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PReFAce 
 

The engineering materials used for various applications generally consist of   one or two 

major elements along with other minor alloying elements for improving the mechanical and 

functional properties.  Over the years, the paradigm shifts in  alloy design and development 

strategies has led to the discovery of various new classes of advanced materials for engineering 

applications such as composites, quasicrystals, bulk metallic glasses and more recently the multi-

component high entropy alloys, among other materials. 

The new categories of alloys emerging on the concept of alloys with multiple principal 

elements are referred to as High Entropy Alloys (HEAs).  The early conceptualizations of 

equimolar alloys date back to late 1700s in a book written in French by Karl Franz Achard.  He 

described the idea of equimolar alloys having five to seven elements.  However, in the modern 

days the first report on multi-component HEAs was published independently by Brian Cantor 

and J.W. Yeh in the year of 2004.  The term ‘High Entropy Alloys’ was first coined by J.W. Yeh 

and he described HEAs as multi-principal alloys containing five or more elements with 

equiatomic or near-equiatomic atomic fraction in the range of 5-35 at%.  In the recent years, D. 

B. Miracle & co-workers classified these HEAs into three broad categories, i.e. (i) transition 

metal based HEAs, (ii) refractory metal based HEAs and (iii) low-density metal based HEAs.  

The transition metal-based HEAs are made up of mostly transition metals.  The elements like Ti, 

V, Cr, Nb, Mo, Hf, Ta, and W are used as major elements to develop refractory HEAs.  For 

developing low density high entropy alloys (LDHEAs) normally lighter elements like Li, Be, 

Mg, Al, Si, Sc etc. are selected as the major components. 

The present work is focused on the phase evolution, microstructural features, thermal 

stability and mechanical properties of three LDHEAs such as MgAlSiCrFe, MgAlSiCrFeNi and 

MgAlSiCrFeCuZn, which were processed by mechanical alloying (MA) and spark plasma 

sintering (SPS) techniques. The present thesis is organized into of six chapters.  



xx 
 

Chapter 1: The first chapter gives a brief introduction of the HEAs and basic principles 

of their stability.  This chapter discusses the phase prediction rules for the design and 

development of HEAs and the core effects.  Additionally, this chapter provides the literature 

survey of the processing methods for HEAs.  Various kinds of possible phases that can form in 

HEAs and its influence on the properties of these HEAs are elaborated.  A brief discussion about 

the low-density HEAs (LDHEA) is also included.  The motivation and objectives of the present 

studies has been highlighted at the end of this chapter. 

Chapter 2: The second chapter of this thesis deals with the materials and experimental 

techniques that were employed in the preparation of the LDHEAs.  The synthesis of LDHEAs 

by mechanical alloying (MA) and its consolidation using spark plasma sintering (SPS) with 

details on the parameters and operational protocol have been described.  Various characterization 

techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM) and 

scanning electron microscopy (SEM) adopted for characterizing microstructure and structures of 

the phases are mentioned.  The nominal chemical composition of the LDHEA powder and of 

consolidated samples were investigated using SEM equipped with EDS (energy dispersive x-

rays spectroscopy) detector.  The chemical composition and elemental distribution of the 

nanostructured powders were further analysed by STEM-EDS techniques.  The thermal stability 

of the milled powders were evaluated through differential scanning calorimetry (DSC) and ex-

situ XRD of the annealed milled powders.  The experimental determination of density and 

hardness of the sintered samples (using conventional and instrumented indentation techniques) 

were described briefly.   

Chapter 3: The third chapter of this thesis examines an equiatomic MgAlSiCrFe HEA 

prepared by using mechanical alloying. This chapter discusses the alloying behavior, phase 

evolution, phase composition, and thermal stability of as-milled nanostructured HEA powders.  

The milling of elemental powders of MgAlSiCrFe for 60 h led to the formation of HEA having  
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BCC phase with a lattice parameter of 0.2887 ± 0.005 nm (close to that of the α-Fe)  along with 

a minor fraction of undissolved Si.  The nanostructured HEA powders having crystallite size of 

~19 nm was observed to form after milling. The STEM–EDS mapping of these milled powders 

confirmed uniform elemental distribution in the sample milled for 60 h.  The DSC thermogram 

of 60 h milled HEA powder demonstrated its thermal stability up to 400 ℃.  The exothermic 

heating events detected in the DSC thermogram corresponded to the phase transformation of 

MgAlSiCrFe LDHEA powder.  Attempts have been made to corroborate these observation with 

the results obtained in ex-situ XRD analysis of the powders annealed at various temperatures up 

to 700 ℃.  The systematic investigation established the presence of parent BCC phase along 

with other minor phase’s i.e.  B2 type Al–Fe phase, FCC phases (Al–Mg solid solution), Cr5Si3, 

Mg2Si, and Al13Fe4.  Additionally, this chapter correlates the experimental results with the 

thermodynamic parameters in order to understand the phase evolution and stability.  This chapter 

also shows the phase evolution, chemical composition, and microstructure of the SPSed sample 

consolidated at 800 ℃ (1073 K) through XRD and SEM techniques.  The SPSed samples 

revealed the formation of B2-type AlFe phase (a=0.2889 nm) along with the parent disordered 

BCC phase and a minor fraction of Al13Fe4, β-Al3Mg2, and Cr5Si3 phases. The instrumented 

microindentation techniques was used to examine the mechanical properties of these LDHEAs.  

The hardness, Young’s modulus and yield strength were found to be approximately 7.42 ± 0.18 

GPa, 212 ± 2 GPa and 2.47 GPa with an appreciable relative density of 99.98% for the SPSed 

samples.  This chapter also describes the phase evolution using Thermo-Calc software, the 

thermodynamic parameters and property diagrams which were generated through the 

CALPHAD approach. 

Chapter 4: The fourth chapter of this thesis deals with the equiatomic MgAlSiCrFeNi 

LDHEA prepared by mechanical alloying followed by spark plasma sintering (SPS).  In this 

chapter, the phase evolution, chemical composition, and thermal stability of the alloy were 
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analyzed.  The formation of a BCC phase with lattice parameter of 0.2876±0.03 nm and along 

with undissolved Si (~3 at%) was observed after 60 h of milling.  The DSC experiment up to 

1200 ℃ (1473 K) showed five exothermic heating events corresponding to the various phase 

transformations, which were further correlated with the results obtained from the XRD 

experiments.  This chapter reports various phase transformation events due to  annealing at 

different temperature upto 800 ℃ (1073 K) resulting in the formation of a major B2 type phase  

(a=0.289 nm) and BCC phase along with small amounts of FCC Al-Mg solid solution phase 

(FCC 1 (a=0.4082 nm) and  FCC 2 (a=0.4215 nm)), and intermetallic phases such as monoclinic 

Al13Fe4 (a=1.549 nm, b=0.808 nm,  c=1.248 nm, α=β=90˚), Mg2Si (a=0.6351 nm), Cr5Si3 

(a=b=0.9165 nm, c=0.4638 nm).  The SPSed  sample also exhibited BCC and B2-type phases 

coexisting with the minor amount of other phases observed for 800 ℃ (1073 K) annealed sample.  

It has been further observed that the co-existence of minor phases along with the parent BCC 

phase in SPSed alloy (having a relative density of ~99.40%) led to high hardness and modulus 

of elasticity of ~9.98±0.3 GPa and 229±0.3 GPa respectively.  The present chapter also focuses 

on calculating thermodynamic parameters in order to correlate the experimental findings of phase 

evolution and stability of the annealed powder as well as SPSed samples. 

Chapter 5: The fifth Chapter of this thesis deals with equiatomic septenary 

MgAlSiCrFeCuZn LDHEA synthesized by mechanical alloying for 60 h followed by spark 

plasma sintering.  The phase evolution, powder morphology, chemical composition and thermal 

stability of the 60 h milled HEA powder was ascertained. The mechanical alloying led to the 

formation of a major BCC phase (lattice parameter of 0.2895 nm) with the minor fraction of 

retained Si.  The thermal stability of the milled powders were discerned through the DSC 

thermogram upto 1200 ℃ (1473 K) and the various exothermic heating events were corroborated 

with the phases observed in the ex-situ XRD of annealed powders.  The MgAlSiCrFeCuZn HEA 

was consolidated at 800 ℃ using spark plasma sintering.  The hardness and yield strength of 
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conventionally sintered and SPSed samples were determined using instrumented indentation 

techniques.  The hardness and modulus was found to be ~8.38 GPa and 211 GPa.  The excellent 

indentation hardness is understood due to the appreciable density achieved in the SPSed samples.   

The present chapter also focuses on calculating thermodynamic parameters, in order to correlate 

with the experimental findings of phase evolution and stability of the annealed powder and 

SPSed samples. 

Chapter 6: The sixth chapter provides a summary of the work, highlighting the important 

findings and significant results arising from the present thesis. It has also addressed the 

suggestions for future work in the areas of LDHEAs required for further understanding. 

References: This section contains a list of pertinent references more than one hundred 

and fifty publications that have been refereed while discussing the various aspects of the issues 

related to the present thesis. 

 

 


