CERTIFICATE

It is certified that the work contained in the thesis titled "Tensile and Low Cycle

Fatigue Behaviour of Superalloy Inconel 617" by *"Ch. Visweswara Rao"* has been carried out under my supervision and this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive, Candidacy and SOTA for the award of PhD degree.

Prof. N.C. Santhi Srinivas

(Supervisor) Department of Metallurgical Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi- 221005

DECLARATION BY THE CANDIDATE

I, "Ch. Visweswara Rao", certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of "Prof. N. C. Santhi Srinivas" from "July 2015" to "December 2020", at the "Department of Metallurgical Engineering", Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not wilfully copied any other's work, paragraphs, text, data, results, *etc.*, reported in journals, books, magazines, reports dissertations, theses, *etc.*, or available at websites and have not included them in this thesis and have not cited as my own work.

Date

Ch. Visweswara Rao

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of our knowledge.

Prof. N.C. Santhi Srinivas (Supervisor)

Department of Metallurgical Engineering Indian Institute of Technology (Banaras Hindu University)

(Prof. Sunil Mohan)

Head of the Department Department of Metallurgical Engineering Indian Institute of Technology (Banaras Hindu University)

COPY RIGHT TRANSFER CERTIFICATE

Title of the Thesis: *"Tensile and Low Cycle Fatigue Behaviour of Superalloy Inconel 617"* Name of the Student: Mr. Ch. Visweswara Rao

COPYRIGHT TRANSFER

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "*Ph.D Degree*".

Date:

Ch. Visweswara Rao

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Dedicated to

ACKNOWLEDGEMENTS

I am very grateful and indebted to my supervisor Professor N.C. Santhi Srinivas, Department of Metallurgical Engineering, for her consistence help, encouragement and valuable discussions during the entire period of my research work. The way she teaches me is really excellent and she is always source of inspiration for me. Madam always supported me in both research and in personal problems. I would not have been able to complete the thesis without her utmost involvement and invaluable efforts.

Beside my Supervisor, I would like to thank other members of RPEC: Dr. K. Chattopadhyay, Department of Metallurgical Engineering and Dr. Mohd. Zaheer Khan Yusufzai, Department of Mechanical Engineering, for their insightful comments and encouragement.

I am also thankful to Prof. Vakil Singh and Prof. G.V.S. Sastry for their valuable guidance in carrying out in-depth analysis of the outcomes of the research work.

I sincerely thank Prof. N.K. Mukhopadhyay, Head of the Department, Department of Metallurgical Engineering and Prof. R.K. Mandal, former Head, Department of Metallurgical Engineering for providing all the research facilities to successfully accomplish my research in the Department.

I have deep sense of gratitude to Prof. S.N. Ojha, Dr R. Manna, Dr. G.S. Mahobia, Dr. A.K. Mondal and all other faculty members of the Department of Metallurgical Engineering, IIT (BHU), for their cooperation and inspiration.

I wish to thank Prof. N. Chalapathi Rao, Department of Geology, Institute of Science, BHU, for his help in providing facility for carrying out EPMA analysis. I am also thankful to M/s. Bharat Aerospace Metals, Mumbai for providing material and M/s. Spraymet Surface Technologies Pvt. Ltd., Bangalore for providing facility for coating of thermal barrier coatings on the samples.

I am obliged to all my seniors, especially Dr. R.S. Rajpurohit, Dr. Sanjeev Kumar, Dr. Vaibhav Pandey, Dr. Preeti verma and Dr. Dhananjay Pradhan for their constant support in experimental work, making joyful and memorable life and being with my moments of happiness and troubles at IIT (BHU), Varanasi.

I am thankful to wonderful juniors and friends Ankit, Avinish, Prerna, Garima, Pramod, Chandra Sekhar, Jaydeep, Vasu Shreyasi, Anurag, Dhananjay Rao and others for their assistance and support. I am also thankful to all my junior students of M. Tech and Ph.D of our group from 2015 to 2020 for their constant support during experimental work.

I am thankful to all the Lab and workshop staff specially Mr. Sushil Ji for helping in operating fatigue machine, Mr. Kamlesh Ji, Mr. Minz Ji for helping in operating tensile testing machine, Mr Balwant Ji and Mr Rajnarayan Ji for making fatigue and tensile specimens, Mr. Lalit ji for helping in transmission electron microscopy, Mr. Girish Sahoo Ji for helping in scanning electron microscopy, Mr. Anjani Ji, Mr. Balvanth Ji, Mr. Raj Naranyan Ji, Mr. Patel Ji and all lab and office staff.

I would also like to acknowledge the Ministry of Human Resource and Development, Government of India for providing teaching assistantship during the entire period of my Ph.D. Last, but not the least, I would like to express my deepest gratitude to my parents Sri. Satya Rao and Smt. Nagabushanam, my spouse, Mrs. Kavitha for their unconditional support and encouragement to pursue my interest. I would like to express my love and blessings to my daughter, Yogyatha Sree and son, Srinivas Jathin for keeping me happy always with their interaction.

I also wish to thank all my friends and the persons whose names have not been mentioned on this piece of paper for extending their cooperation directly or indirectly.

CONTENTS

		Page
		Number
	List of Figures	i – x
	List of Tables	xi – xii
	List of Symbols	xiii – xiv
	Preface	XV-XX
	Summary	xxi-xxiv
	CHAPTER 1	
	INTRODUCTION	1 – 52
1.1	Superalloys	1
1.2	Classification of Superalloys	2
1.3	Nickel-based Superalloys	3
	1.3.1 Development of Nickel-based Superalloys	4
	1.3.2 Physical Metallurgy of Nickel-based Supera	lloys 5
	1.3.3 Applications of Nickel based Superalloys	7
1.4	Nickel-based Superalloy Inconel 617	7
	1.4.1 Heat treatment of Inconel 617 Alloy	9
	1.4.2 Physical Metallurgy of Inconel 617 Alloy	10
	1.4.3 Applications of Inconel 617 Alloy	12
1.5	Gas Turbine Engines	13
	1.5.1 Combustor Section	15
	1.5.2 Materials for Combustion Liners	17
1.6	Advanced Ultra-Super Critical (A-USC) Power Plants	18

	1.6.1 Materials for A-USC Power Plants	22
1.7	Dynamic Strain Aging	26
1.8	Effect of Heat Treatment and Thermo-mechanical Treatment on Tensile Deformation Behaviour	33
1.9	Low Cycle Fatigue Behaviour of Inconel 617 Alloy	35
1.10	Effect of Hot Corrosion on Low Cycle Fatigue Behaviour	40
	1.10.1 Hot Corrosion	40
	1.10.2 Effect of Hot Corrosion on Low Cycle Fatigue Behaviour	42
1.11	Effect of Thermal Barrier Coating on Low Cycle Fatigue Behaviour	46
1.12	Scope for the Present Work	52
1.13	Objectives of the Present Investigation	52
	CHAPTER 2	
	MATERIAL AND METHODS	53 - 64
2.1	Introduction	
	Introduction	53
2.2	Material	53 53
2.2 2.3	Material Initial Characterization	53 53 53
2.22.32.4	Material Initial Characterization Tensile Behaviour	53 53 53 54
2.22.32.4	Material Initial Characterization Tensile Behaviour 2.4.1 Tensile Testing	53 53 53 54 54
2.22.32.4	Material Initial Characterization Tensile Behaviour 2.4.1 Tensile Testing 2.4.2 Work Hardening Behaviour	53 53 53 54 54 55
2.22.32.42.5	Material Initial Characterization Tensile Behaviour 2.4.1 Tensile Testing 2.4.2 Work Hardening Behaviour Low Cycle Fatigue Behaviour	53 53 53 54 54 55 55 56
2.22.32.42.5	Material Initial Characterization Tensile Behaviour 2.4.1 Tensile Testing 2.4.2 Work Hardening Behaviour Low Cycle Fatigue Behaviour 2.5.1 Low Cycle Fatigue Testing	53 53 53 54 54 54 55 56 56
2.22.32.42.5	MaterialInitial CharacterizationTensile Behaviour2.4.1 Tensile Testing2.4.2 Work Hardening BehaviourLow Cycle Fatigue Behaviour2.5.1 Low Cycle Fatigue Testing2.5.2 Oxidation and Hot Corrosion	53 53 53 54 54 55 56 56 56 58
2.22.32.42.5	MaterialInitial CharacterizationTensile Behaviour2.4.1 Tensile Testing2.4.2 Work Hardening BehaviourLow Cycle Fatigue Behaviour2.5.1 Low Cycle Fatigue Testing2.5.2 Oxidation and Hot Corrosion2.5.3 Thermal Barrier Coating on Fatigue Samples	53 53 53 54 54 55 56 56 56 58 60

2.7	Chapter Summary
-----	-----------------

	CHAPTER 3	
	TENSILE BEHAVIOUR OF INCONEL 617 ALLOY	65 –100
3.1	Introduction	65
3.2	Methodology	66
3.3	Microstructure in As-received and Solution Annealed Condition	67
3.4	Engineering Stress-Strain curves	69
3.5	Variation of Critical Plastic Strain	70
3.6	Variation of Strength and Elongation with Temperature	72
3.7	Variation of Strain Rate Sensitivity with Temperature	75
3.8	Variation of Work Hardening Parameters with Temperature	76
3.9	Determination of Activation Energy	80
3.10	Deformation Behaviour	83
3.11	Fracture Behaviour	90
3.12	Discussion	93
	3.12.1 Dynamic Strain Aging	93
	3.12.2 Deformation Behaviour	97
	3.12.3 Fracture Behaviour	98
3.13	Chapter Summary	99
	CHAPTER 4	
	WORK HARDENING BEHAVIOUR OF INCONEL 617 ALLOY	101 – 124
4.1	Introduction	101
4.2	Methodology	102
4.3	Microstructure in Different Conditions	103

7.7	Engineering Stress-Strain Behaviour	106
4.5	Work Hardening Behaviour	108
4.6	Deformation Behaviour	112
4.7	Fracture Behaviour	115
4.8	Discussion	117
	4.8.1 Engineering Stress-Strain Behaviour	117
	4.8.2 Work Hardening Behaviour	118
	4.8.3 Deformation Behaviour	120
	4.8.4 Fracture Behaviour	121
4.9	Chapter Summary	122
	CHAPTER 5	
	LOW CYCLE FATIGUE BEHAVIOUR OF INCONEL 61 ALLOY	7 125 – 170
5.1	Introduction	125
5.2	Methodology	126
5.2 5.3	Methodology Tensile Behaviour at RT, 750°C and 850°C	126 126
5.2 5.3 5.4	Methodology Tensile Behaviour at RT, 750°C and 850°C Low Cycle Fatigue Behaviour	126 126 127
5.2 5.3 5.4 5.5	Methodology Tensile Behaviour at RT, 750°C and 850°C Low Cycle Fatigue Behaviour Cyclic Stress-Strain Behaviour	126 126 127 132
5.2 5.3 5.4 5.5 5.6	Methodology Tensile Behaviour at RT, 750°C and 850°C Low Cycle Fatigue Behaviour Cyclic Stress-Strain Behaviour Masing and Non-Masing Behaviour	126 126 127 132 135
5.2 5.3 5.4 5.5 5.6 5.7	Methodology Tensile Behaviour at RT, 750°C and 850°C Low Cycle Fatigue Behaviour Cyclic Stress-Strain Behaviour Masing and Non-Masing Behaviour Strain-Life Relationship	126 126 127 132 135 137
 5.2 5.3 5.4 5.5 5.6 5.7 5.8 	Methodology Tensile Behaviour at RT, 750°C and 850°C Low Cycle Fatigue Behaviour Cyclic Stress-Strain Behaviour Masing and Non-Masing Behaviour Strain-Life Relationship Strain Energy–Life Relationship	126 126 127 132 135 137 139
 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 	Methodology Tensile Behaviour at RT, 750°C and 850°C Low Cycle Fatigue Behaviour Cyclic Stress-Strain Behaviour Masing and Non-Masing Behaviour Strain-Life Relationship Strain Energy–Life Relationship Role of Friction and Back Stress	126 126 127 132 135 137 139 141
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	MethodologyTensile Behaviour at RT, 750°C and 850°CLow Cycle Fatigue BehaviourCyclic Stress-Strain BehaviourMasing and Non-Masing BehaviourStrain-Life RelationshipStrain Energy–Life RelationshipRole of Friction and Back StressDeformation Behaviour	126 126 127 132 135 137 139 141 144
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	MethodologyTensile Behaviour at RT, 750°C and 850°CLow Cycle Fatigue BehaviourCyclic Stress-Strain BehaviourMasing and Non-Masing BehaviourStrain-Life RelationshipStrain Energy–Life RelationshipRole of Friction and Back StressDeformation BehaviourSurface Morphology	126 126 127 132 135 137 139 141 144 153

5.13	Discuss	ion	161
	5.13.1	Cyclic Stress Response & Cyclic Stress-strain Behaviour	161
	5.13.2	Deformation Behaviour under Cyclic Loading	164
	5.13.3	Fracture Behaviour	166
5.14	Chapter	Summary	168
	CHAP	TER 6	
	LCF B	EHAVIOUR OF SALT COATED AND PRE- SED INCONEL 617 ALLOY	171 – 194
6.1	Introdu	ction	171
6.2	Method	lology	172
6.3	LCF Be	ehaviour	172
6.4	Deform	ation Behaviour	174
6.5	Fracture	e Behaviour	177
6.6	Oxidati	on and Hot Corrosion Behaviour	180
6.7	Discuss	ion	188
	6.7.1	LCF Behaviour	188
	6.7.2	Deformation Behaviour	188
	6.7.3	Fracture Behaviour	190
	6.7.4	Oxidation and Hot Corrosion Behaviour	191
6.8	Chapter	Summary	193
	CHAP	ΓER 7	
	LCF BI	EHAVIOUR OF THERMAL BARRIER COATED NEL 617 ALLOY	195 – 212
7.1	Introdu	ction	195
7.2	Method	lology	196
7.3	Initial C	Characterization	196

7.4	Cyclic Stress Response	197
7.5	Strain-Life Behaviour	200
7.6	Surface Morphology	201
7.7	Deformation Behaviour	202
7.8	Fracture Behaviour	205
7.9	Discussion	207
	7.9.1 Low Cycle Fatigue Behaviour	207
	7.9.2 Deformation Behaviour	209
	7.9.3 Fracture Behaviour	210
7.10	Chapter Summary	211
	CHAPTER 8	
	MAJOR CONCLUSIONS AND SCOPE FOR FUTURE WORK	213 - 220
8.1	Introduction	213
8.2	Major Conclusions	213
	8.2.1 <i>Tensile Behaviour</i>	213
	8.2.2 Low Cycle Fatigue Behaviour	216
8.3	Scope of Future Work	220
	References	221 – 234
	List of Publications	235

LIST OF FIGURES

Figure No.	Figure Caption	Page No.
Fig. 1.1	Major classification and designation of important superalloys	2
Fig. 1.2	Crystal structure of γ and γ' in nickel based superalloys	6
Fig. 1.3	Variation of tensile properties of Inconel 617 alloy with temperature	10
Fig. 1.4	TTT Diagram of Inconel 617 alloy showing temperature and time limits for formation of various phases	12
Fig. 1.5	Different sections of the aeroplane gas turbine engine	14
Fig. 1.6	Cross-sectional view of gas turbine engine and temperatures zones of cold and hot section	15
Fig. 1.7	Schematic diagram showing the details of the combustion chamber	16
Fig. 1.8	(a) Photograph of the industrial combustion can (b) Schematic showing the principle of the combustion process inside the hot combustion chamber	16
Fig. 1.9	(a) Industrial annular combustor image from Pratt & Whitney JT9D turbine (b) Combustion liner with thermal barrier coating applied on it for improving the performance and details of the coating	18
Fig. 1.10	Effect of steam parameters on plant efficiency	21
Fig. 1.11	Comparison of CO ₂ emissions from 1000MW coal fired power plants	21
Fig. 1.12	Schematic of the flow of steam in AUSC power plant	22
Fig. 1.13	Layout of the AUSC coal fired power plant	22
Fig. 1.14	The ratio of change in high temperature materials with steam parameters	24
Fig. 1.15	Materials used in boilers of AUSC power plants	25
Fig. 1.16	Comparison of various candidate materials available for A-USC power plants	26

Fig. 1.17	Different types of serrations	27
Fig. 1.18	Effect of strain rate and temperature on critical plastic strain	28
Fig. 1.19	Various manifestations of DSA	29
Fig. 1.20	Engineering stress- strain curves of Inconel 617 alloy from RT to 1000°C.	30
Fig. 1.21	Variation in serrations with change in temperature	31
Fig. 1.22	Stress strain curves of Inconel 617 alloy	32
Fig. 1.23	Flow relationships for tensile samples of Inconel 617 alloy tested at 500°C and at a strain rate of 10^{-4} s ⁻¹	33
Fig. 1.24	Temperature profiles during start up and shut-down of the gas turbine engine	35
Fig. 1.25	Serrations observed in hysteresis loops for the samples fatigue tested at 850°C at strain amplitude of $\pm 0.6\%$	38
Fig. 1.26	Comparison of fatigue behaviour of several materials at 538°C	38
Fig. 1.27	Coffin-Manson plot for LCF behaviour of Inconel 617 at 10^{-3} s ⁻¹	39
Fig. 1.28	(a) Cyclic stress response curves of Alloy 617M alloy fatigue tested at 500° C (b) rate of hardening with respect to fatigue life	40
Fig. 1.29	TEM micrographs of fatigue tested samples, (a) precipitates at 750°C (b) sub grain boundaries and precipitates at 850°C	40
Fig. 1.30	Weight change/ surface area (mg/cm^2) versus time plot for Inconel 617 subjected to hot corrosion for 100h at 700°C, 800°C and 900°C (b) The parabolic rate constant on the basis of the first 10h exposure time, for Inconel 617	42
Fig. 1.31	XRD pattern of Inconel 617 alloy after hot corrosion at (a) 800° C and (b) at 900° C	43
Fig. 1.32	Cross sectional images of alloy Inconel 617 samples oxidised in air for 12 cycles: (a) at 850° C (b) at 950° C and (c) EDX elemental analysis map at 950° C	44
Fig. 1.33	Optical micrographs showing corrosion of IN 617 alloy exposed for 100hr and 4ppm Na_2SO_4 : (a) at 900°C and (b) at 1000°C	44
Fig. 1.34	Cyclic stress response curves for the superalloy GTM-SU-718 at room temperature	46

Fig. 1.35	SEM micrographs of the samples (a) after coating with YSZ on base coat of NiCr6AlY and (b) TBC coated samples after subjecting to oxidation at 1150°C for 40 h, showing thin layer of TGO formed	50
Fig. 1.36	(a) SEM micrograph showing thickness of the bond coat and YSZ coating applied on Inconel 617 alloy (b) micrograph showing cross section of the sample after failure	50
Fig. 1.37	Maximum fatigue stress as a function of cycles to failure at 800°C for TBC coated, substrate with the bond coat and bare Superni C-263	51
Fig. 2.1	Geometry of the cylindrical tensile specimen	55
Fig. 2.2	Schematic diagram of the cylindrical fatigue specimen	57
Fig. 2.3	Triangular wave form used for strain controlled fatigue testing	57
Fig. 2.4	(a) Machine set up for low cycle fatigue testing (Model: MTS 810)(b) High temperature extensometer and thermocouples mounted on the sample.	58
Fig. 2.5	Digital photographs of different samples: (a) disc sample as polished, (b) disc sample oxidized at 850° C for 500 h and (c) LCF sample oxidized at 850° C for 500 h.	59
Fig. 2.6	Experimental set up for salt spray coating	60
Fig. 2.7	Digital photographs of different samples: (a) disc sample as polished, (b) disc sample salt coated and pre-exposed to 850°C for 500 h and (c) LCF sample after salt coating.	60
Fig. 2.8	Schematic cross section of the atmospheric plasma spray coating gun	61
Fig. 2.9	Digital photograph of the LCF sample coated with thermal barrier coating	62
Fig. 3.1	Initial microstructure of the Inconel 617 alloy in the AR condition	67
Fig. 3.2	Microstructure of the Inconel 617 alloy in solution annealed $(1175^{\circ}C/40 \text{ min/WQ})$ condition	68
Fig. 3.3	X-Ray diffraction pattern of the Inconel 617 alloy in the solution annealed condition	69
Fig. 3.4	TEM bright field micrographs of the Inconel 617 alloy in solution annealed condition	69

Fig. 3.5	Engineering stress–strain curves of the Inconel 617 alloy in solution annealed condition tested at different temperatures and at strain rates of: (a) $5x10^{-4} \text{ s}^{-1}$, (b) $5x10^{-3} \text{ s}^{-1}$, (c) $1x10^{-2} \text{ s}^{-1}$ and (d) magnified view of servations at strain rate of $5x10^{-3} \text{ s}^{-1}$	71
Fig. 3.6	Variation of critical plastic strain for the onset of serrations with: (a) strain rate and (b) temperature	71
Fig. 3.7	Effect of temperature and strain rate on (a) 0.2% offset yield strength (b) ultimate tensile strength and (c) flow stress (σ) at ε =0.1	73
Fig. 3.8	Effect of temperature and strain rate on (a) total elongation (b) uniform plastic strain (e_{pu}) (c) plastic strain to fracture (e_{pf}) and (d) necking plastic strain (e_{pn})	74
Fig. 3.9	Effect of temperature on strain rate sensitivity (m)	76
Fig. 3.10	(a) Log-log plots of the true stress- true plastic strain at different temperatures, and validity of various flow equations	77
Fig. 3.11	Variation of (a) strength coefficient (K) and (b) strain hardening exponent (n), with temperature at different strain rates	79
Fig. 3.12	Variation of normalised work hardening rate (θ/E) with temperature at three strain rates	79
Fig. 3.13	(a) Variation of $\ln \dot{\varepsilon}$ with $\ln \varepsilon_c$ (b) $\ln \varepsilon_c$ vs 1/T plot	81
Fig. 3.14	$\ln \varepsilon_{c}^{(m+\beta)}/T vs 1/T plot$	81
Fig. 3.15	(a) $\dot{\epsilon} vs \Delta \sigma$ plots for 300°C and 400°C and (b) ln $\dot{\epsilon} vs$ 1/T plots	82
Fig. 3.16	((a) $\dot{\epsilon} vs \Delta \sigma$ plot for 500°C and 600°C and (b) ln $\dot{\epsilon}$ vs 1/T plots	82
Fig. 3.17	TEM micrographs of solution annealed tensile samples of the Inconel 617 alloy tested at room temperature at a strain rate of $5x10^{-3}$ s ⁻¹	83
Fig. 3.18	TEM micrographs of tensile samples tested at 400°C (exhibiting serrrated flow), at a strain rate of $5 \times 10^{-3} \text{ s}^{-1}$	85
Fig. 3.19	TEM micrographs of tensile sample tested at 400°C and at strain rate of $5 \times 10^{-3} \text{ s}^{-1}$ - test interrupted at $\varepsilon = 0.4$	86
Fig. 3.20	TEM micrographs of tensile samples tested at 600° C, (exhibiting serrated flow) at a strain rate of 5×10^{-3} s ⁻¹	87
Fig. 3.21	TEM micrographs of tensile samples tested at 700°C at a strain rate of $5x10^{-3}$ s ⁻¹	88

Fig. 3.22	TEM micrographs of tensile samples tested at 800° C (above the DSA regime) at a strain rate of 5×10^{-3} s ⁻¹	89
Fig. 3.23	SEM fractographs of tensile specimens tested at room temperature at strain rate of $5 \times 10^{-3} \text{ s}^{-1}$	90
Fig. 3.24	SEM fractographs of tensile specimens tested at 400° C at strain rate of 5×10^{-3} s ⁻¹	91
Fig. 3.25	SEM fractographs of tensile specimens tested at 700° C at a strain rate of 5×10^{-3} s ⁻¹	91
Fig. 3.26	Optical micrographs of longitudinal section of the tensile samples tested at: (a) room temperature and (b) 700°C	92
Fig. 3.27	SEM fractographs of tensile specimens tested at 800° C at strain rate of $5x10^{-3}$ s ⁻¹	92
Fig. 3.28	(a) SEM fractograph of tensile specimen tested at 300° C (b) EDS analysis of carbides	93
Fig. 4.1	Microstructure of Inconel 617 alloy in SQ-AG1 condition (a) Optical micrograph (b) SEM micrograph (c) EDS analysis for Cr rich carbides.	104
Fig. 4.2	Microstructure of the Inconel 617 alloy in SQ-AG2 (500 h) condition: (a) Optical micrograph (b) SEM micrograph (c) EDS analysis of Mo and Cr rich carbides.	105
Fig. 4.3	Microstructure of Inconel 617 alloy after solution annealing at 1175°C for 40 minutes and cold working (40%) (SQ-CW) (a) Optical micrograph (b) SEM micrograph	105
Fig. 4.4	XRD analysis of the Inconel 617 alloy in different conditions	106
Fig. 4.5	Engineering stress–engineering strain (plastic) curves of the Inconel 617 alloy in different conditions tested at a strain rate of $5x10^{-3}$ s ⁻¹ at: (a) RT and (b) 700°C.	107
Fig. 4.6	Double logarithmic plots of the true stress <i>vs.</i> true plastic strain of the Inconel 617 alloy for all the conditions, tested at: (a) RT and (b) 700° C	109
Fig. 4.7	True stress-strain (log-log) curves obtained by using various work hardening relationships	110
Fig. 4.8	Variation of the work hardening rate (θ) with the true stress (σ) for all the conditions of the Inconel 617 alloy tested at RT and 700°C	112
Fig. 4.9	TEM images of SQ-AG2 condition samples tested at RT	113

Fig. 4.10	TEM images of SQ-AG2 condition samples tested at 700°C	113
Fig. 4.11	TEM images of SQ-CW condition samples tested at RT	114
Fig. 4.12	TEM images of SQ-CW condition samples tested at 700°C	115
Fig. 4.13	SEM fractographs of SQ-AG2 condition sample tested at RT	116
Fig. 4.14	SEM fractographs of SQ-AG2 condition sample tested at 700°C	116
Fig. 4.15	SEM fractographs of SQ-CW condition sample tested at RT	116
Fig. 4.16	SEM fractographs of SQ-CW condition sample tested at 700°C	117
Fig. 5.1	Engineering stress-plastic strain curves of Inconel 617 alloy at different temperatures.	127
Fig. 5.2	Cyclic stress response curves (peak tensile) of the Inconel 617 fatigue tested samples at: (a) Room temperature (b) 750° C and (c) 850° C	130
Fig. 5.3	Cyclic stress response curves of fatigue tested samples at RT, 750°C and 850°C at: (a) strain amplitude of $\pm 0.2\%$ (b) strain amplitude of $\pm 0.5\%$.	131
Fig. 5.4	Variation of degree of hardening with respect to: (a) strain amplitude and (b) fatigue life (%)	132
Fig. 5.5	Cyclic stress-strain curves obtained by multiple step test method (MSSS): (a) at room temperature (b) at 750°C and (c) at 850°C	133
Fig. 5.6	Superimposed monotonic stress-strain (MTSS) curve on Cyclic Stress-Strain curves by companion method (CSS) and by multiple step test method(MSSS), for the samples tested at: (a) RT (b) 750°C and (c) 850°C	134
Fig. 5.7	Stress-strain hysteresis loops starting from a common origin and (a) typical hysteresis loops of material exhibiting Masing behaviour. Hysteresis loops obtained in Inconel 617 alloy at: (b) RT (c) 750°C (d) 850°C	136
Fig. 5.8	Strain- life curve using Basquin-Coffin-Manson relationship: (a) at RT (b) at 750° C (c) at 850° C and (d) Comparison of Coffin Manson relationship at RT, 750° C and 850° C	137
Fig. 5.9	Strain energy - life relationship using experimental values at RT, 750°C and 850°C: (a) plastic strain energy (W_p) and (b) total strain energy (W_t) .	140
Fig. 5.10	Construction of master curves from stable hysteresis loops at (a) Room temperature (c) 750°C and (e) 850°C. Comparison of strain energy life experimental data with the values calculated	142

	from Equation (5.5) and Equation (5.6) for the samples tested at (b) Room temperature (d) 750°C and (e) 850°C	
Fig. 5.11	Determination of friction stress and back stress from fatigue hysteresis loop	143
Fig. 5.12	(a) Friction stress with respect to number of cycles (N) and (b) back stress with respect to number of cycles (N)	144
Fig. 5.13	TEM micrographs of the fatigue sample tested at RT and at $\pm 0.20\%$ strain amplitude	146
Fig. 5.14	TEM micrographs of the fatigue sample tested at RT at $\pm 0.50\%$ strain amplitude, test interrupted at 80 cycles	147
Fig. 5.15	TEM micrographs of fatigue sample tested at RT and at $\pm 0.50\%$ strain amplitude, interrupted at 1500 cycles	148
Fig. 5.16	TEM micrographs of the fatigue sample tested at RT and at $\pm 0.50\%$ strain amplitude	148
Fig. 5.17	TEM micrographs of the fatigue sample tested at 750° C and at $\pm 0.20\%$ strain amplitude	150
Fig. 5.18	TEM micrographs of the fatigue sample tested at 750° C and at $\pm 0.50\%$ strain amplitude	151
Fig. 5.19	TEM micrographs of the fatigue sample tested at 850° C and at $\pm 0.20\%$ strain amplitude	152
Fig. 5.20	TEM micrographs of the fatigue sample tested at 850° C and at $\pm 0.50\%$ strain amplitude	153
Fig. 5.21	SEM micrographs showing surface morphology of the samples fatigue tested at RT and at strain amplitude of $\pm 0.5\%$.	154
Fig. 5.22	SEM micrographs showing surface morphology of the samples fatigue tested at 750° C and at strain amplitude of $\pm 0.5\%$.	154
Fig. 5.23	SEM fractographs of the samples fatigue tested at RT and at strain amplitude of $\pm 0.20\%$	155
Fig. 5.24	SEM fractographs of the samples fatigue tested at RT and at strain amplitude of $\pm 0.50\%$	155
Fig. 5.25	SEM fractographs of the samples fatigue tested at 750 $^{\rm o}{\rm C}$ and at strain amplitude of $\pm 0.20\%$	156
Fig. 5.26	SEM fractographs of the samples fatigue tested at 750 $^{\circ}\mathrm{C}$ and at strain amplitude of $\pm 0.50\%$	157

Fig. 5.27	SEM fractographs of the samples fatigue tested at 850 $^{o}\mathrm{C}$ and at strain amplitude of $\pm 0.20\%$	158
Fig. 5.28	SEM fractographs of the samples fatigue tested at 850° C and at strain amplitude of $\pm 0.50\%$	158
Fig. 5.29	Longitudinal cross section of the samples fatigue tested at RT and at strain amplitude of $\pm 0.50\%$	159
Fig. 5.30	Longitudinal cross section for the samples fatigue tested at 750° C and at strain amplitude of $\pm 0.50\%$	160
Fig. 5.31	Longitudinal cross section for the samples fatigue tested at 850° C and at strain amplitude of $\pm 0.50\%$	161
Fig. 6.1	Cyclic stress response curves during LCF testing at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C (a) oxidized at 850°C and (b) salt coated and exposed in air at 850°C	174
Fig. 6.2	Hysteresis loops of the half life cycle $(0.5N_f)$ of different LCF samples tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C: (a) oxidized at 850°C and (b) salt coated and pre-exposed in air at 850°C.	174
Fig. 6.3	TEM micrographs of the LCF samples, oxidized at 850°C for 50h and tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C	175
Fig. 6.4	HAADF-STEM, EDX elemental mapping of the carbides	175
Fig. 6.5	TEM micrographs of the LCF samples, oxidized at 850°C for 500h and tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C	176
Fig. 6.6	TEM micrographs of the LCF samples, salt coated and exposed at 850°C for 50h, tested at $\Delta \epsilon_t/2 = \pm 0.25\%$ at 850°C	176
Fig. 6.7	TEM micrographs of the LCF samples, salt coated and exposed at 850°C for 500h, tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C	177
Fig. 6.8	SEM images of the LCF samples, tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C, for (a) oxidized at 850°C for 50h and (b) oxidized at 850°C for 500h.	178
Fig. 6.9	SEM images of the LCF samples, salt coated and pre-exposed at 850°C for 50h and tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C	178
Fig. 6.10	SEM images of the LCF samples, salt coted and oxidized at 850°C for 500h and tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ at 850°C	179
Fig. 6.11	Optical micrographs of longitudinal cross section of the fractured LCF specimen, salt coated and pre-exposed at 850°C, tested at 850°C, $\Delta \varepsilon_t/2 = \pm 0.25\%$ (a) 50h sample (b) 500h sample	180

Fig. 6.12	Digital photographs of the disc samples exposed to oxidation at 850°C for various durations	180
Fig. 6.13	Digital photographs of the disc samples salt coated and exposed to oxidation at 850°C for various durations	181
Fig. 6.14	Plot of weight change with respect to exposure duration (hours) for the samples with salt coating and without salt coating.	182
Fig. 6.15	XRD analysis of the disc samples (a) un-oxidized and those oxidized in air at 850°C for 50h and 500h (b) salt coated and pre-exposed in air at 850°C for 50h and 500h.	183
Fig. 6.16	SEM micrographs of longitudinal cross section of fractured LCF specimens, tested at 850°C and at $\Delta \varepsilon_t/2 = \pm 0.25\%$ (a) oxidized at 850°C for 50h (b) Oxidized at 850°C for 500h	184
Fig. 6.17	SEM micrographs of the longitudinal section of fractured LCF specimens, tested at 850°C and at $\Delta \varepsilon_t/2=\pm 0.25\%$ (a) salt coated and pre exposed at 850°C for 50h (b) salt coated and pre exposed at 850°C for 500h	184
Fig. 6.18	BSE images of the cross sectional surfaces and EPMA elemental mapping of the LCF sample oxidized in air at 850°C and tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ and at 850°C (a) 50h and (b) 500h.	186
Fig. 6.19	BSE images of cross sectional surfaces and EPMA elemental mapping of the LCF specimens salt coated and oxidized in air at 850°C, tested at $\Delta \varepsilon_t/2 = \pm 0.25\%$ and at 850°C, (a) 50h and (b) 500h.	187
Fig. 6.20	TEM micrographs of the (a) disc sample oxidized at 850°C and (b) fatigue sample without any pre-exposure, tested at 850°C, and at $\Delta \varepsilon_t/2 = \pm 0.25\%$.	189
Fig. 6.21	Schematic representation of the process of oxidation and fracture from LCF at 850°C, at $\Delta \varepsilon_t/2 = \pm 0.25\%$.	193
Fig. 6.22	Schematic representation of the process of hot corrosion and fracture from LCF at 850°C, at $\Delta \varepsilon_t/2 = \pm 0.25\%$.	193
Fig. 7.1	SEM micrographs (a) the transverse section of the fatigue sample coated with TBC (b) morphology of TBC coating and (c) SEM-EDS analysis of the TBC	197
Fig. 7.2	Cyclic stress response curves of the fatigue samples tested at 850° C and at strain amplitude of $\pm 0.25\%$ (a) without TBC and (b) with TBC	198
Fig. 7.3	Stress -plastic strain plots for Inconel 617 alloy without TBC	200

and with TBC

- Fig. 7.4 Coffin-Manson plots for the Inconel 617 alloy without and with 201 TBC
- Fig. 7.5 Digital micrographs of the TBC fatigue samples tested at 850°C and 201 at (a) $\varepsilon_t/2 = \pm 0.20\%$ and (b) $\varepsilon_t/2 = \pm 0.50\%$.
- Fig. 7.6 SEM micrographs of longitudinal section of the TBC fatigue samples 202 tested at 850°C and at strain amplitude of (a) $\epsilon_t/2 = \pm 0.20\%$ and (b) $\epsilon_t/2 = \pm 0.50\%$
- Fig. 7.7 TEM micrographs of the TBC fatigue samples tested at 850°C and at 203 strain amplitude of $\varepsilon_t/2 = \pm 0.20\%$
- Fig. 7.8 TEM micrographs of the TBC fatigue samples tested at 850°C and at 204 strain amplitude of $\varepsilon_t/2 = \pm 0.50\%$
- Fig. 7.9 SEM fractographs of the TBC fatigue samples tested at 850°C and at 206 strain amplitude of $\varepsilon_t/2 = \pm 0.20\%$
- Fig. 7.10 SEM fractographs of the TBC fatigue samples tested at 850°C and at 207 strain amplitude of $\epsilon_t/2 = \pm 0.50\%$

LIST OF TABLES

Table No.	Table Caption	Page No.
Table 1.1	Various Nickel-based Superalloys	4
Table 1.2	Various Applications of Nickel-based Superalloys	8
Table 1.3	Standard Chemical Composition of the Inconel 617 Alloy	9
Table 1.4	Physical Properties of Inconel 617 Alloy	9
Table 1.5	Chemical Composition of Candidate Materials for Combustion Liners in Gas Turbine Engines	18
Table 1.6	Description of Nomenclature for Various Power Plants	20
Table 1.7	A-USC Boiler Candidate Materials and their Applications	24
Table 1.8	Tensile Properties of Inconel 617 Alloy at Various Temperatures	30
Table 1.9	Effect of Temperature and Strain Rate on Low Cycle Fatigue Properties	37
Table 1.10	LCF data at Room Temperature for the Alloy GTM-SU-718	45
Table 1.11	Comparison of Typical Properties of Inconel 617 Alloy and Yttria Stabilized Zirconia	47
Table 2.1	Chemical Composition of the Inconel 617 Alloy (Weight %).	53
Table 2.2	Test Matrix for Tensile Testing	55
Table 2.3	Different Conditions and Designations of the Inconel 617 Alloy.	56
Table 2.4	Test Matrix for Low Cycle Fatigue Testing	58
Table 2.5	Parameters used for Thermal Barrier Coating	62
Table 3.1	Tensile Properties of Inconel 617 Alloy in Solution Annealed Condition Tested at Various Temperatures and at Strain Rate of $5x10^{-3}$ s ⁻¹	72
Table 3.2	Strain Hardening Parameters Derived from Ludwigson Equation at Various Temperatures	78
Table 3.3	Activation Energies for DSA Calculated by Different Methods for the Inconel 617 Alloy	82
Table 4.1	Designations of the Inconel 617 Alloy Used to Study Work Hardening Behaviour	102
Table 4.2	Tensile Properties of Inconel 617 Alloy at RT and 700°C.	108

- Table 4.3Work Hardening Parameters of Inconel 617 Alloy at RT and 111700°C.
- Table 5.1Tensile Properties of the Inconel 617 Alloy at Different127Temperatures
- Table 5.2Work Hardening Parameters Derived at Various Temperatures127
- Table 5.3Low Cycle Fatigue Data of Inconel 617 Alloy at Different128Temperatures and Strain Amplitudes
- Table 5.4Cyclic Stress-Strain Parameters of Inconel 617 Alloy at RT, 135750°C and 850°C
- Table 5.5Parameters for Strain Life Relationship and Plastic Strain Life138Relationship for Inconel 617 Alloy Fatigue Tested at RT, 750°Cand 850°C
- Table 5.6Values of Fatigue Strength (b) and Ductility (c) Exponents, and139Calculated Values from Morrow's and Tomkins's Model for
Inconel 617 Alloy
- Table 5.7Parameters for Strain Energy-Life Relationship for Inconel 617140Alloy Fatigue Tested at the Three Temperatures.
- Table 6.1Low Cycle Fatigue (LCF) Data of the Inconel 617 Alloy Tested173at 850° C at Strain Amplitude ($\Delta \varepsilon_t/2$) of $\pm 0.25\%$, in Oxidized andSalt Coated and Pre-Exposed Condition at 850° C for DifferentDurations
- Table 6.2Thickness of the Cr Depletion Layer and Al2O3 Internal Oxide185Layer.
- Table 7.1LCF Data of the Inconel 617 Alloy Without and With TBC199Tested at 850°C
- Table 7.2Cyclic Stress-Strain Parameters and Coffin-Manson Parameters200

LIST OF SYMBOLS

Symbol Description

С	fatigue ductility exponent
b	fatigue strength exponent
е	engineering strain
$e_{ m pf}$	plastic strain to fracture/ elongation up to fracture
e _{pn}	necking plastic strain/ elongation up after necking
$e_{\rm pu}$	uniform plastic strain/ elongation up to ultimate tensile strength
Е	true strain
E _c	critical plastic strain for the onset of serrations
Ė	strain rate
\mathcal{E}_{0}	pre-strain existing in the material
$\Delta \varepsilon_{\rm e}$	elastic strain range
$\Delta \varepsilon_{\rm e}/2$	elastic strain amplitude
$\Delta \epsilon_p$	plastic strain range
$\Delta \varepsilon_{\rm p}/2$	plastic strain amplitude
$\Delta \epsilon_t$	total strain range
$\Delta\epsilon_{t}\!/2$	plastic strain amplitude
ΔH	degree of hardening;
\mathcal{E}_{f}^{\prime}	fatigue ductility coefficient
K	strength coefficient
K_1	additional constant defined in Ludwigson equation
K	cyclic strength coefficient
т	strain rate sensitivity exponent
n	strain hardening exponent
n_1	additional constant defined in Ludwigson equation
n'	cyclic strain hardening exponent
Ν	number of cycles
$N_{ m i}$	number of cycles to crack initiation

$N_{ m f}$	number of cycles to failure
Q	activation energy
R	universal gas constant
$S_{\rm UTS}$	ultimate tensile strength
$S_{ m YS}$	yield strength
σ	true stress
σ_{a}	stress amplitude
σ_b	back stress
$\sigma_{\rm f}$	friction stress
σ_{T}	tensile stress amplitude at half-life
$\sigma_{ m s}$	saturation stress
$\sigma'_{\rm f}$	fatigue strength coefficient
θ	work hardening rate
ΔW_e	elastic strain energy per cycle
ΔW_p	average plastic strain energy per cycle
ΔW_t	total plastic strain energy per cycle

PREFACE

Inconel 617 is a nickel based superalloy which contains Cr, Co, Mo, Al and Ti as alloying elements. It is widely used in high temperature applications because of its superior creep resistance and improved stability of microstructure for long exposures at elevated temperatures. A protective layer of Cr and Al oxides forms on the surface of the alloy at elevated temperature which enhances its oxidation resistance. This tungsten free alloy is lighter and cost competitive as compared to other nickel based alloys with tungsten. It is primarily strengthened by precipitation of fine homogeneously dispersed γ' phase in the γ matrix and from the precipitation of M₆C and M₂₃C₆ carbides both at grain boundaries and in the grains. Inconel 617, among Ni base super alloys, is the prime candidate material for tubing in super heater, re-heater and steam generator components due to its excellent creep strength and resistance to oxidation. It has been widely used also in other high temperature applications such as intermediate heat exchanger (IHX) in very high temperature gas cooled reactors (VHTR), combustor liners, transition ducting and exhaust system components of aircraft and land based gas turbine engines, catalyst-grid supports in the production of nitric acid, heat-treating baskets and reduction boats in the refining of molybdenum.

Advanced ultra super critical (A-USC) coal fired power plants using steam at high temperatures up to 780° C and pressure of 35 MPa have been developed, to increase efficiency and reduce CO₂ emissions. These plants require high performance alloys to resist such high temperatures and pressures. Nickel based super alloys with high creep strength and corrosion resistance are candidate materials for the hottest boiler and turbine sections. Inconel 617 is the prime material of usage among these alloys. Application of Inconel 617 alloy in boilers of A-USC power plants requires understanding of the overall mechanical properties and related deformation mechanisms over wide range of temperatures under tensile, creep and cyclic loading. The primary mode of failure of components made of Inconel 617 is due to cyclic loading (fatigue) resulting during start-up and shut down operations. Temperature induced cyclic strains of different magnitude are also produced by thermal stresses generated during such operations. Thus, understanding of the low cycle fatigue behaviour and related deformation mechanisms at room temperature as well as at elevated temperatures is necessary. Inconel 617 alloy when used as combustion lining in combustion chamber of gas turbines is exposed to severe high temperature and corrosive environments which may affect its performance. Thermal barrier coatings (TBC) can improve the life of these alloys at high temperatures, whereas salt environment is detrimental to the life of these alloys. However, only limited investigations have been carried out on Inconel 617 alloy to evaluate the effect of temperature, microstructure and environment on deformation and fracture behaviour under tensile and fatigue loading. The present work aims to investigate the tensile and low cycle fatigue behaviour of the Inconel 617 alloy under various conditions in detail.

Chapter 1 discusses brief introduction about the alloy design and development of nickel-based superalloys in general and Inconel 617 in particular along with the physical metallurgy and intended applications of these alloys. Literature related to microstructural characterization and mechanical properties of Inconel 617 alloy subjected to tensile and cyclic loading till date is also reviewed. The need and importance of the present investigation is emphasized along with the objectives of present investigation.

Chapter 2 presents details of material and experiments carried out in the present investigation. Inconel 617 alloy was procured as forged rod of 14 mm diameter and was

solution annealed at 1175°C for 40 minutes and quenched in water. Tensile behaviour of the Inconel 617 alloy in solution annealed condition was investigated in the temperature range from RT to 900°C at different strain rates from $5 \times 10^{-4} \text{ s}^{-1}$ to $1 \times 10^{-2} \text{ s}^{-1}$ to establish the process of dynamic strain aging (DSA) and examine its effect on deformation and fracture behaviour. Work hardening behaviour of the Inconel 617 alloy was analyzed in different conditions (solution annealed, aged, and cold worked) at room temperature and 700°C after conducting tensile testing at a strain rate of $5 \times 10^{-3} \text{ s}^{-1}$.

Low cycle fatigue (LCF) testing was performed in solution annealed condition at room temperature, 750°C and 850°C in air, under fully reversed axial strain-controlled mode at constant strain rate of 5×10^{-3} s⁻¹. Symmetrical triangular wave form and total strain amplitude ranging from ±0.20% to ±0.50% were used at the three temperatures to study fatigue behaviour. LCF tests were also conducted on samples subjected to oxidation at 850°C with and without salt coating for durations up to 1000 h. LCF tests on these samples were conducted at strain amplitude of ±0.25%, at constant strain rate ($\hat{\epsilon}$) of 5×10^{-3} s⁻¹. Fracture surfaces of the tensile and fatigue tested samples were examined by scanning electron microscope. Deformation behaviour was analyzed using transmission electron microscopy. Thermal barrier coating (TBC) of Yttria (8%) stabilised Zirconia (YSZ) was applied on fatigue samples using air plasma spray (ASP) coating process. The samples were initially grit blasted, and then were applied with a bond coat of NiCrAlY of ≈40 µm thick and coating of YSZ of ≈80µm thick. Effect of strain amplitude on the fatigue life of the TBC coated samples was studied by conducting LCF testing at strain amplitudes from ±0.20% to ±0.50% at 850°C.

Chapter 3 deals with the tensile deformation behaviour of Inconel 617 alloy and establishes the DSA regime for the alloy. Serrations were observed in the temperature range 300° C-700°C at all the three strain rates studied which indicated the occurrence of

dynamic strain aging (DSA). The amplitude of serrations increased with increase in the temperature and decrease in the strain rate. Temperature regime of DSA was confirmed to be from 300°C to 700°C by the occurrence of plateau in the yield strength, ductility minima and negative strain rate sensitivity in this regime. Activation energies for the serrated flow were found to be 65, 80 and 110 kJ/mol for the three types of serrations, namely B, (A+B) and C respectively. The controlling mechanism of the DSA was found to be diffusion of carbon through dislocation cores in the lower temperature range and diffusion of substitutional elements Cr and Mo in the higher temperature range. TEM studies revealed increase in the number of slip bands as well as interaction of dislocations with solute atoms with increase in the temperature up to 700°C. Precipitation of carbides was observed at 700°C, at the ductility minima. Above this temperature, increase in precipitate size and sub-grain formation was observed. SEM examination of the fracture surfaces revealed ductile fracture with dimples at room temperature and 400°C-600°C, where distinct serrations were observed in the flow curve. At 700°C, at ductility minima, there was mixed mode of fracture with dimples, facets and intergranular cracks associated with some grains boundaries. At 800°C and 900°C, there was completely ductile fracture with large and deep dimples.

Chapter 4 describes the effect of microstructure on work hardening behaviour of Inconel 617 alloy at RT and 700°C in different conditions (as received, solution annealed, aged, and cold worked) of the alloy. Tensile testing was conducted at room temperature and 700°C (operating temperature of boilers in A-USC power plants), at a strain rate of 5×10^{-3} s⁻¹. True stress-true strain curves of the alloy displayed concave slope upward similar to those of other austenitic super alloys. Five different flow relationships were examined for all these conditions of the alloy to characterize its work hardening behaviour. Ludwigson relationship was found to be the best to describe flow behaviour of Inconel 617 alloy. Three different stages were observed in the plots of work hardening rate as a function of true stress. TEM study revealed traces of slip bands at room temperature and formation of carbide precipitates, micro twins and their interaction with dislocations at 700°C, for all the conditions, suggesting deformation by slip at RT and by twinning at 700°C. Typical ductile fracture with dimples was observed in all the conditions except in the cold worked condition where cleavage facets were seen at both the temperatures.

Chapter 5 presents the effect of temperature on low cycle fatigue (LCF), deformation and fracture behaviour at RT, 750 and 850°C at a strain rate of $5 \times 10^{-3} \text{s}^{-1}$. Symmetrical triangular wave form and total strain amplitude ranging from $\pm 0.20\%$ to $\pm 0.50\%$ were applied at the three temperatures to study fatigue behaviour. The cyclic stress response and strain life relationship were analysed at these temperatures. While there was continuous cyclic hardening at room temperature at lower strain amplitudes ($\pm 0.20\%$ and $\pm 0.25\%$), cyclic softening was observed after initial cyclic hardening for 100 cycles at higher strain amplitudes ($\pm 0.42\%$ and $\pm 0.50\%$) with a transition at $\pm 0.375\%$ strain amplitude. Continuous cyclic hardening was observed up to peak hardening at 750°C and 850°C irrespective of the strain amplitude. The number of cycles to fracture (fatigue life) decreased with increase in temperature. The degree of hardening increased from RT to 750°C again decreased at 850°C. The degree of cyclic hardening increased with increase in strain amplitude. Non-Masing behaviour was observed at all the three temperatures. TEM studies revealed change in dislocation substructure and formation of precipitates with increase in temperature and strain amplitude. While there was no formation of precipitates, formation of γ' along with M₂₃C₆ carbides was observed at 750°C whereas only M₂₃C₆ carbides were formed at 850°C. SEM examination of the fracture surfaces revealed increase in inter-striation spacing and extensive branching of cracks at higher strain amplitudes with increase in temperature.

Chapter 6 describes the effect of oxidation and salt coating along with pre exposure up to 1000 hours (cycles of 100 h) on low cycle fatigue behaviour of Inconel 617 alloy at 850°C. Oxidation at 850°C up to 1000 h had no significant effect on fatigue life. A drastic decrease in fatigue life was observed for the salt coated and pre-exposed samples. Elemental mapping by EPMA revealed formation of Cr and Al oxides on the surface for the both oxidised and salt coated samples. These oxide layers were broken under salt environment conditions and the base material was exposed to hot corrosion. The intergranular oxidation depth increased with increase in the duration pre-exposure. Sulphur ingression was observed in the salt coated samples and chromium sulphide (CrS) was found to be detrimental and caused intergranular cracking and reduction in fatigue life.

Chapter 7 discusses the effect of thermal barrier coating on low cycle fatigue behaviour of Inconel 617 alloy at 850°C. Thermal barrier coating of Yttria (8%) stabilised Zirconia (YSZ) was applied on fatigue samples using air plasma spray coating process. At low strain amplitude (\pm 0.2%), the alloy showed improvement in fatigue life whereas at high strain amplitude no improvement in life was observed. The crack initiation started from the base metal surface at low strain amplitude whereas cracks were initiated from TBC coating, under high strain amplitude conditions. Large plastic strain in the samples, tested at high strain amplitude, caused breakage of the surface coatings.

Chapter 8 summarizes the major conclusions of the present investigation and scope for future work.

SUMMARY

Inconel 617 is a nickel base superalloy containing Cr, Co, Mo, Al and Ti as alloying elements. It is primarily strengthened by the M_6C and $M_{23}C_6$ carbides, both present at grain boundaries and within the grains, and the precipitates of fine homogeneously dispersed γ' phase in the γ matrix. A protective layer of Cr and Al oxides forms on the surface of the alloy at elevated temperature which enhances its oxidation resistance. Inconel 617, among Ni base superalloys, is prime candidate material for tubing in super heater, re-heater and steam generator components, due to its excellent creep strength, resistance to oxidation and improved stability of microstructure after long exposures at elevated temperatures. It has been widely used also in other high temperature applications such as intermediate heat exchanger (IHX) in very high temperature gas cooled reactors (VHTR), combustor liners, transition ducting and exhaust system components of aircraft and land based gas turbine engines. Usage of the Inconel 617 alloy in the above high temperature applications requires understanding of the overall mechanical properties and related deformation mechanisms over a wide range of temperatures under tensile and cyclic loading.

Tensile behaviour of the Inconel 617 alloy in solution annealed condition was investigated in the temperature range from RT to 900°C at different strain rates from $5 \times 10^{-4} \text{s}^{-1}$ to $1 \times 10^{-2} \text{ s}^{-1}$ to establish the mechanism of dynamic strain aging (DSA) and examine its effect on deformation and fracture behaviour. Serrations were observed in the temperature range of 300°C to 700°C, at all the three strain rates studied, which indicated the occurrence of dynamic strain aging (DSA). Temperature regime of DSA was established from 300°C to 700°C from the occurrence of plateau in the yield strength, ductility minima and negative strain rate sensitivity, in this regime. The

controlling mechanism of the DSA was found to be diffusion of carbon through dislocation cores in the lower temperature range and diffusion of substitutional elements Cr and Mo in the higher temperature range. TEM examination of the samples revealed, increase in the number of slip bands as well as interaction of dislocations with solute atoms, with increase in the temperature up to 700°C. Precipitation of carbides was observed at 700°C, at the ductility minima. Above this temperature, increase in precipitate size and sub-grain formation was observed. SEM examination of the fracture surfaces revealed ductile fracture with essentially dimples from 400°C to 600°C, where distinct serrations were observed in the flow curve. At 700°C, at ductility minima, there was mixed mode of fracture with features such as dimples, facets and intergranular cracks present at some grains boundaries. At 800°C and 900°C, completely ductile fracture was observed which depicted large and deep dimples.

Work hardening behaviour of the Inconel 617 alloy was analyzed in different conditions (solution annealed, aged, and cold worked) at room temperature and 700°C by conducting tensile tests at a strain rate of $5 \times 10^{-3} \text{ s}^{-1}$. True stress-true strain curves of the alloy displayed concave slope upward similar to those of other austenitic superalloys. Ludwigson relationship was found to be the best to describe flow behaviour of Inconel 617 alloy. Three different stages were observed in the plots of work hardening rate as a function of true stress. TEM study revealed traces of slip bands at room temperature and formation of carbide precipitates, micro twins and their interaction with dislocations at 700°C, for all the conditions, suggesting deformation by slip at RT and by twinning at 700°C. Typical ductile fracture with dimples was observed in all the conditions except in the cold worked condition where cleavage facets were seen at both the temperatures.

Low cycle fatigue (LCF) testing was performed in solution annealed condition,

at room temperature, 750°C and 850°C in air, under fully reversed axial straincontrolled mode at constant strain rate of $5 \times 10^{-3} \text{ s}^{-1}$. Continuous cyclic hardening was observed at all the three temperatures, irrespective of the strain amplitude. The number of cycles to fracture (fatigue life) decreased with increase in temperature. Non-Masing behaviour was observed at all the three temperatures. TEM studies revealed change in dislocation substructure and formation of precipitates with increase in temperature and strain amplitude. While there was no formation of precipitates, formation of γ' along with M₂₃C₆ carbides was observed at 750°C whereas only M₂₃C₆ carbides were formed at 850°C. SEM examination of the fracture surfaces revealed increase in inter-striation spacing and extensive branching of cracks at higher strain amplitudes with increase in temperature.

LCF tests were also conducted on samples subjected to oxidation at 850°C with and without salt coating for durations up to 1000 h. LCF tests on these samples were conducted at strain amplitude of $\pm 0.25\%$, at constant strain rate ($\dot{\varepsilon}$) of $5 \times 10^{-3} \text{ s}^{-1}$. Oxidation at 850°C up to 1000 h had no significant effect on fatigue life. A drastic decrease in fatigue life was observed for the salt coated and pre-exposed samples. Elemental mapping by EPMA revealed formation of Cr and Al oxides on the surface for the both oxidised and salt coated samples. Sulphur ingression was observed in the salt coated samples and chromium sulphide (CrS) was found to be detrimental and caused intergranular cracking and reduction in fatigue life.

Effect of strain amplitude on fatigue life of the samples of Inconel 617 alloy coated with Thermal Barrier Coating (TBC) of Yttria (8%) stabilised Zirconia (YSZ), was studied by conducting LCF testing at strain amplitudes from $\pm 0.20\%$ to $\pm 0.50\%$ at 850°C. At low strain amplitude ($\pm 0.2\%$), the alloy showed improvement in fatigue life whereas at high strain amplitude, no improvement in life was observed. Fatigue crack

initiation started from the base metal surface at low strain amplitude whereas cracks were initiated from TBC coating, under high strain amplitude conditions. Large plastic strain in the samples, tested at high strain amplitude, caused breakage of the surface coatings. The precipitates formed in the coated condition were much less in volume fraction than those tested without TBC coating due to protection of the surface by coating, which reduced the effective temperature of the substrate.