database was docked against ATP synthase. ZINC38959526 produced docking score of $-6.10790 \mathrm{Kcal} / \mathrm{mol}$, which was comparable to bedaquiline $(-6.067435 \mathrm{Kcal} / \mathrm{mol})$. There we observed structural similarity of ZINC38959526 with our designed molecules. We hypothesized that our compounds could also inhibit ATP synthase. Therefore, we did extra-precision docking of all the designed molecules against ATP synthase (PBD code: 4V1F) to understand the binding energy of the molecules against the target. Molecules S3, S4, S9, S10 and S16 reached the active site and produced all the essential interactions. Rest of the molecule find no pose to interact with the active site residues and died during docking. The cycloalkane class of molecules $\mathbf{S 3}$, S4, S9, S10 and S16 produced docking score of $-4.9711,-5.1939,-5.64231,-5.80292$ and $-4.9137 \mathrm{Kcal} / \mathrm{mol}$ respectively (Table 5-23). These were comparable to the standard drug bedaquiline (6.06743 Kcal $/ \mathrm{mol}$) and all the essential interactions with the active site residues (GLU 65 and PHE 69) were retained. The two phenyl rings of the molecule S10 have produced $\pi-\pi$ interaction with PHE 69 but only a single phenyl ring of $\mathbf{S 9}$ was involved (Figure 5-9). The increased in-vitro inhibitory activity of $\mathbf{S 1 0}$ in comparison to $\mathbf{S 9}$ can be attributed to the involvement of two $\pi-\pi$ interactions. A better correlation between the in-vitro and in-silico studies indicated that compounds $\mathbf{S 9}$ and $\mathbf{S 1 0}$ are potent mycobacterial ATP synthase inhibitors.

Ligand code	Lowest binding energy (Kcal/mol)	Residues forming interactions
$1 \mathrm{p}-20 \mathrm{p}$	-	no pose/ molecule died
$1 \mathrm{c}-20 \mathrm{c}$	-	no pose/ molecule died
$1 \mathrm{~b}-20 \mathrm{~b}$	-	no pose/ molecule died
S3	-4.9711	Glu 65 and Phe 69
S4	-5.1939	Glu 65 and Phe 69
S9	-5.6423	Glu 65 and Phe 69
S10	-5.8029	Glu 65 and Phe 69
S16	-4.9137	Glu 65 and Phe 69
Bedaquiline	-6.0674	Glu 65 and Phe 69

Table 5-23: Docking result of phenothiazine/carbazole/biphenyl molecules against ATP synthase

Figure 5-9: Docking pose of molecules $S 9$ and $S 10$ showing interactions with the active site residues of mycobacterial ATP synthase (PDB code: 4V1F)

5.5.2. In-vitro ATP synthase inhibition assay

The compounds S3, S4, S9, S10 and S16 with strongest binding with ATP synthase (PDB code: 4V1F) were screened for in-vitro enzyme inhibition activity. The ATP produced from the inverted membrane vesicles (IMVs) was quantified to determine the potency of the compounds. Among all the screened compounds, $\mathbf{S 9}$ and $\mathbf{S 1 0}$ showed IC_{50} of 14 and $10.4 \mu \mathrm{M}$, respectively. Rest of the compounds were less active at $\mathrm{IC}_{50} \geq 100$ $\mu \mathrm{M}$ (Table 5-24). At $100 \mu \mathrm{M}$ concentration, compounds $\mathbf{S 9}$ and $\mathbf{S 1 0}$ showed 69 and 100 percent inhibition, respectively (Figure 5-10).

Figure 5-10: Dose response curve of compounds S9 and S10 against ATP synthesis inhibition

Compound Code	IC50 ($\boldsymbol{\mu} \mathbf{M}$)	Max inhibition (\%) at 100 $\boldsymbol{\mu}$ M concentration (Mean \pm SD)
S3	>100	45 ± 14.5
S 4	>100	62 ± 11.9
S9	14	69 ± 10.18
S10	10.4	100 ± 0.009
S16	>100	41 ± 15.61

Table 5-24: In-vitro ATP synthase inhibition study; Molecules with strong binding against ATP synthase (PDB code: 4V1F) were selected for this biochemical assay

[^0]: Figure 5-5: Alignment of amino acid sequence of selected ATP synthase c-subunits. Amino acids at the same position but from other species are in
 blue color. Residues involved in drug coordination are in red color (matched with human counterpart)

