CONTENTS

		Page
		Number
	List of Figures	i – x
	List of Tables	xi – xii
	List of Symbols	xiii – xiv
	Preface	XV-XX
	Summary	xxi-xxiv
	CHAPTER 1	
	INTRODUCTION	1 – 52
1.1	Superalloys	1
1.2	Classification of Superalloys	2
1.3	Nickel-based Superalloys	3
	1.3.1 Development of Nickel-based Superalloys	4
	1.3.2 Physical Metallurgy of Nickel-based Supera	lloys 5
	1.3.3 Applications of Nickel based Superalloys	7
1.4	Nickel-based Superalloy Inconel 617	7
	1.4.1 Heat treatment of Inconel 617 Alloy	9
	1.4.2 Physical Metallurgy of Inconel 617 Alloy	10
	1.4.3 Applications of Inconel 617 Alloy	12
1.5	Gas Turbine Engines	13
	1.5.1 Combustor Section	15
	1.5.2 Materials for Combustion Liners	17
1.6	Advanced Ultra-Super Critical (A-USC) Power Plants	18

	1.6.1 Materials for A-USC Power Plants	22
1.7	Dynamic Strain Aging	26
1.8	Effect of Heat Treatment and Thermo-mechanical Treatment on Tensile Deformation Behaviour	33
1.9	Low Cycle Fatigue Behaviour of Inconel 617 Alloy	35
1.10	Effect of Hot Corrosion on Low Cycle Fatigue Behaviour	40
	1.10.1 Hot Corrosion	40
	1.10.2 Effect of Hot Corrosion on Low Cycle Fatigue Behaviour	42
1.11	Effect of Thermal Barrier Coating on Low Cycle Fatigue Behaviour	46
1.12	Scope for the Present Work	52
1.13	Objectives of the Present Investigation	52
	CHAPTER 2	
	MATERIAL AND METHODS	53 - 64
2.1	Introduction	
	Introduction	53
2.2	Material	53 53
2.2 2.3	Material Initial Characterization	53 53 53
2.22.32.4	Material Initial Characterization Tensile Behaviour	53 53 53 54
2.22.32.4	Material Initial Characterization Tensile Behaviour 2.4.1 Tensile Testing	53 53 53 54 54
2.22.32.4	Material Initial Characterization Tensile Behaviour 2.4.1 Tensile Testing 2.4.2 Work Hardening Behaviour	53 53 53 54 54 55
2.22.32.42.5	Material Initial Characterization Tensile Behaviour 2.4.1 Tensile Testing 2.4.2 Work Hardening Behaviour Low Cycle Fatigue Behaviour	53 53 53 54 54 55 55 56
2.22.32.42.5	Material Initial Characterization Tensile Behaviour 2.4.1 Tensile Testing 2.4.2 Work Hardening Behaviour Low Cycle Fatigue Behaviour 2.5.1 Low Cycle Fatigue Testing	53 53 53 54 54 54 55 56 56
2.22.32.42.5	MaterialInitial CharacterizationTensile Behaviour2.4.1 Tensile Testing2.4.2 Work Hardening BehaviourLow Cycle Fatigue Behaviour2.5.1 Low Cycle Fatigue Testing2.5.2 Oxidation and Hot Corrosion	53 53 53 54 54 55 56 56 56 58
2.22.32.42.5	MaterialInitial CharacterizationTensile Behaviour2.4.1 Tensile Testing2.4.2 Work Hardening BehaviourLow Cycle Fatigue Behaviour2.5.1 Low Cycle Fatigue Testing2.5.2 Oxidation and Hot Corrosion2.5.3 Thermal Barrier Coating on Fatigue Samples	53 53 53 54 54 55 56 56 56 58 60

2.7	Chapter Summary
-----	-----------------

	CHAPTER 3	
	TENSILE BEHAVIOUR OF INCONEL 617 ALLOY	65 –100
3.1	Introduction	65
3.2	Methodology	66
3.3	Microstructure in As-received and Solution Annealed Condition	67
3.4	Engineering Stress-Strain curves	69
3.5	Variation of Critical Plastic Strain	70
3.6	Variation of Strength and Elongation with Temperature	72
3.7	Variation of Strain Rate Sensitivity with Temperature	75
3.8	Variation of Work Hardening Parameters with Temperature	76
3.9	Determination of Activation Energy	80
3.10	Deformation Behaviour	83
3.11	Fracture Behaviour	90
3.12	Discussion	93
	3.12.1 Dynamic Strain Aging	93
	3.12.2 Deformation Behaviour	97
	3.12.3 Fracture Behaviour	98
3.13	Chapter Summary	99
	CHAPTER 4	
	WORK HARDENING BEHAVIOUR OF INCONEL 617 ALLOY	101 – 124
4.1	Introduction	101
4.2	Methodology	102
4.3	Microstructure in Different Conditions	103

7.7	Engineering Stress-Strain Behaviour	106
4.5	Work Hardening Behaviour	108
4.6	Deformation Behaviour	112
4.7	Fracture Behaviour	115
4.8	Discussion	117
	4.8.1 Engineering Stress-Strain Behaviour	117
	4.8.2 Work Hardening Behaviour	118
	4.8.3 Deformation Behaviour	120
	4.8.4 Fracture Behaviour	121
4.9	Chapter Summary	122
	CHAPTER 5	
	LOW CYCLE FATIGUE BEHAVIOUR OF INCONEL 61 ALLOY	7 125 – 170
5.1	Introduction	125
5.2	Methodology	126
5.2 5.3	Methodology Tensile Behaviour at RT, 750°C and 850°C	126 126
5.2 5.3 5.4	Methodology Tensile Behaviour at RT, 750°C and 850°C Low Cycle Fatigue Behaviour	126 126 127
5.2 5.3 5.4 5.5	Methodology Tensile Behaviour at RT, 750°C and 850°C Low Cycle Fatigue Behaviour Cyclic Stress-Strain Behaviour	126 126 127 132
5.2 5.3 5.4 5.5 5.6	Methodology Tensile Behaviour at RT, 750°C and 850°C Low Cycle Fatigue Behaviour Cyclic Stress-Strain Behaviour Masing and Non-Masing Behaviour	126 126 127 132 135
5.2 5.3 5.4 5.5 5.6 5.7	Methodology Tensile Behaviour at RT, 750°C and 850°C Low Cycle Fatigue Behaviour Cyclic Stress-Strain Behaviour Masing and Non-Masing Behaviour Strain-Life Relationship	126 126 127 132 135 137
 5.2 5.3 5.4 5.5 5.6 5.7 5.8 	Methodology Tensile Behaviour at RT, 750°C and 850°C Low Cycle Fatigue Behaviour Cyclic Stress-Strain Behaviour Masing and Non-Masing Behaviour Strain-Life Relationship Strain Energy–Life Relationship	126 126 127 132 135 137 139
 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 	Methodology Tensile Behaviour at RT, 750°C and 850°C Low Cycle Fatigue Behaviour Cyclic Stress-Strain Behaviour Masing and Non-Masing Behaviour Strain-Life Relationship Strain Energy–Life Relationship Role of Friction and Back Stress	126 126 127 132 135 137 139 141
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	MethodologyTensile Behaviour at RT, 750°C and 850°CLow Cycle Fatigue BehaviourCyclic Stress-Strain BehaviourMasing and Non-Masing BehaviourStrain-Life RelationshipStrain Energy–Life RelationshipRole of Friction and Back StressDeformation Behaviour	126 126 127 132 135 137 139 141 144
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	MethodologyTensile Behaviour at RT, 750°C and 850°CLow Cycle Fatigue BehaviourCyclic Stress-Strain BehaviourMasing and Non-Masing BehaviourStrain-Life RelationshipStrain Energy–Life RelationshipRole of Friction and Back StressDeformation BehaviourSurface Morphology	126 126 127 132 135 137 139 141 144 153

5.13	Discuss	ion	161
	5.13.1	Cyclic Stress Response & Cyclic Stress-strain Behaviour	161
	5.13.2	Deformation Behaviour under Cyclic Loading	164
	5.13.3	Fracture Behaviour	166
5.14	Chapter	Summary	168
	CHAP	TER 6	
	LCF B	EHAVIOUR OF SALT COATED AND PRE- SED INCONEL 617 ALLOY	171 – 194
6.1	Introdu	ction	171
6.2	Method	lology	172
6.3	LCF Be	ehaviour	172
6.4	Deform	ation Behaviour	174
6.5	Fracture	e Behaviour	177
6.6	Oxidati	on and Hot Corrosion Behaviour	180
6.7	Discuss	ion	188
	6.7.1	LCF Behaviour	188
	6.7.2	Deformation Behaviour	188
	6.7.3	Fracture Behaviour	190
	6.7.4	Oxidation and Hot Corrosion Behaviour	191
6.8	Chapter	Summary	193
	CHAP	ΓER 7	
	LCF BI	EHAVIOUR OF THERMAL BARRIER COATED NEL 617 ALLOY	195 – 212
7.1	Introdu	ction	195
7.2	Method	lology	196
7.3	Initial C	Characterization	196

7.4	Cyclic Stress Response	197
7.5	Strain-Life Behaviour	200
7.6	Surface Morphology	201
7.7	Deformation Behaviour	202
7.8	Fracture Behaviour	205
7.9	Discussion	207
	7.9.1 Low Cycle Fatigue Behaviour	207
	7.9.2 Deformation Behaviour	209
	7.9.3 Fracture Behaviour	210
7.10	Chapter Summary	211
	CHAPTER 8	
	MAJOR CONCLUSIONS AND SCOPE FOR FUTURE WORK	213 - 220
8.1	Introduction	213
8.2	Major Conclusions	213
	8.2.1 <i>Tensile Behaviour</i>	213
	8.2.2 Low Cycle Fatigue Behaviour	216
8.3	Scope of Future Work	220
	References	221 – 234
	List of Publications	235

LIST OF FIGURES

Figure No.	Figure Caption	Page No.
Fig. 1.1	Major classification and designation of important superalloys	2
Fig. 1.2	Crystal structure of γ and γ' in nickel based superalloys	6
Fig. 1.3	Variation of tensile properties of Inconel 617 alloy with temperature	10
Fig. 1.4	TTT Diagram of Inconel 617 alloy showing temperature and time limits for formation of various phases	12
Fig. 1.5	Different sections of the aeroplane gas turbine engine	14
Fig. 1.6	Cross-sectional view of gas turbine engine and temperatures zones of cold and hot section	15
Fig. 1.7	Schematic diagram showing the details of the combustion chamber	16
Fig. 1.8	(a) Photograph of the industrial combustion can (b) Schematic showing the principle of the combustion process inside the hot combustion chamber	16
Fig. 1.9	(a) Industrial annular combustor image from Pratt & Whitney JT9D turbine (b) Combustion liner with thermal barrier coating applied on it for improving the performance and details of the coating	18
Fig. 1.10	Effect of steam parameters on plant efficiency	21
Fig. 1.11	Comparison of CO ₂ emissions from 1000MW coal fired power plants	21
Fig. 1.12	Schematic of the flow of steam in AUSC power plant	22
Fig. 1.13	Layout of the AUSC coal fired power plant	22
Fig. 1.14	The ratio of change in high temperature materials with steam parameters	24
Fig. 1.15	Materials used in boilers of AUSC power plants	25
Fig. 1.16	Comparison of various candidate materials available for A-USC power plants	26

Fig. 1.17	Different types of serrations	27
Fig. 1.18	Effect of strain rate and temperature on critical plastic strain	28
Fig. 1.19	Various manifestations of DSA	29
Fig. 1.20	Engineering stress- strain curves of Inconel 617 alloy from RT to 1000°C.	30
Fig. 1.21	Variation in serrations with change in temperature	31
Fig. 1.22	Stress strain curves of Inconel 617 alloy	32
Fig. 1.23	Flow relationships for tensile samples of Inconel 617 alloy tested at 500°C and at a strain rate of 10^{-4} s ⁻¹	33
Fig. 1.24	Temperature profiles during start up and shut-down of the gas turbine engine	35
Fig. 1.25	Serrations observed in hysteresis loops for the samples fatigue tested at 850°C at strain amplitude of $\pm 0.6\%$	38
Fig. 1.26	Comparison of fatigue behaviour of several materials at 538°C	38
Fig. 1.27	Coffin-Manson plot for LCF behaviour of Inconel 617 at 10^{-3} s ⁻¹	39
Fig. 1.28	(a) Cyclic stress response curves of Alloy 617M alloy fatigue tested at 500° C (b) rate of hardening with respect to fatigue life	40
Fig. 1.29	TEM micrographs of fatigue tested samples, (a) precipitates at 750°C (b) sub grain boundaries and precipitates at 850°C	40
Fig. 1.30	Weight change/ surface area (mg/cm^2) versus time plot for Inconel 617 subjected to hot corrosion for 100h at 700°C, 800°C and 900°C (b) The parabolic rate constant on the basis of the first 10h exposure time, for Inconel 617	42
Fig. 1.31	XRD pattern of Inconel 617 alloy after hot corrosion at (a) 800° C and (b) at 900° C	43
Fig. 1.32	Cross sectional images of alloy Inconel 617 samples oxidised in air for 12 cycles: (a) at 850° C (b) at 950° C and (c) EDX elemental analysis map at 950° C	44
Fig. 1.33	Optical micrographs showing corrosion of IN 617 alloy exposed for 100hr and 4ppm Na_2SO_4 : (a) at 900°C and (b) at 1000°C	44
Fig. 1.34	Cyclic stress response curves for the superalloy GTM-SU-718 at room temperature	46

Fig. 1.35	SEM micrographs of the samples (a) after coating with YSZ on base coat of NiCr6AlY and (b) TBC coated samples after subjecting to oxidation at 1150°C for 40 h, showing thin layer of TGO formed	50
Fig. 1.36	(a) SEM micrograph showing thickness of the bond coat and YSZ coating applied on Inconel 617 alloy (b) micrograph showing cross section of the sample after failure	50
Fig. 1.37	Maximum fatigue stress as a function of cycles to failure at 800°C for TBC coated, substrate with the bond coat and bare Superni C-263	51
Fig. 2.1	Geometry of the cylindrical tensile specimen	55
Fig. 2.2	Schematic diagram of the cylindrical fatigue specimen	57
Fig. 2.3	Triangular wave form used for strain controlled fatigue testing	57
Fig. 2.4	(a) Machine set up for low cycle fatigue testing (Model: MTS 810)(b) High temperature extensometer and thermocouples mounted on the sample.	58
Fig. 2.5	Digital photographs of different samples: (a) disc sample as polished, (b) disc sample oxidized at 850° C for 500 h and (c) LCF sample oxidized at 850° C for 500 h.	59
Fig. 2.6	Experimental set up for salt spray coating	60
Fig. 2.7	Digital photographs of different samples: (a) disc sample as polished, (b) disc sample salt coated and pre-exposed to 850°C for 500 h and (c) LCF sample after salt coating.	60
Fig. 2.8	Schematic cross section of the atmospheric plasma spray coating gun	61
Fig. 2.9	Digital photograph of the LCF sample coated with thermal barrier coating	62
Fig. 3.1	Initial microstructure of the Inconel 617 alloy in the AR condition	67
Fig. 3.2	Microstructure of the Inconel 617 alloy in solution annealed $(1175^{\circ}C/40 \text{ min/WQ})$ condition	68
Fig. 3.3	X-Ray diffraction pattern of the Inconel 617 alloy in the solution annealed condition	69
Fig. 3.4	TEM bright field micrographs of the Inconel 617 alloy in solution annealed condition	69

Fig. 3.5	Engineering stress–strain curves of the Inconel 617 alloy in solution annealed condition tested at different temperatures and at strain rates of: (a) $5x10^{-4} \text{ s}^{-1}$, (b) $5x10^{-3} \text{ s}^{-1}$, (c) $1x10^{-2} \text{ s}^{-1}$ and (d) magnified view of servations at strain rate of $5x10^{-3} \text{ s}^{-1}$	71
Fig. 3.6	Variation of critical plastic strain for the onset of serrations with: (a) strain rate and (b) temperature	71
Fig. 3.7	Effect of temperature and strain rate on (a) 0.2% offset yield strength (b) ultimate tensile strength and (c) flow stress (σ) at ε =0.1	73
Fig. 3.8	Effect of temperature and strain rate on (a) total elongation (b) uniform plastic strain (e_{pu}) (c) plastic strain to fracture (e_{pf}) and (d) necking plastic strain (e_{pn})	74
Fig. 3.9	Effect of temperature on strain rate sensitivity (m)	76
Fig. 3.10	(a) Log-log plots of the true stress- true plastic strain at different temperatures, and validity of various flow equations	77
Fig. 3.11	Variation of (a) strength coefficient (K) and (b) strain hardening exponent (n), with temperature at different strain rates	79
Fig. 3.12	Variation of normalised work hardening rate (θ/E) with temperature at three strain rates	79
Fig. 3.13	(a) Variation of $\ln \dot{\varepsilon}$ with $\ln \varepsilon_c$ (b) $\ln \varepsilon_c$ vs 1/T plot	81
Fig. 3.14	$\ln \varepsilon_{c}^{(m+\beta)}/T vs 1/T plot$	81
Fig. 3.15	(a) $\dot{\epsilon} vs \Delta \sigma$ plots for 300°C and 400°C and (b) ln $\dot{\epsilon} vs$ 1/T plots	82
Fig. 3.16	((a) $\dot{\epsilon} vs \Delta \sigma$ plot for 500°C and 600°C and (b) ln $\dot{\epsilon}$ vs 1/T plots	82
Fig. 3.17	TEM micrographs of solution annealed tensile samples of the Inconel 617 alloy tested at room temperature at a strain rate of $5x10^{-3}$ s ⁻¹	83
Fig. 3.18	TEM micrographs of tensile samples tested at 400°C (exhibiting serrrated flow), at a strain rate of $5 \times 10^{-3} \text{ s}^{-1}$	85
Fig. 3.19	TEM micrographs of tensile sample tested at 400°C and at strain rate of $5 \times 10^{-3} \text{ s}^{-1}$ - test interrupted at $\varepsilon = 0.4$	86
Fig. 3.20	TEM micrographs of tensile samples tested at 600° C, (exhibiting serrated flow) at a strain rate of 5×10^{-3} s ⁻¹	87
Fig. 3.21	TEM micrographs of tensile samples tested at 700°C at a strain rate of $5x10^{-3}$ s ⁻¹	88

Fig. 3.22	TEM micrographs of tensile samples tested at 800° C (above the DSA regime) at a strain rate of 5×10^{-3} s ⁻¹	89
Fig. 3.23	SEM fractographs of tensile specimens tested at room temperature at strain rate of $5 \times 10^{-3} \text{ s}^{-1}$	90
Fig. 3.24	SEM fractographs of tensile specimens tested at 400° C at strain rate of 5×10^{-3} s ⁻¹	91
Fig. 3.25	SEM fractographs of tensile specimens tested at 700° C at a strain rate of 5×10^{-3} s ⁻¹	91
Fig. 3.26	Optical micrographs of longitudinal section of the tensile samples tested at: (a) room temperature and (b) 700°C	92
Fig. 3.27	SEM fractographs of tensile specimens tested at 800° C at strain rate of $5x10^{-3}$ s ⁻¹	92
Fig. 3.28	(a) SEM fractograph of tensile specimen tested at 300° C (b) EDS analysis of carbides	93
Fig. 4.1	Microstructure of Inconel 617 alloy in SQ-AG1 condition (a) Optical micrograph (b) SEM micrograph (c) EDS analysis for Cr rich carbides.	104
Fig. 4.2	Microstructure of the Inconel 617 alloy in SQ-AG2 (500 h) condition: (a) Optical micrograph (b) SEM micrograph (c) EDS analysis of Mo and Cr rich carbides.	105
Fig. 4.3	Microstructure of Inconel 617 alloy after solution annealing at 1175°C for 40 minutes and cold working (40%) (SQ-CW) (a) Optical micrograph (b) SEM micrograph	105
Fig. 4.4	XRD analysis of the Inconel 617 alloy in different conditions	106
Fig. 4.5	Engineering stress–engineering strain (plastic) curves of the Inconel 617 alloy in different conditions tested at a strain rate of $5x10^{-3}$ s ⁻¹ at: (a) RT and (b) 700°C.	107
Fig. 4.6	Double logarithmic plots of the true stress <i>vs.</i> true plastic strain of the Inconel 617 alloy for all the conditions, tested at: (a) RT and (b) 700° C	109
Fig. 4.7	True stress-strain (log-log) curves obtained by using various work hardening relationships	110
Fig. 4.8	Variation of the work hardening rate (θ) with the true stress (σ) for all the conditions of the Inconel 617 alloy tested at RT and 700°C	112
Fig. 4.9	TEM images of SQ-AG2 condition samples tested at RT	113

Fig. 4.10	TEM images of SQ-AG2 condition samples tested at 700°C	113
Fig. 4.11	TEM images of SQ-CW condition samples tested at RT	114
Fig. 4.12	TEM images of SQ-CW condition samples tested at 700°C	115
Fig. 4.13	SEM fractographs of SQ-AG2 condition sample tested at RT	116
Fig. 4.14	SEM fractographs of SQ-AG2 condition sample tested at 700°C	116
Fig. 4.15	SEM fractographs of SQ-CW condition sample tested at RT	116
Fig. 4.16	SEM fractographs of SQ-CW condition sample tested at 700° C	117
Fig. 5.1	Engineering stress-plastic strain curves of Inconel 617 alloy at different temperatures.	127
Fig. 5.2	Cyclic stress response curves (peak tensile) of the Inconel 617 fatigue tested samples at: (a) Room temperature (b) 750° C and (c) 850° C	130
Fig. 5.3	Cyclic stress response curves of fatigue tested samples at RT, 750°C and 850°C at: (a) strain amplitude of $\pm 0.2\%$ (b) strain amplitude of $\pm 0.5\%$.	131
Fig. 5.4	Variation of degree of hardening with respect to: (a) strain amplitude and (b) fatigue life (%)	132
Fig. 5.5	Cyclic stress-strain curves obtained by multiple step test method (MSSS): (a) at room temperature (b) at 750°C and (c) at 850°C	133
Fig. 5.6	Superimposed monotonic stress-strain (MTSS) curve on Cyclic Stress-Strain curves by companion method (CSS) and by multiple step test method(MSSS), for the samples tested at: (a) RT (b) 750°C and (c) 850°C	134
Fig. 5.7	Stress-strain hysteresis loops starting from a common origin and (a) typical hysteresis loops of material exhibiting Masing behaviour. Hysteresis loops obtained in Inconel 617 alloy at: (b) RT (c) 750° C (d) 850° C	136
Fig. 5.8	Strain- life curve using Basquin-Coffin-Manson relationship: (a) at RT (b) at 750°C (c) at 850°C and (d) Comparison of Coffin Manson relationship at RT, 750°C and 850°C	137
Fig. 5.9	Strain energy - life relationship using experimental values at RT, 750°C and 850°C: (a) plastic strain energy (W_p) and (b) total strain energy (W_t) .	140
Fig. 5.10	Construction of master curves from stable hysteresis loops at (a) Room temperature (c) 750°C and (e) 850°C. Comparison of strain energy life experimental data with the values calculated	142

	from Equation (5.5) and Equation (5.6) for the samples tested at (b) Room temperature (d) 750°C and (e) 850°C	
Fig. 5.11	Determination of friction stress and back stress from fatigue hysteresis loop	143
Fig. 5.12	(a) Friction stress with respect to number of cycles (N) and (b) back stress with respect to number of cycles (N)	144
Fig. 5.13	TEM micrographs of the fatigue sample tested at RT and at $\pm 0.20\%$ strain amplitude	146
Fig. 5.14	TEM micrographs of the fatigue sample tested at RT at $\pm 0.50\%$ strain amplitude, test interrupted at 80 cycles	147
Fig. 5.15	TEM micrographs of fatigue sample tested at RT and at $\pm 0.50\%$ strain amplitude, interrupted at 1500 cycles	148
Fig. 5.16	TEM micrographs of the fatigue sample tested at RT and at $\pm 0.50\%$ strain amplitude	148
Fig. 5.17	TEM micrographs of the fatigue sample tested at 750° C and at $\pm 0.20\%$ strain amplitude	150
Fig. 5.18	TEM micrographs of the fatigue sample tested at 750 $^{\rm o}{\rm C}$ and at $\pm 0.50\%$ strain amplitude	151
Fig. 5.19	TEM micrographs of the fatigue sample tested at 850° C and at $\pm 0.20\%$ strain amplitude	152
Fig. 5.20	TEM micrographs of the fatigue sample tested at 850° C and at $\pm 0.50\%$ strain amplitude	153
Fig. 5.21	SEM micrographs showing surface morphology of the samples fatigue tested at RT and at strain amplitude of $\pm 0.5\%$.	154
Fig. 5.22	SEM micrographs showing surface morphology of the samples fatigue tested at 750° C and at strain amplitude of $\pm 0.5\%$.	154
Fig. 5.23	SEM fractographs of the samples fatigue tested at RT and at strain amplitude of $\pm 0.20\%$	155
Fig. 5.24	SEM fractographs of the samples fatigue tested at RT and at strain amplitude of $\pm 0.50\%$	155
Fig. 5.25	SEM fractographs of the samples fatigue tested at 750° C and at strain amplitude of $\pm 0.20\%$	156
Fig. 5.26	SEM fractographs of the samples fatigue tested at 750 $^{o}\mathrm{C}$ and at strain amplitude of $\pm 0.50\%$	157

Fig. 5.27	SEM fractographs of the samples fatigue tested at 850°C and at strain amplitude of $\pm 0.20\%$	158
Fig. 5.28	SEM fractographs of the samples fatigue tested at 850° C and at strain amplitude of $\pm 0.50\%$	158
Fig. 5.29	Longitudinal cross section of the samples fatigue tested at RT and at strain amplitude of $\pm 0.50\%$	159
Fig. 5.30	Longitudinal cross section for the samples fatigue tested at 750°C and at strain amplitude of $\pm 0.50\%$	160
Fig. 5.31	Longitudinal cross section for the samples fatigue tested at $850^{o}C$ and at strain amplitude of $\pm 0.50\%$	161
Fig. 6.1	Cyclic stress response curves during LCF testing at $\Delta \varepsilon_t/2=\pm 0.25\%$ at 850°C (a) oxidized at 850°C and (b) salt coated and exposed in air at 850°C	174
Fig. 6.2	Hysteresis loops of the half life cycle $(0.5N_f)$ of different LCF samples tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C: (a) oxidized at 850°C and (b) salt coated and pre-exposed in air at 850°C.	174
Fig. 6.3	TEM micrographs of the LCF samples, oxidized at 850°C for 50h and tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C	175
Fig. 6.4	HAADF-STEM, EDX elemental mapping of the carbides	175
Fig. 6.5	TEM micrographs of the LCF samples, oxidized at 850°C for 500h and tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C	176
Fig. 6.6	TEM micrographs of the LCF samples, salt coated and exposed at 850°C for 50h, tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C	176
Fig. 6.7	TEM micrographs of the LCF samples, salt coated and exposed at 850°C for 500h, tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C	177
Fig. 6.8	SEM images of the LCF samples, tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C, for (a) oxidized at 850°C for 50h and (b) oxidized at 850°C for 500h.	178
Fig. 6.9	SEM images of the LCF samples, salt coated and pre-exposed at 850°C for 50h and tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C	178
Fig. 6.10	SEM images of the LCF samples, salt coted and oxidized at 850°C for 500h and tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C	179
Fig. 6.11	Optical micrographs of longitudinal cross section of the fractured LCF specimen, salt coated and pre-exposed at 850°C, tested at 850°C, $\Delta \varepsilon_t/2 = \pm 0.25\%$ (a) 50h sample (b) 500h sample	180

Fig. 6.12	Digital photographs of the disc samples exposed to oxidation at 850°C for various durations	180
Fig. 6.13	Digital photographs of the disc samples salt coated and exposed to oxidation at 850°C for various durations	181
Fig. 6.14	Plot of weight change with respect to exposure duration (hours) for the samples with salt coating and without salt coating.	182
Fig. 6.15	XRD analysis of the disc samples (a) un-oxidized and those oxidized in air at 850°C for 50h and 500h (b) salt coated and pre-exposed in air at 850°C for 50h and 500h.	183
Fig. 6.16	SEM micrographs of longitudinal cross section of fractured LCF specimens, tested at 850°C and at $\Delta \varepsilon_t/2 = \pm 0.25\%$ (a) oxidized at 850°C for 50h (b) Oxidized at 850°C for 500h	184
Fig. 6.17	SEM micrographs of the longitudinal section of fractured LCF specimens, tested at 850°C and at $\Delta \varepsilon_t/2=\pm 0.25\%$ (a) salt coated and pre exposed at 850°C for 50h (b) salt coated and pre exposed at 850°C for 500h	184
Fig. 6.18	BSE images of the cross sectional surfaces and EPMA elemental mapping of the LCF sample oxidized in air at 850°C and tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ and at 850°C (a) 50h and (b) 500h.	186
Fig. 6.19	BSE images of cross sectional surfaces and EPMA elemental mapping of the LCF specimens salt coated and oxidized in air at 850°C, tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ and at 850°C, (a) 50h and (b) 500h.	187
Fig. 6.20	TEM micrographs of the (a) disc sample oxidized at 850°C and (b) fatigue sample without any pre-exposure, tested at 850°C, and at $\Delta \varepsilon_t/2 = \pm 0.25\%$.	189
Fig. 6.21	Schematic representation of the process of oxidation and fracture from LCF at 850°C, at $\Delta \varepsilon_t/2 = \pm 0.25\%$.	193
Fig. 6.22	Schematic representation of the process of hot corrosion and fracture from LCF at 850°C, at $\Delta \varepsilon_t/2 = \pm 0.25\%$.	193
Fig. 7.1	SEM micrographs (a) the transverse section of the fatigue sample coated with TBC (b) morphology of TBC coating and (c) SEM-EDS analysis of the TBC	197
Fig. 7.2	Cyclic stress response curves of the fatigue samples tested at 850° C and at strain amplitude of $\pm 0.25\%$ (a) without TBC and (b) with TBC	198
Fig. 7.3	Stress -plastic strain plots for Inconel 617 alloy without TBC	200

and with TBC

- Fig. 7.4 Coffin-Manson plots for the Inconel 617 alloy without and with 201 TBC
- Fig. 7.5 Digital micrographs of the TBC fatigue samples tested at 850°C and 201 at (a) $\varepsilon_t/2 = \pm 0.20\%$ and (b) $\varepsilon_t/2 = \pm 0.50\%$.
- Fig. 7.6 SEM micrographs of longitudinal section of the TBC fatigue samples 202 tested at 850°C and at strain amplitude of (a) $\epsilon_t/2 = \pm 0.20\%$ and (b) $\epsilon_t/2 = \pm 0.50\%$
- Fig. 7.7 TEM micrographs of the TBC fatigue samples tested at 850°C and at 203 strain amplitude of $\varepsilon_t/2 = \pm 0.20\%$
- Fig. 7.8 TEM micrographs of the TBC fatigue samples tested at 850°C and at 204 strain amplitude of $\varepsilon_t/2 = \pm 0.50\%$
- Fig. 7.9 SEM fractographs of the TBC fatigue samples tested at 850°C and at 206 strain amplitude of $\varepsilon_t/2 = \pm 0.20\%$
- Fig. 7.10 SEM fractographs of the TBC fatigue samples tested at 850°C and at 207 strain amplitude of $\epsilon_t/2 = \pm 0.50\%$

LIST OF TABLES

Table No.	Table Caption	Page No.
Table 1.1	Various Nickel-based Superalloys	4
Table 1.2	Various Applications of Nickel-based Superalloys	8
Table 1.3	Standard Chemical Composition of the Inconel 617 Alloy	9
Table 1.4	Physical Properties of Inconel 617 Alloy	9
Table 1.5	Chemical Composition of Candidate Materials for Combustion Liners in Gas Turbine Engines	18
Table 1.6	Description of Nomenclature for Various Power Plants	20
Table 1.7	A-USC Boiler Candidate Materials and their Applications	24
Table 1.8	Tensile Properties of Inconel 617 Alloy at Various Temperatures	30
Table 1.9	Effect of Temperature and Strain Rate on Low Cycle Fatigue Properties	37
Table 1.10	LCF data at Room Temperature for the Alloy GTM-SU-718	45
Table 1.11	Comparison of Typical Properties of Inconel 617 Alloy and Yttria Stabilized Zirconia	47
Table 2.1	Chemical Composition of the Inconel 617 Alloy (Weight %).	53
Table 2.2	Test Matrix for Tensile Testing	55
Table 2.3	Different Conditions and Designations of the Inconel 617 Alloy.	56
Table 2.4	Test Matrix for Low Cycle Fatigue Testing	58
Table 2.5	Parameters used for Thermal Barrier Coating	62
Table 3.1	Tensile Properties of Inconel 617 Alloy in Solution Annealed Condition Tested at Various Temperatures and at Strain Rate of $5x10^{-3}$ s ⁻¹	72
Table 3.2	Strain Hardening Parameters Derived from Ludwigson Equation at Various Temperatures	78
Table 3.3	Activation Energies for DSA Calculated by Different Methods for the Inconel 617 Alloy	82
Table 4.1	Designations of the Inconel 617 Alloy Used to Study Work Hardening Behaviour	102
Table 4.2	Tensile Properties of Inconel 617 Alloy at RT and 700°C.	108

- Table 4.3Work Hardening Parameters of Inconel 617 Alloy at RT and 111700°C.
- Table 5.1Tensile Properties of the Inconel 617 Alloy at Different127Temperatures
- Table 5.2Work Hardening Parameters Derived at Various Temperatures127
- Table 5.3Low Cycle Fatigue Data of Inconel 617 Alloy at Different128Temperatures and Strain Amplitudes
- Table 5.4Cyclic Stress-Strain Parameters of Inconel 617 Alloy at RT, 135750°C and 850°C
- Table 5.5Parameters for Strain Life Relationship and Plastic Strain Life138Relationship for Inconel 617 Alloy Fatigue Tested at RT, 750°Cand 850°C
- Table 5.6Values of Fatigue Strength (b) and Ductility (c) Exponents, and139Calculated Values from Morrow's and Tomkins's Model for
Inconel 617 Alloy
- Table 5.7Parameters for Strain Energy-Life Relationship for Inconel 617140Alloy Fatigue Tested at the Three Temperatures.
- Table 6.1Low Cycle Fatigue (LCF) Data of the Inconel 617 Alloy Tested173at 850° C at Strain Amplitude ($\Delta \varepsilon_t/2$) of $\pm 0.25\%$, in Oxidized andSalt Coated and Pre-Exposed Condition at 850° C for DifferentDurations
- Table 6.2Thickness of the Cr Depletion Layer and Al2O3 Internal Oxide185Layer.
- Table 7.1LCF Data of the Inconel 617 Alloy Without and With TBC199Tested at 850°C
- Table 7.2Cyclic Stress-Strain Parameters and Coffin-Manson Parameters200

LIST OF SYMBOLS

Symbol Description

С	fatigue ductility exponent
b	fatigue strength exponent
е	engineering strain
$e_{ m pf}$	plastic strain to fracture/ elongation up to fracture
$e_{\rm pn}$	necking plastic strain/ elongation up after necking
e _{pu}	uniform plastic strain/ elongation up to ultimate tensile strength
Е	true strain
\mathcal{E}_{c}	critical plastic strain for the onset of serrations
Ė	strain rate
\mathcal{E}_{O}	pre-strain existing in the material
$\Delta \varepsilon_{\rm e}$	elastic strain range
$\Delta \varepsilon_{ m e}/2$	elastic strain amplitude
$\Delta \epsilon_p$	plastic strain range
$\Delta \varepsilon_{\rm p}/2$	plastic strain amplitude
$\Delta \epsilon_t$	total strain range
$\Delta\epsilon_{\text{t}}/2$	plastic strain amplitude
ΔH	degree of hardening;
\mathcal{E}_{f}^{\prime}	fatigue ductility coefficient
K	strength coefficient
K_1	additional constant defined in Ludwigson equation
K	cyclic strength coefficient
т	strain rate sensitivity exponent
n	strain hardening exponent
n_1	additional constant defined in Ludwigson equation
n'	cyclic strain hardening exponent
Ν	number of cycles
$N_{ m i}$	number of cycles to crack initiation

$N_{ m f}$	number of cycles to failure
Q	activation energy
R	universal gas constant
$S_{\rm UTS}$	ultimate tensile strength
$S_{ m YS}$	yield strength
σ	true stress
σ_{a}	stress amplitude
σ_b	back stress
$\sigma_{\rm f}$	friction stress
σ_{T}	tensile stress amplitude at half-life
$\sigma_{ m s}$	saturation stress
$\sigma'_{\rm f}$	fatigue strength coefficient
θ	work hardening rate
ΔW_e	elastic strain energy per cycle
ΔW_p	average plastic strain energy per cycle
ΔW_t	total plastic strain energy per cycle