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PREFACE 

Inconel 617 is a nickel based superalloy which contains Cr, Co, Mo, Al and Ti 

as alloying elements. It is widely used in high temperature applications because of its 

superior creep resistance and improved stability of microstructure for long exposures at 

elevated temperatures. A protective layer of Cr and Al oxides forms on the surface of 

the alloy at elevated temperature which enhances its oxidation resistance. This tungsten 

free alloy is lighter and cost competitive as compared to other nickel based alloys with 

tungsten. It is primarily strengthened by precipitation of fine homogeneously dispersed 

γ׳ phase in the γ matrix and from the precipitation of M6C and M23C6 carbides both at 

grain boundaries and in the grains. Inconel 617, among Ni base super alloys, is the 

prime candidate material for tubing in super heater, re-heater and steam generator 

components due to its excellent creep strength and resistance to oxidation. It has been 

widely used also in other high temperature applications such as intermediate heat 

exchanger (IHX) in very high temperature gas cooled reactors (VHTR), combustor 

liners, transition ducting and exhaust system components of aircraft and land based gas 

turbine engines, catalyst-grid supports in the production of nitric acid, heat-treating 

baskets and reduction boats in the refining of molybdenum. 

Advanced ultra super critical (A-USC) coal fired power plants using steam at 

high temperatures up to 780
o
C and pressure of 35 MPa have been developed, to increase 

efficiency and reduce CO2 emissions. These plants require high performance alloys to 

resist such high temperatures and pressures. Nickel based super alloys with high creep 

strength and corrosion resistance are candidate materials for the hottest boiler and 

turbine sections.  Inconel 617 is the prime material of usage among these alloys. 

Application of Inconel 617 alloy in boilers of A-USC power plants requires 
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understanding of the overall mechanical properties and related deformation mechanisms 

over wide range of temperatures under tensile, creep and cyclic loading. The primary 

mode of failure of components made of Inconel 617 is due to cyclic loading (fatigue) 

resulting during start-up and shut down operations. Temperature induced cyclic strains 

of different magnitude are also produced by thermal stresses generated during such 

operations. Thus, understanding of the low cycle fatigue behaviour and related 

deformation mechanisms at room temperature as well as at elevated temperatures is 

necessary. Inconel 617 alloy when used as combustion lining in combustion chamber of 

gas turbines is exposed to severe high temperature and corrosive environments which 

may affect its performance. Thermal barrier coatings (TBC) can improve the life of 

these alloys at high temperatures, whereas salt environment is detrimental to the life of 

these alloys. However, only limited investigations have been carried out on Inconel 617 

alloy to evaluate the effect of temperature, microstructure and environment on 

deformation and fracture behaviour under tensile and fatigue loading. The present work 

aims to investigate the tensile and low cycle fatigue behaviour of the Inconel 617 alloy 

under various conditions in detail. 

Chapter 1 discusses brief introduction about the alloy design and development 

of nickel-based superalloys in general and Inconel 617 in particular along with the 

physical metallurgy and intended applications of these alloys. Literature related to 

microstructural characterization and mechanical properties of Inconel 617 alloy 

subjected to tensile and cyclic loading till date is also reviewed. The need and 

importance of the present investigation is emphasized along with the objectives of 

present investigation. 

Chapter 2 presents details of material and experiments carried out in the present 

investigation. Inconel 617 alloy was procured as forged rod of 14 mm diameter and was 
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solution annealed at 1175OC for 40 minutes and quenched in water. Tensile behaviour 

of the Inconel 617 alloy in solution annealed condition was investigated in the 

temperature range from RT to 900
o
C at different strain rates from 5x10

-4 
s

-1 
to 1x10

-2 
s

-1
 

to establish the process of dynamic strain aging (DSA) and examine its effect on 

deformation and fracture behaviour. Work hardening behaviour of the Inconel 617 alloy 

was analyzed in different conditions (solution annealed, aged, and cold worked) at room 

temperature and 700
o
C after conducting tensile testing at a strain rate of 5x10

-3 
s

-1
.  

Low cycle fatigue (LCF) testing was performed in solution annealed condition at 

room temperature, 750
o
C and 850

o
C in air, under fully reversed axial strain-controlled 

mode at constant strain rate of 5x10
-3 

s
-1

. Symmetrical triangular wave form and total 

strain amplitude ranging from ±0.20% to ±0.50% were used at the three temperatures to 

study fatigue behaviour. LCF tests were also conducted on samples subjected to 

oxidation at 850
o
C with and without salt coating for durations up to 1000 h. LCF tests 

on these samples were conducted at strain amplitude of ±0.25%, at constant strain rate 

(ɛ ) of 5x10
-3 

s
-1

. Fracture surfaces of the tensile and fatigue tested samples were 

examined by scanning electron microscope. Deformation behaviour was analyzed using 

transmission electron microscopy. Thermal barrier coating (TBC) of Yttria (8%) 

stabilised Zirconia (YSZ) was applied on fatigue samples using air plasma spray (ASP) 

coating process. The samples were initially grit blasted, and then were applied with a 

bond coat of NiCrAlY of ≈40 µm thick and coating of YSZ of ≈80µm thick. Effect of 

strain amplitude on the fatigue life of the TBC coated samples was studied by 

conducting LCF testing at strain amplitudes from ±0.20% to ±0.50% at 850
o
C. 

Chapter 3 deals with the tensile deformation behaviour of Inconel 617 alloy and 

establishes the DSA regime for the alloy. Serrations were observed in the temperature 

range 300
o
C-700

o
C at all the three strain rates studied which indicated the occurrence of 
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dynamic strain aging (DSA). The amplitude of serrations increased with increase in the 

temperature and decrease in the strain rate. Temperature regime of DSA was confirmed 

to be from 300OC to 700
o
C by the occurrence of plateau in the yield strength, ductility 

minima and negative strain rate sensitivity in this regime. Activation energies for the 

serrated flow were found to be 65, 80 and 110 kJ/mol for the three types of serrations, 

namely B, (A+B) and C respectively. The controlling mechanism of the DSA was found 

to be diffusion of carbon through dislocation cores in the lower temperature range and 

diffusion of substitutional elements Cr and Mo in the higher temperature range. TEM 

studies revealed increase in the number of slip bands as well as interaction of 

dislocations with solute atoms with increase in the temperature up to 700
o
C. 

Precipitation of carbides was observed at 700
o
C, at the ductility minima. Above this 

temperature, increase in precipitate size and sub-grain formation was observed. SEM 

examination of the fracture surfaces revealed ductile fracture with dimples at room 

temperature and 400
o
C-600

o
C, where distinct serrations were observed in the flow 

curve. At 700
o
C, at ductility minima, there was mixed mode of fracture with dimples, 

facets and intergranular cracks associated with some grains boundaries. At 800
o
C and 

900
o
C, there was completely ductile fracture with large and deep dimples.   

Chapter 4 describes the effect of microstructure on work hardening behaviour 

of Inconel 617 alloy at RT and 700
o
C in different conditions (as received, solution 

annealed, aged, and cold worked) of the alloy. Tensile testing was conducted at room 

temperature and 700
o
C (operating temperature of boilers in A-USC power plants), at a 

strain rate of 5x10
-3 

s
-1

. True stress-true strain curves of the alloy displayed concave 

slope upward similar to those of other austenitic super alloys. Five different flow 

relationships were examined for all these conditions of the alloy to characterize its work 

hardening behaviour. Ludwigson relationship was found to be the best to describe flow 
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behaviour of Inconel 617 alloy. Three different stages were observed in the plots of 

work hardening rate as a function of true stress. TEM study revealed traces of slip bands 

at room temperature and formation of carbide precipitates, micro twins and their 

interaction with dislocations at 700
o
C, for all the conditions, suggesting deformation by 

slip at RT and by twinning at 700
o
C. Typical ductile fracture with dimples was observed 

in all the conditions except in the cold worked condition where cleavage facets were 

seen at both the temperatures. 

Chapter 5 presents the effect of temperature on low cycle fatigue (LCF), 

deformation and fracture behaviour at RT, 750 and 850
o
C at a strain rate of 5x10

-3
s

-1
. 

Symmetrical triangular wave form and total strain amplitude ranging from ±0.20% to 

±0.50% were applied at the three temperatures to study fatigue behaviour. The cyclic 

stress response and strain life relationship were analysed at these temperatures. While 

there was continuous cyclic hardening at room temperature at lower strain amplitudes 

(±0.20% and ±0.25%), cyclic softening was observed after initial cyclic hardening for 

100 cycles at higher strain amplitudes (±0.42% and ±0.50%) with a transition at 

±0.375% strain amplitude. Continuous cyclic hardening was observed up to peak 

hardening at 750
o
C and 850

o
C irrespective of the strain amplitude. The number of 

cycles to fracture (fatigue life) decreased with increase in temperature. The degree of 

hardening increased from RT to 750
o
C again decreased at 850

o
C. The degree of cyclic 

hardening increased with increase in strain amplitude. Non-Masing behaviour was 

observed at all the three temperatures. TEM studies revealed change in dislocation 

substructure and formation of precipitates with increase in temperature and strain 

amplitude. While there was no formation of precipitates, formation of γ׳ along with 

M23C6 carbides was observed at 750
o
C whereas only M23C6 carbides were formed at 

850
o
C.  SEM examination of the fracture surfaces revealed increase in inter-striation 
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spacing and extensive branching of cracks at higher strain amplitudes with increase in 

temperature.      

Chapter 6 describes the effect of oxidation and salt coating along with pre 

exposure up to 1000 hours (cycles of 100 h) on low cycle fatigue behaviour of Inconel 

617 alloy at 850
o
C. Oxidation at 850

o
C up to 1000 h had no significant effect on fatigue 

life. A drastic decrease in fatigue life was observed for the salt coated and pre-exposed 

samples. Elemental mapping by EPMA revealed formation of Cr and Al oxides on the 

surface for the both oxidised and salt coated samples. These oxide layers were broken 

under salt environment conditions and the base material was exposed to hot corrosion. 

The intergranular oxidation depth increased with increase in the duration pre-exposure. 

Sulphur ingression was observed in the salt coated samples and chromium sulphide 

(CrS) was found to be detrimental and caused intergranular cracking and reduction in 

fatigue life. 

Chapter 7 discusses the effect of thermal barrier coating on low cycle fatigue 

behaviour of Inconel 617 alloy at 850
o
C. Thermal barrier coating of Yttria (8%) 

stabilised Zirconia (YSZ) was applied on fatigue samples using air plasma spray coating 

process. At low strain amplitude (±0.2%), the alloy showed improvement in fatigue life 

whereas at high strain amplitude no improvement in life was observed. The crack 

initiation started from the base metal surface at low strain amplitude whereas cracks 

were initiated from TBC coating, under high strain amplitude conditions. Large plastic 

strain in the samples, tested at high strain amplitude, caused breakage of the surface 

coatings.      

Chapter 8 summarizes the major conclusions of the present investigation and 

scope for future work.  
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SUMMARY 

Inconel 617 is a nickel base superalloy containing Cr, Co, Mo, Al and Ti as 

alloying elements. It is primarily strengthened by the M6C and M23C6 carbides, both 

present at grain boundaries and within the grains, and the precipitates of fine 

homogeneously dispersed γ׳ phase in the γ matrix. A protective layer of Cr and Al 

oxides forms on the surface of the alloy at elevated temperature which enhances its 

oxidation resistance. Inconel 617, among Ni base superalloys, is prime candidate 

material for tubing in super heater, re-heater and steam generator components, due to its 

excellent creep strength, resistance to oxidation and improved stability of microstructure 

after long exposures at elevated temperatures. It has been widely used also in other high 

temperature applications such as intermediate heat exchanger (IHX) in very high 

temperature gas cooled reactors (VHTR), combustor liners, transition ducting and 

exhaust system components of aircraft and land based gas turbine engines. Usage of the 

Inconel 617 alloy in the above high temperature applications requires understanding of 

the overall mechanical properties and related deformation mechanisms over a wide 

range of temperatures under tensile and cyclic loading.  

Tensile behaviour of the Inconel 617 alloy in solution annealed condition was 

investigated in the temperature range from RT to 900
o
C at different strain rates from 

5x10
-4

s
-1 

to 1x10
-2 

s
-1

 to establish the mechanism of dynamic strain aging (DSA) and 

examine its effect on deformation and fracture behaviour. Serrations were observed in 

the temperature range of 300
o
C to 700

o
C, at all the three strain rates studied, which 

indicated the occurrence of dynamic strain aging (DSA). Temperature regime of DSA 

was established from 300
o
C to 700

o
C from the occurrence of plateau in the yield 

strength, ductility minima and negative strain rate sensitivity, in this regime. The 
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controlling mechanism of the DSA was found to be diffusion of carbon through 

dislocation cores in the lower temperature range and diffusion of substitutional elements 

Cr and Mo in the higher temperature range. TEM examination of the samples revealed, 

increase in the number of slip bands as well as interaction of dislocations with solute 

atoms, with increase in the temperature up to 700
o
C. Precipitation of carbides was 

observed at 700
o
C, at the ductility minima. Above this temperature, increase in 

precipitate size and sub-grain formation was observed. SEM examination of the fracture 

surfaces revealed ductile fracture with essentially dimples from 400
o
C to 600

o
C, where 

distinct serrations were observed in the flow curve. At 700
o
C, at ductility minima, there 

was mixed mode of fracture with features such as dimples, facets and intergranular 

cracks present at some grains boundaries. At 800
o
C and 900

o
C, completely ductile 

fracture was observed which depicted large and deep dimples. 

Work hardening behaviour of the Inconel 617 alloy was analyzed in different 

conditions (solution annealed, aged, and cold worked) at room temperature and 700
o
C 

by conducting tensile tests at a strain rate of 5x10
-3 

s
-1

. True stress-true strain curves of 

the alloy displayed concave slope upward similar to those of other austenitic 

superalloys. Ludwigson relationship was found to be the best to describe flow behaviour 

of Inconel 617 alloy. Three different stages were observed in the plots of work 

hardening rate as a function of true stress. TEM study revealed traces of slip bands at 

room temperature and formation of carbide precipitates, micro twins and their 

interaction with dislocations at 700
o
C, for all the conditions, suggesting deformation by 

slip at RT and by twinning at 700
o
C. Typical ductile fracture with dimples was observed 

in all the conditions except in the cold worked condition where cleavage facets were 

seen at both the temperatures.  

Low cycle fatigue (LCF) testing was performed in solution annealed condition, 
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at room temperature, 750
o
C and 850

o
C in air, under fully reversed axial strain-

controlled mode at constant strain rate of 5x10
-3 

s
-1

. Continuous cyclic hardening was 

observed at all the three temperatures, irrespective of the strain amplitude. The number 

of cycles to fracture (fatigue life) decreased with increase in temperature. Non-Masing 

behaviour was observed at all the three temperatures. TEM studies revealed change in 

dislocation substructure and formation of precipitates with increase in temperature and 

strain amplitude. While there was no formation of precipitates, formation of γ׳ along 

with M23C6 carbides was observed at 750
o
C whereas only M23C6 carbides were formed 

at 850
o
C. SEM examination of the fracture surfaces revealed increase in inter-striation 

spacing and extensive branching of cracks at higher strain amplitudes with increase in 

temperature.  

LCF tests were also conducted on samples subjected to oxidation at 850
o
C with 

and without salt coating for durations up to 1000 h. LCF tests on these samples were 

conducted at strain amplitude of ±0.25%, at constant strain rate (ɛ ) of 5x10
-3 

s
-1

. 

Oxidation at 850
o
C up to 1000 h had no significant effect on fatigue life. A drastic 

decrease in fatigue life was observed for the salt coated and pre-exposed samples. 

Elemental mapping by EPMA revealed formation of Cr and Al oxides on the surface for 

the both oxidised and salt coated samples. Sulphur ingression was observed in the salt 

coated samples and chromium sulphide (CrS) was found to be detrimental and caused 

intergranular cracking and reduction in fatigue life.  

Effect of strain amplitude on fatigue life of the samples of Inconel 617 alloy 

coated with Thermal Barrier Coating (TBC) of Yttria (8%) stabilised Zirconia (YSZ), 

was studied by conducting LCF testing at strain amplitudes from ±0.20% to ±0.50% at 

850
o
C. At low strain amplitude (±0.2%), the alloy showed improvement in fatigue life 

whereas at high strain amplitude, no improvement in life was observed. Fatigue crack 
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initiation started from the base metal surface at low strain amplitude whereas cracks 

were initiated from TBC coating, under high strain amplitude conditions. Large plastic 

strain in the samples, tested at high strain amplitude, caused breakage of the surface 

coatings. The precipitates formed in the coated condition were much less in volume 

fraction than those tested without TBC coating due to protection of the surface by 

coating, which reduced the effective temperature of the substrate. 


