List of Figures	xi
List of Tables	xiv
Abbreviations	XV
Symbols	vvi
Preface	XV11
CHAPTER 1: Introduction and Literature Review	1
1.1. Historical Preview	1
1.2. High Entropy Alloys	2
1.2.1 Principle of high entropy alloys	3
1.2.2. Classification on the basis of configurational entropy	4
1.2.3. The Four Core Effects	5
1.2.4. Phase Prediction Rules in HEAs	
1.3. Synthesis and Processing Routes for HEAs	
1.3.1 Vacuum Arc Melting (VAR)	
1.3.2. Vacuum induction melting (VIM)	
1.3.3. Mechanical Alloying (MA)	
1.3.4. Spark Plasma Sintering (SPS)	
1.3.5. Other consolidation techniques	
1.3.6. Thin Films of HEAs	
1.4. Important Classes of HEAs	
1.4.1. Solid-Solutions	
1.4.2. Low-density HEAs (LDHEAs)	
1.5. Thermal stability	
1.6. Properties of HEAs	
1.6.1. Mechanical Behavior of HEAs	
1.6.2. Physical Behavior	
1.7. Miedema's model: A Semi - empirical approach	
1.8. CALPHAD: Phase Diagram Approach	
1.9. Prospective Applications of HEAs	
1.10. Motivation	
1.11. Objectives	

Table of Contents

CHAPTER 2: Materials and Experimental Details	37
2.1. Materials and Alloy Synthesis	37
2.2. Spark Plasma Sintering of HEA Powder	
2.3. Density Measurement	
2.4. Structural Characterization	
2.4.1. X-ray diffraction (XRD)	
2.4.2. Scanning Electron Microscopy (SEM)	40
2.4.3. Transmission Electron Microscopy (TEM)	41
2.5. Thermal Analysis	41
2.5.1. Differential Scanning Calorimetry (DSC)	41
2.5.2. Heat treatments	42
2.6. Mechanical testing	42
2.6.1. Hardness measurement	42
2.7. CALPHAD approaches	42

CHAPTER 5: Phase evolution, thermal stability and indentation behavior of MgAlSiCrFeCuZn
low-density high entropy alloy processed through mechanical alloying and spark plasma
sintering
5.1. Phase evolution during mechanical alloying of MgAlSiCrFeCuZn powder97
5.2. Nanostructure nature and elemental mapping of mechanically alloyed powder103
5.3. Analysis of powder morphology and thermal stability of the milled powder108
5.4. Phase evolution and mechanical properties of the SPSed LDHEA110
5.5. Discussion
5.6. Conclusions
CHAPTER 6: SUMMARY AND SUGGESTIONS FOR FUTURE WORK115
6.1. Summary115
6.2. Suggestions for future work117
REFERENCES119
LIST OF PUBLICATIONS & CONFERENCE PRESENTATIONS

List of Figures

		Page No.		
Figure 1.1	Timeline for the development of materials	2		
Figure 1.2	The depicted notion of random mixing of components in a multi-component alloy, as indicated by the circles in various colors. With equal atom sizes and loose atomic packing implied, the configuration entropy of mixing the alloy is identical to that of an ideal gas, and so is maximized by the use of an equiatomic composition design.	7		
Figure 1.3	Demonstrates the relationship among the parameters δ and Ω for multi-component alloys. Here "Solid Solutions" implies that the alloy is composed entirely of solid solution; "Intermetallics" demonstrates that the alloy is composed primarily of intermetallic compounds and other ordered phases; "S+I" implies that in multi- component alloys, not only solid solution but also ordered compounds can precipitate; and "BMGs" implies that the alloy is composed entirely of amorphous phase.	12		
Figure 1.4	Variation of hardness (HV) and crack length around the indent by varying the Al concentration in theAlxCoCrCuNiFe alloy system	26		
Figure 3.1	Phase evolution after 60 h of mechnical alloying MgAlSiCrFe HEA powder (a); SEM micrograph showing the the morphology of 60 h milled powder scanned for elemental analysis (b); (c) SEM micrograph 60h milled powder; (d) EDS-Spectrum showing the presence of alloying element and elemental composition after 60 h of milling	44		
Figure 3.2	TEM micrograph showing (a) bright-field image; (b) corresponding SAD pattern; (c) dark-field image of MgAlSiCrFe HEA powder milled for 60 h	46		
Figure 3.3	STEM – EDS mapping of equiatomic MgAlSiCrFe LDHEA powder milled for 60 h (a) showing homogenous elemental distribution; (b) showing presence of homogenous elemental distribution of apart from Si			
Figure 3.4	DSC thermogram of MgAlSiCrFe high entropy alloy powder milled for 60 h upto 1200 °C (1473 K)			
Figure 3.5	Sequence of phase evolution during isothermal heating from room temperature to 700 °C (973 K) for 60 h milled MgAlSiCrFe HEA	49		
Figure 3.6	Exploded XRD plot showing the evolution of phases along with (110) reflection of BCC (Fe-based) and B2 (AlFe) type phase at (a) 600 °C (873 K) and (c) 700 °C			

	(973 K) respectively. Deconvolution of peaks showing presence of BCC (Febased), B2 (AlFe) and $Al_{13}Fe_4$ phase at (b) 600 °C (873 K) and (d) 700 °C (973 K) respectively.				
Figure 3.7	 TEM micrograph showing (a) bright-field image; (b) corresponding SAD patt (c) dark-field image of MgAlSiCrFe HEA powder milled for 60 h follwed annealing at 700 °C (973 K) 				
Figure 3.8	Phase evolution during spark plasma sintering of MgAlSiCrFe HEA at 800 °C (1073 K) (a); exploded image showing formation of minor phases along with the (110) peak of major phase (b); deconvolution showing the presence of minor $Al_{13}Fe_4$ phase with major BCC/B2 phase (c)				
Figure 3.9	BSE-SEM micrograph showing the microstructure of MgAlSiCrFe HEA spark plasma sintered at 800 °C (1073 K). (a) microstructure at low magnification; (b) micostructure showing fine distribution of phases; (c) microstructure scanned for full area elemental mapping; (d) microstructure showing the spots for point SEM- EDS analysis; (e) EDS spectrum showing presence of alloying elements				
Figure 3.10	SEM-EDS mapping showing elemental distribution of MgAlSiCrFe HEA spark plasma sintered at 800 °C (1073 K)				
Figure 3.11	Binary phase diagrams (binary subsystems of MgAlSiCrFe HEA) calculated by Thermo-Calc (SSOL5 database)				
Figure 3.12	Property diagram of MgAlSiCrFe HEA using Thermo-Calc				
Figure 4.1	Phase evolution during mechanical alloying of MgAlSiCrFeNi HEA powder upto 60 h				
Figure 4.2	TEM micrograph showing (a, d) bright field image and (b, e) selected area diffraction pattern and (c. f) dark field image of LDHEA powder milled for 60 h showing presence of BCC along with minor fraction of Si				
Figure 4.3	STEM-EDS mapping of equiatomic MgAlSiCrFeNi high entropy alloy mechanically alloyed for 60h showing elemental distribution				
Figure 4.4	Morphology of MgAlSiCrFeNi HEA powder mechanically milled for (a) 10 h; (b) 20 h; (c) 30 h; (d) 50 h				
Figure 4.5	DSC thermogram of MgAlSiCrFeNi HEA powder milled for 60 h showing exothermic and endothermic heating events				

Figure 4.6	(a) Phase evolution during annealing of 60 h milled MgAlSiCrFe HEA powder upto 800 °C (1073K); (b) blown-up image for (110) peak of BCC phase showing evolution of other phases				
Figure 4.7	TEM micrograph showing (a) bright field image and (b) selected area diffraction patterns and (c) dark field images of MgAlSiCrFeNi LDHEA annealed powder at 800 °C (1073K) for 60 min.				
Figure 4.8	Phase formation in MgAlSiCrFeNi HEA powder spark plasma sintered at 800 °C (1073K) for 15 min (a); Blown-up image showing BCC/B2 phase along with other minor phases (b); Deconvoluted peak showing the presence of BCC and B2 phase after SPS.				
Figure 4.9	Back-scattered SEM micrograph showing coarse and fine microstructure of spark plasma sintered MgAlSiCrFeNi HEA in (a) and (b) respectively. (c) and (d) shows the area and points for area and point EDS analysis respectively. (e) EDS spectrum corresponding to the full area scanning.				
Figure 4.10	SEM – EDS elemental mapping showing distribution of elements in spark plasma sintered MgAlSiCrFeNi HEA.				
Figure 4.11	(a) Plot showing indentation load vs depth of indentation; (b) SEM micrograph showing the indentation mark at a load of 5000 mN; (c) radar diagram for mechanical property of MgAlSiCrFeNi LDHEA SPSed at 800 °C (1073K) for 15 min.				
Figure 5.1	Phase evolution after mechanical alloying of MgAlSiCrFeCuZn HEA up to 50 h with BPR of 10:1 (a); Enlarged image showing peak position of (110) peak of BCC and minor phase in 50 h milled powder (b); Deconvoluted peak showing the presence of BCC and γ -brass type phase in 50 h milled powder (c).				
Figure 5.2	Phase evolution during mechanical alloying of MgAlSiCrFeCuZn HEA up to 50 h with BPR of 20:1.				
Figure 5.3	Variation of crystallite size and lattice strain as function of milling duration				
Figure 5.4	TEM micrograph showing fine microstructural details of 50 h milled powder. (a), (b), (c) representing BF, SAD pattern and DF images showing presence of BCC phase; (d), (e) and (f) representing BF, composite SAD pattern and DF images showing co-existence of BCC and γ -brass type phase; (g) and (h) represents BF and SAD pattern of powder particle having only γ -brass type phase; (i) and (j)				

	 represents BF and SAD pattern of severely deformed powder particles having BCC phase. STEM-EDS mapping of 50 h milled HEA powder particle. 			
Figure 5.5				
Figure 5.6	SEM micrograph showing morphology of 30 h (a & d), 40 h (b & e) and 50 h (c & f) milled powder.			
Figure 5.7	Particle size distribution of 50 h mechanically alloyed MgAlSiCrFeCuZn LDHEA with a BPR of 10:1 and 20:1.			
Figure 5.8	DSC thermogram of 50 h milled powder up to 1000 °C (1273 K) with scan rate of 20 k.min ⁻¹ .			
Figure 5.9:	Ex-situ XRD of 50 h mechanically alloyed MgAlSiCrFeCuZn LDHEA powder annealed at various temperatures up to 1000 °C (1273 K)			
Figure 5.10	Phase formation in MgAlSiCrFeCuZn HEA powder spark plasma sintered at 800 $^{\circ}$ C (1273 K) for 15 min (a); Enlarged image showing the peak position of BCC/ B2 phase along with other minor phases (b); Expanded image of the deconvoluted peaks for BCC/ B2 phase along with other minor phases (c)			
Figure 5.11	Plot showing Indentation load vs depth of indentation for MgAlSiCrFeCuZn LDHEA powder spark plasma sintered at 800 °C (1273 K) for 15 min.			

List of Tables

Table 1.1	Classification of various metallic systems based on ΔS_{conf}	Page No. 5
Table 1.2	Diffusion indices for Ni in various FCC matrices. The compositions of Fe-Cr-Ni (Si) alloy are given in wt.%	8
Table 1.3	Enthalpy matrix relevant to the Al-Li-Mg-Sc-Ti alloy (in kJ/m)	21
Table1.4	Typical range of hardness values in HEAs based on their phase evolution	27
Table 2.1	Basic properties of the selected elements for the study	38
Table 2.2	Nominal (atomic %) compositions of milled alloys	38
Table 2.3	Parameters for milling utilized in the production of HEA powder	38
Table 3.1	Elemental composition of spark plasma sintered MgAlSiCrFe HEA	55
Table 3.2	Density and mechanical properties of SPSed MgAlSiCrFe HEA	56
Table 3.3	Physiochemical parameters and enthalpy of mixing of constituent elements in MgAlSiCrFe HEA	58
Table 3.4	Calculated thermodynamic and physical parameter of MgAlSiCrFe HEA	59
Table 3.5	Single point equilibrium calculation is done to estimate phase fraction and phase composition as a function of temperature	63
Table 4.1	Variation of crystallite size (nm), lattice strain (%) and dislocation density along with milling time for MgAlSiCrFeNi HEA	73
Table 4.2	Elemental compsoition of MgAlSiCrFeNi milled HEA powder for 60 h	78
Table 4.3	Elemental composition of MgAlSiCrFeNi HEA SPSed sample	89
Table 4.4	Density and mechanical properties of SPSed MgAlSiCrFeNi LDHEA	90
Table 4.5	Physical data of constituent elements in MgAlSiCrFeNi HEA	91
Table 4.6	Enthalpy of mixing (kJ/mol) of binary elements in MgAlSiCrFeNi HEA by semi- emperical Miedema's approach	93
Table 4.7	Calculated thermodynamic and other parameter of MgAlSiCrFeNi HEA	95

Table 5.1	Variation of crystallite size and lattice strain of MgAlSiCrFeCuZn MA high entropy alloy			
Table 5.2	Mechanical properties of SPSed MgAlSiCrFeCuZn LDHEA	103		
Table 5.3	Chemical enthalpy of mixing $(\Delta H_{ij}^{mix}, kJ/mol)$ of atomic pairs for MgAlSiCrFeCuZn LDHEA following the Miedema's approach	111		

Abbreviations

HEA	: High Entropy Alloy
RHEA	: Refractory HEA
LDHEA	: Low-Density HEA
LWHEA	: Light Weight HEA
YS	: Yield Strength
IM	: Intermetallics
XRD	: X-ray Diffraction
BPR	: Ball to Powder Ratio
SE	: Secondary Electron
MA	: Mechanical Alloying
SPS	: Spark Plasma Sintering
HIP	: Hot Isostatic Pressing
VIM	: Vacuum Induction Melting
HEBM	: High Energy Ball Milling
BSE	: Back-Scattered Electron
CCA	: Complex Concentrated Alloy
SEM	: Scanning Electron Microscopy
ODS	: Oxide Dispersion Reinforced
EDS	: Energy Dispersive X- ray Spectroscopy
DSC	: Differential Scanning Calorimetry
VEC	: Valence Electron Concentration
VHP	: Vacuum Hot Pressing and Sintering
TEM	: Transmission Electron Microscopy
ICDD	: International Centre for Diffraction Data
LWEFM	: Light Weight Environmentally Friendly Materials

Symbols

k	:	Boltzmann constant
S	:	Configurational entropy
W	:	Number of possible configurations
ΔS_{conf}	•	Change in configurational entropy
R	:	Gas constant
ΔG_{mix}	:	Gibbs free energy change due to mixing
δ	:	Atomic size difference
ΔH_{mix}	:	Enthalpy of mixing
ΔS_{mix}	:	Entropy of mixing
T_m	:	Melting point
σ	:	Sigma phase
σ_y	:	Yield stress
Ms	:	Saturated magnetization
χ	:	Permeability
λ	:	Wave length
β	:	Peak broadening
t	:	Crystallite size