
Chapter 4

Polynomials for configurational
correlation functions

4.1 Introduction

The presence of CFs, which are used to account for the SRO present in the system

corresponding to each of the thermodynamics states can be considered as a strength of

CE–CVM. The set of CFs with respect to which the energy of the system is minimum

has to be determined by solving a system of non-linear equations. This is usually

accomplished by using a suitable numerical method such as Newton-Rapson method

or NIM (Kikuchi, 1974). This is considered as one of the drawbacks of the CE–CVM

that makes this method less user-friendly.

In the present Chapter, the CFs are approximated as polynomials expressed in

terms of the point CFs. The general form of the polynomials for any arbitrary cluster is

determined for both the disordered and ordered phase. The results obtained by Sarma

et al. (2012) for the disordered phases and those obtained in Chapter 2 of this thesis

showed that certain derivatives of the CVs which become the CFs in the solvent basis

are independent of the system specific parameters, CECs. The CVs with approximated

CFs also should result in similar results.

For any selected composition, the CVM CFs become rational functions of ηi. In

the light of this, the coefficients of these polynomials are approximated as rational

functions of ηi to capture the variation of CFs with temperature. For the case of the

exclusive second neighbour pair interactions, a method is developed to determine the

parameters of these rational functions, which is the subject of the present Chapter.
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4.2 Approximating polynomials for disordered

phases

In order to keep the derivation of the form of the polynomials general, it is

convenient to use a short-hand notation for the variables and other quantities as given

in Table 4.1. This notation is applicable only for Sections 4.2 and 4.3.

Table 4.1: Notation and the corresponding description of the variables and polynomials
used only in Sections 4.2 and 4.3 .

Notation Description

u1 Point CF of the disordered structure �� xB � xA � 2xB � 1 � 1 � 2xA�
u11, u12

Point CFs of the ordered structure corresponding to the α and β

sublattices respectively

uri
CF for a disordered structure corresponding to ith cluster containing r

sites

urip

CF for an ordered structure corresponding to a cluster containing r sites

with p of them on the α sublattice (and (r-p) on the β sublattice) based

on ith cluster in the disordered structure

Pri
System specific part of the polynomial for the CF uri of the disordered

structure which is a polynomial in terms of the point CF u1

Prip

System specific part of the polynomial for the CF urip of the ordered

structure which is a polynomial in terms of the point CF u11 and u12 for

the α and β sublattices respectively

arij Coefficient of uj1 in the polynomial Pri

arij jk Coefficient of uj11u
k
12 in the polynomial Prip

njkri Number of kth subclusters with j sites present in ith cluster with r sites

yriX

Cluster variable (CV) for a disordered structure corresponding to ith

cluster containing r sites all of which are occupied by atoms of type X

(=A or B)

yriXpY�r�p�

CV for an ordered structure, based on ith cluster of the disordered

structure, corresponding to a cluster containing r sites in which p sites

are on α sublattice, all of which are occupied by atoms of type X (=A or

B) while the remaining (r � p) sites are on β sublattice, all of which are

occupied by atoms of type Y (=B or A)
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Consider an nth degree polynomial in xB for a CV, yriA corresponding to a cluster

of type i having r sites, all of which are occupied by A atoms.

yriA � c0 � c1xB � c2x
2
B � . . . � cnx

n
B (4.1)

For disordered structures, Sarma et al. (2012) showed that yriA could be expressed as

yriA � xrAvriA (4.2)

where vriA is a function of xB, temperature and the CECs. This remains finite over

the entire range of compositions and temperatures. The limiting values and limiting

derivatives of yriAwith respect to xB can be found from this expression. Some of these

are system independent and are given below.

yriASxB�0 � 1;
dyriA
dxB

V
xB�0

� �r;
dkyriA
dxkB

W
xB�1

� 0 for k � 0 to r � 1 (4.3)

Naturally, the polynomials used to approximate the CVs in Eq. (4.1) must satisfy

these conditions. Imposing these conditions, we obtain

yriA � xrA � ��1�r xrAx2
B

n�r

Q
k�2

xk�2
B

n�r�k�1

Q
j�1

�r � j � 2

j � 1
�cr�j�k�1

which can be re-expressed as

yriA � xrA � x
r
Ax

2
B

n�r�2

Q
k�0

bku
k
1 (4.4)

Analogous results are valid for the CV, yriB, corresponding to the cluster having its

sites occupied exclusively by B atoms. Therefore, the expression for yriB can be written

as

yriB � xrB � x
r
Bx

2
A

n�r�2

Q
k�0

aku
k
1 (4.5)

Addition and subtraction of Eqs. (4.4) and (4.5) yields the following relations.

yriA � yriB � xrA � x
r
B � x

r
Ax

2
B

n�r�2

Q
k�0

bku
k
1 � x

r
Bx

2
A

n�r�2

Q
k�0

aku
k
1 (4.6)

yriB � yriA � xrB � x
r
A � x

r
Bx

2
A

n�r�2

Q
k�0

aku
k
1 � x

r
Ax

2
B

n�r�2

Q
k�0

bku
k
1 (4.7)
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Using standard cluster algebra, it can be shown that the CVs yriA and yriB can be

expressed as linear functions of the CFs (Inden, 2005; Sarma et al., 2012) as in the

following.

yriA �
1

2r
�1 � ru1 �

r

Q
j�2

��1�jQ
k

njkri ujk	 (4.8)

yriB �
1

2r
�1 � ru1 �

r

Q
j�2

Q
k

njkri ujk	 (4.9)

where nklri is the number of subclusters of type l having k sites present in the cluster

of type i having r sites. Addition and subtraction of Eqs. (4.8) and (4.9) yields the

following relations.

yriA � yriB �
1

2r�1

<@@@@>1 �

r~2�
Q
j�1

�2j�k>ri
Q
k

n
�2j�k
ri u�2j�k

=AAAA? (4.10)

Note that the upper limit for the summation on j in the RHS is equal to the floor

function of (r~2).

yriB � yriA �
1

2r�1

<@@@@>ru1 �


�r�1�~2�
Q
j�1

�2j�1�k>ri
Q
k

n
�2j�1�k
ri u�2j�1�k

=AAAA? (4.11)

Subtracting Eq. (4.10) from Eq. (4.6) and Eq. (4.11) from Eq. (4.7), we obtain two

relations in terms of the coefficients ak and bk and the CFs.

xrA � x
r
B � x

r
Ax

2
B �

n�r�2

Q
k�0

bku
k
1 � x

r
Bx

2
A

n�r�2

Q
k�0

aku
k
1

�
1

2r�1

<@@@@>1 �

r~2�
Q
j�1

�2j�k>ri
Q
k

n
�2j�k
ri u�2j�k

=AAAA? � 0

(4.12)

xrB � x
r
A � x

r
Bx

2
A

n�r�2

Q
k�0

aku
k
1 � x

r
Ax

2
B

n�r�2

Q
k�0

bku
k
1

�
1

2r�1

<@@@@>ru1 �


�r�1�~2�
Q
j�1

�2j�1�k>ri
Q
k

n
�2j�1�k
ri u�2j�1�k

=AAAA? � 0

(4.13)

For even values of r, the last term in the LHS of Eq. (4.13) contains CFs of all

subclusters of ri having odd number of sites. Therefore, this term can be evaluated once

the polynomials are known for the CFs of these subclusters. Thus, the LHS becomes

a polynomial in terms of u1, which must remain valid for all values of u1 and therefore
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vanish term by term. This leads to a set of �n � 3� independent equations in ak and

bk. However, there are �n � r � 1� number of coefficients, bk, in the polynomial. Thus,

for pair clusters, the number of coefficients to be determined is equal to the number

of equations. But for clusters containing 4 or more sites, the number of coefficients to

be determined is less by (r � 2). Consequently, (r � 2) of the coefficients ak can also be

determined in addition to all the coefficients bk. Therefore, the conditions on all the

coefficients appearing in yriA and yriB are identified. By substituting these coefficients

in Eq. (4.12), we obtain the following polynomial for uri.

uri � u
r
1 �

r

Q
k�2

ur�k1 �1 � u2
1

2
�kQ

j

nkjriPkj (4.14)

Here Pkj is same as Pri defined in Table 4.1 in which k is the number of atoms in the

cluster. The above result is valid also for odd values of r, with a reversal of roles of

Eqs. (4.12) and (4.13).

This procedure is now illustrated for the case of pair CV. The general expression

for the CVs for the pair cluster i having configurations AA and BB can be written

from Eqs. (4.8) and (4.9) as in the following.

y2iA � x2
A � x

2
Ax

2
Bf2 and y2iB � x2

B � x
2
Bx

2
Ag2 (4.15)

where f2 and g2 are polynomials in u1. The relation between y2iA and y2iB can be found

from Eq. (4.11) and can be written as

y2iB � y2iA � u1 (4.16)

However, Eq. (4.15) gives

y2iB � y2iA � u1 �
�1 � u2

1�2

16
�g2 � f2� (4.17)

Comparison of Eqs. (4.16) and (4.17) gives f2 � g2, which is written as P2i for the pair

cluster i. Thus, the CV expressions become

y2iA � x2
A � x

2
Ax

2
BP2i and y2iB � x2

B � x
2
Bx

2
AP2i (4.18)

The expression for the pair CF, u2i, is determined using the following relation based

on Eq. (4.12).

u2i � 2 �y2iA � y2iB� � 1 (4.19)
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Substituting from Eq. (4.18) and simplifying we have,

u2i � u
2
1 � �1 � u1

2
�2

P2i (4.20)

It may be noted that the first term on the RHS, namely, u2
1 represents the random

value of the CF, while the polynomial P2i depends on the model and system under

consideration and embodies the departure of the CF from ideal behaviour.

This procedure is now applied to triangle CV. The general expressions that satisfy

the limiting values and limiting derivatives of CVs for the triangle cluster i having

configurations AAA and BBB are as follows.

y3iA � x3
A � x

3
Ax

2
Bf3 and y3iB � x3

B � x
3
Bx

2
Ag3 (4.21)

where f3 and g3 are polynomials in composition. These CVs are related to the

subcluster pair CFs as given below (ref. Eq. (4.10)).

y3iA � y3iB �
1 �Pj n

2j
3iu2j

4
(4.22)

Since the above sum of the triangle CVs is dependent on the subcluster pair CFs, but

independent of the triangle CF itself, it is convenient to express the polynomials f3

and g3 in Eq. (4.21) as a sum of pair and triangle dependent polynomials (f3p, f3t and

g3p, g3t respectively) as follows.

y3iA � x3
A � x

3
Ax

2
B �f3p � f3txB� and y3iB � x3

B � x
3
Bx

2
A �g3p � g3txA� (4.23)

Using Eqs. (4.22) and (4.23) and separating pair and triangle terms, we obtain

f3p �1 � u1� � g3p �1 � u1� �Q
j

n2j
3iP2j and f3t � g3t � 0 (4.24)

The solutions that satisfy Eq. (4.24) for all values of u1 are

f3p � g3p �Q
j

n2j
3iP2j and g3t � �f3t � P3i (4.25)

Thus, the expressions for y3iA and y3iB become

y3iA � x3
A � x

3
Ax

2
BQ

j

n2j
3iP2j � x

3
Ax

3
BP3i

y3iB � x3
B � x

3
Bx

2
AQ

j

n2j
3iP2j � x

3
Ax

3
BP3i

(4.26)
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Expressing the triangle CF, u3i, in terms of the above triangle CVs, we obtain

u3i � 4 �y3iB � y3iA� � 3u1

� u3
1 � u1 �1 � u2

1

2
�2

Q
j

n2j
3iP2j � �1 � u2

1

2
�3

P3i

(4.27)

Note that the first term on the RHS, namely, u3
1 represents the random value of the

CF, while the second and third terms embody its departure from the ideal behaviour,

respectively in terms of the pair and triangle contributions. It may be pointed out that

such contributions from subclusters are present in the expressions for the CFs of all

larger clusters.

4.3 Approximating polynomials for ordered phases

The derivation of approximating polynomials for CFs of binary ordered structures

having two sublattices, α and β, can be undertaken as described below. A general

homogeneous polynomial of degree n in xαB �xαA� and xβA �xβB� is considered to

approximate the CVs yriBpA�r�p� �yriApB�r�p�� for the cluster ri containing p sites on α

sublattice and �r � p� sites on β sublattice. Therefore, we have

yriBpA�r�p� � a0 �

k�lBn

Q
k,l�0

akl �xαB�k �xβA�l , k � l A 0

yriApB�r�p� � b0 �

k�lBn

Q
k,l�0

bkl �xαA�k �xβB�l , k � l A 0

(4.28)

As in the case of disordered phases, some of the coefficients in this polynomial can

be determined by using the limiting values of the CVs and their limiting derivatives

with respect to the appropriate composition variables. Based on the results obtained

in Chapter 2, yriBpA�r�p� could be expressed as

yriBpA�r�p� � �xαB�p �xβA�r�p vriBpA�r�p� (4.29)

where vriBpA�r�p� is a function of composition, temperature and the CECs and remains

finite over the entire range of compositions, temperatures and order parameter values.

The values and derivatives of vriBpA�r�p� with respect to xαB and xβA in the limit of

perfect ordering in a stoichiometric binary alloy corresponding to the Bragg-Williams
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order parameter, ξ � 1 �xαB � xβA � 0 orxαA � xβB � 1� can be found from this expression.

Some of these are system independent and are given below.

dm�kyriBpA�r�p�
d �xαB�k d �xβA�m

RRRRRRRRRRRxαB�xβA�0

�
dm�lyriBpA�r�p�
d �xαB�m d �xβA�l

RRRRRRRRRRRRRxαB�xβA�0

� 0

for k � 0 to p � 1, l � 0 to q � 1 andm � 0 ton

yriBpA�r�p�TxαB�xβA�1
� 1;

dyriBpA�r�p�
dxαB

W
xαB�x

β
A�1

� p;
dyriBpA�r�p�

dxβA
W
xαB�x

β
A�1

� q

(4.30)

Imposing the above conditions on Eq. (4.28) and redefining the coefficients, we obtain

yriBpA�r�p� � �xαB�p �xβA�r�p � �xαB�p �xβA�r�p k�l�n�rQ
k,l�0

cklu
k
11u

l
12 (4.31)

Following a similar procedure, the expression for yriApB�r�p� can be obtained as

yriApB�r�p� � �xαA�p �xβB�r�p � �xαA�p �xβB�r�p k�l�n�rQ
k,l�0

dklu
k
11u

l
12 (4.32)

Adding and subtracting Eqs. (4.31) and (4.32) yields

yriBpA�r�p� � yriApB�r�p� � �xαB�p �xβA�r�p � �xαA�p �xβB�r�p
� �xαB�p �xβA�r�p k�l�n�rQ

k,l�0

cklu
k
11u

l
12 � �xαA�p �xβB�r�p k�l�n�rQ

k,l�0

dklu
k
11u

l
12

(4.33)

yriBpA�r�p� � yriApB�r�p� � �xαB�p �xβA�r�p � �xαA�p �xβB�r�p
� �xαB�p �xβA�r�p k�l�n�rQ

k,l�0

cklu
k
11u

l
12 � �xαA�p �xβB�r�p k�l�n�rQ

k,l�0

dklu
k
11u

l
12

(4.34)

Using standard cluster algebra (Inden, 2005), it can be shown that the CVs yriApB�r�p�
and yriBpA�r�p� can be expressed as linear functions of the CFs as follows.

yriApB�r�p� �
1

2r
�1 � pu11 � �r � p�u12 �

r

Q
j�2

Q
k

jkl>rip

Q
l

��1�l njklripujkl	 (4.35)

yriBpA�r�p� �
1

2r
�1 � pu11 � �r � p�u12 �

r

Q
j�2

Q
k

jkl>rip

Q
l

��1�j�l njklripujkl	 (4.36)

Adding and subtracting Eqs. (4.35) and (4.36) yields

yriApB�r�p� � yriBpA�r�p� �
1

2r�1

<@@@@>1 �

r~2�
Q
j�1

Q
k

�2j�kl>rip
Q
l

��1�l n�2j�kl
rip u�2j�kl

=AAAA? (4.37)

64



yriApB�r�p� � yriBpA�r�p� �
1

2r�1

<@@@@> � pu11 � �r � p�u12

�


�r�1�~2�
Q
j�1

Q
k

�2j�1�kl>rip
Q
l

��1�l n�2j�1�kl
rip u�2j�1�kl

=AAAA?
(4.38)

Relating Eqs. (4.37), (4.33) and (4.38), (4.34) and proceeding as in the case of

disordered structures, we obtain the following general form of the CFs.

urip � u
p
11u

r�p
12 �

r

Q
j�2

Q
k

j

Q
l�0

up�l11 u
r�p��j�l�
12 �1 � u2

11

2
	l �1 � u2

12

2
	j�l nklriPjkl (4.39)

In the limit of ξ � 0, i.e., xαB � xβB � xB, these polynomials must reduce to those

corresponding to the disordered phase. This leads to the following relation between

the coefficients of the polynomials for the ordered and disordered phases.

m

Q
j�0

aripj�m�j� � arim form � 0 ton (4.40)

4.4 Application to A2 and B32 phases

The general form of the polynomial for approximating the equilibrium values of

the CF corresponding to a cluster in a chosen disordered phase is given by Eq. (4.14)

while that for an ordered phase is given by Eq. (4.39). However, the specific set

of coefficients in Pri or Prip are dependent on the structure and the model chosen.

The form of Pri or Prip can be determined by a consideration of the variation of CF

with u1, T and the CECs, based on numerical data which can be obtained for model

systems by using methods such as CE–CVM or Monte-Carlo simulations. Once this

is accomplished, actual determination of CECs can be performed by simultaneous

optimization of experimental data pertaining to a real system. Care must be exercised

that the behaviour of the CF under equilibrium conditions, such as symmetry or

anti-symmetry (if present) with respect to u1 and/or ξ is reproduced to the desired

level of accuracy by appropriate choice of the coefficients in Pri or Prip.

The general forms of the polynomials derived above for the disordered and ordered

structures are utilized for approximating the CFs of A2–B32 system under tetrahedron

approximation for exclusive second neighbour pair interactions. In the present Section,

a simplified notation is used that is similar to the notation presented in Chapters 2 and
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3. Here, Pi represents the system specific polynomial for the CF ui. The polynomials

for the CFs in the tetrahedron approximation of CE–CVM for A2 phase are expressed

using Eq. (4.14) as given below.

u1 � u
2
0 � �1 � u2

0

2
	2

P1

u2 � u
2
0 � �1 � u2

0

2
	2

P2

u3 � u
3
0 � u0 �1 � u2

0

2
	2 �2P1 � P2� � �1 � u2

0

2
	3

P3

u4 � u
4
0 � u

2
0 �1 � u2

0

2
	2 �4P1 � 2P2� � u0 �1 � u2

0

2
	3

4P3 � �1 � u2
0

2
	4

P4

(4.41)

The CFs for the B32 phase in the tetrahedron approximation expressed using Eq.

(4.39) are as follows.

u1.1 � u
2
0.1 � �1 � u2

0.1

2
	2

P1.1

u1.2 � u0.1u0.2 � �1 � u2
0.1

2
	 �1 � u2

0.2

2
	P1.2

u1.3 � u
2
0.2 � �1 � u2

0.2

2
	2

P1.3

u2.1 � u0.1u0.2 � �1 � u2
0.1

2
	 �1 � u2

0.2

2
	P2.1

u3.1 � u
2
0.1u0.2 � u0.2 �1 � u2

0.1

2
	2

P1.1 � u0.1 �1 � u2
0.1

2
	 �1 � u2

0.2

2
	 �P1.2 � P2.1�

� �1 � u2
0.1

2
	2 �1 � u2

0.2

2
	P3.1

u3.2 � u0.1u
2
0.2 � u0.2 �1 � u2

0.1

2
	 �1 � u2

0.2

2
	 �P1.2 � P2.1� � u0.1 �1 � u2

0.2

2
	2

P1.3

� �1 � u2
0.1

2
	 �1 � u2

0.2

2
	2

P3.2

u4.1 � u
2
0.1u

2
0.2 � u

2
0.2 �1 � u2

0.1

2
	2

P1.1 � u
2
0.1 �1 � u2

0.2

2
	2

P1.3

� u0.1u0.2 �1 � u2
0.1

2
	 �1 � u2

0.2

2
	 �2P1.2 � 2P2.1� � u0.2 �1 � u2

0.1

2
	2 �1 � u2

0.2

2
	2P3.1

� u0.1 �1 � u2
0.1

2
	 �1 � u2

0.2

2
	2

2P3.2 � �1 � u2
0.1

2
	2 �1 � u2

0.2

2
	2

P4.1

(4.42)
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In the case of exclusive second neighbour pair interactions, the first neighbour

pair CFs take random values (ref. Eqs. (3.5) and (3.15)) and hence the corresponding

structure- and model-dependent polynomials vanish.

P1 � P1.1 � P1.2 � P1.3 � 0 (4.43)

A polynomial of fourth degree in u0 is found to reproduce the behaviour of u2 in

the disordered phase sufficiently accurately. As u2 is symmetric with respect to u0 � 0,

the coefficients of odd powers of u0 in P2 should vanish. Similarly, a polynomial of

fourth degree in u0.1 and u0.2 is considered for P2.1. Further, u2.1 is symmetric with

respect to u0.1 � u0.2 � 0 as well as an exchange of u0.1 with u0.2. The final forms of the

polynomials that satisfy these symmetry relations are given below.

P2 � a20 � a22u
2
0 � a24u

4
0 (4.44)

and

P2.1 � a20 � �a2.120 � a2.131u0.1u0.2� �u2
0.1 � u

2
0.2� � �a22 � 2a2.120�u0.1u0.2

� a2.140 �u4
0.1 � u

4
0.2� � �a24 � 2a2.40 � 2a2.131�u2

0.1u
2
0.2

(4.45)

For the triangle CFs of the disordered and ordered phases, the structure

dependent polynomials are required to vanish, to make them consistent with the

analytical solutions as given by (ref. Eqs. (3.7) and (3.16))

P3 � P3.1 � P3.2 � 0 (4.46)

The tetrahedron CF is seen to be sufficiently accurately represented by a constant,

i.e.,

P4 � P4.1 � a40 (4.47)

The coefficients of the polynomials in Eqs. (4.44), (4.45) and (4.47) are expressed as

RFs of ηi in general and in the present case, η2 to account for the variation of the CFs

with T and/or ei. The form of the RF has to be chosen so as to ensure that (i) the

corresponding Pi = 0 for ηi = 1 (ei = 0 and/or T = ª) reproducing the random value

for the CF, (ii) the value of the resultant CVs lie within the configuration polyhedron

for all values of ηi and u0 and (iii) the dependence of CFs on u0 is similar to that of CFs

in CVM. It is difficult to meet the latter two criteria for all ηi, but they can be satisfied
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Figure 4.1: The domain of u0 and η2 selected for optimization.

within a restricted range of ηi values. The parameters of these RFs are obtained as

explained below.

The polynomial for u2 contains three parameters as can be seen from Eq. (4.44).

One of the three parameters, a24, is determined in terms of the other two parameters

by equating the second derivative of the polynomial of u2 with respect to u0 at u0 � �1

as in Eq. (4.44) to that found from analytical solutions of CVM equilibrium equations,

i.e., 2η2 (Sarma et al., 2012). Thus,

a24 � η2 � a20 � a22 (4.48)

The permissible domain for the remaining two pair parameters a20 and a22 is

determined for a set of values of η2 (namely, �ηPS
2,c�2, 4, 3, ηPS

2,c , 2, 1/0.6, 1/0.7, 1/0.8,

1/0.9 corresponding to phase separating tendency and their reciprocals corresponding

to ordering tendency; ref. Figure 4.1.), using the constraints mentioned above and a

point well inside the domain that satisfies all the constraints for the entire composition

range is selected for each value of η2 for a subsequent RF fit. The procedure is explained

in detail for the tetrahedron CF in Appendix C.
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To determine the functional dependence of the set of u2 values on η2 found above,

we select general RF forms for the CFs in terms of η2 along with the appropriate

relations among their polynomial coefficients which are guided by the analytical

solutions obtained in Chapter 3, as given below.

u2Su0�0 �
a20

4
�

p0 �1 �ºη2�
4 �1 � p1

º
η2�

u2Su0�0.5 �
1

4
�

9

1024
�16a20 � 4a22 � a24�

�
4q0 � �1 � 4q0 � q1�ºη2

4 �1 � q1
º
η2�

(4.49)

The parameters of the RFs are determined by least squares fit to the values of

a20 and a22 determined at the selected values of η2 given above. It is observed that the

values of a20 and a22 thus found also satisfy all the constraints mentioned above. The

parameters of the RFs thus determined serve as good initial values for a subsequent

optimization of the spinodal and A2–B32 boundaries. The data used for optimization

and the resulting parameters of the RFs appearing in Eq. (4.49) are given in Appendix

C.

For the case of u2.1 for the B32 phase, P2.1 in Eq. (4.45) has six coefficients. The

functional dependence of three of these coefficients on η2 is already determined from

P2 in Eq. (4.49). The functional dependence of the remaining three coefficients on η2

can be obtained as follows. One of the three remaining coefficients, namely, a2.131 is

determined such that the second derivative of u2.1 with respect to ξ at stoichiometric

composition at ξ = 1 becomes equal to its analytical value, namely -2/η2 (ref. Appendix

A.1.1). Thus, we obtain

a2.131 �
1 � η2

2 � 2η2 �1 � a22 � 2a2.120�
4η2

(4.50)

Another coefficient, a2.140, is determined such that the first derivative of u2.1 with

respect to u0.2 at u0.1 = 0 and u0.2 = 1, reproduces its analytical value (ref: Section

3.3), to yield

a2.140 � 2
�1 � η2

1 � η2

� a2.12 � a20 (4.51)
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For determining the third coefficient, namely, a2.120, three different values of η2 =

0.2, 0.3 and 0.4 are selected, where B32 phase is stable and the permissible domain is

identified for each of the η2 values separately, ensuring that a similar set of constraints

as mentioned earlier for the disordered phase are satisfied. The details are given in

Appendix C. It turns out that the permissible domain is centred around zero. Hence,

a2.120 is set equal to zero.

The polynomials P2 and P2.1 with the RFs determined above are substituted in the

remaining polynomials for a40 by using data corresponding to the η2 values selected

earlier for the case of pair CF. The coefficient a40 is selected to lie well within the

permitted domain for each value of η2. The details are given in Appendix C.

Guided by the analytical solutions obtained earlier in Section 3.2, the tetrahedron

polynomial coefficient can be represented by

a40 �
r0 �ºη2 � 1�2

1 � r1
º
η2 � r2η2

(4.52)

The parameters of the RFs are determined by least squares fit to the values of a40 by

using data corresponding to the η2 values selected earlier. The parameters of the RFs

in Eq. (4.52) thus determined serve as good initial values for a subsequent optimization

of the spinodal and A2–B32 equilibrium boundaries.

The final values of the parameters appearing in Eqs. (4.48)–(4.52) are

determined by optimising the phase boundary data corresponding to spinodal and

A2–B32 boundaries, using their previously determined values as initial values. The

optimised values of these parameters are given in Table 4.2.

Table 4.2: Optimized values of rational function parameters.

Parameter Optimized value

p0 -2.5701

p1 0.2996

q0 -0.0487

q1 0.1007

r0 7.8891

r1 0.3734

r2 0.3463
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4.5 Results and discussion

A detailed procedure is developed and presented above for representing

(approximate) equilibrium values of CFs by polynomials in terms of composition and

order parameter, whose coefficients embody the dependence of CFs on T and ei. The

CVs are expressed as products of the ideal contributions and the departures from the

ideal behaviour. This delineation of ideal and non-ideal contributions ensures that the

solvent behaves as per the Raoult’s law and the solute follows the Henry’s law in the

limit of infinite dilution. In this context, the only approximation made is that the CFs

and the CVs are polynomials of composition (along with long range order parameters

for the case of ordered phases). Therefore, this procedure makes it possible to use

CE–CVM in a manner similar to any commonly used solution model in CALPHAD

methods, without sacrificing the description of SRO.
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Figure 4.2: Comparison of CVM and polynomial data for phase separating tendency
of A2 phase at various temperatures for (i) II-n pair CF (u2), (ii) triangle CF (u3),
(iii) tetrahedron CF (u4) and (iv) Gibbs energy of mixing (Gmix/RT ). The miscibility
gap boundaries are situated at compositions 0.1 and 0.9 for T =0.8TPS

c . In the above
plots A2 CVM data are represented by Y,É and m, while the computed polynomial
data are represented by , and respectively for T � ª, TPS

c

and 0.8TPS
c .
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The variation of CFs with respect to composition at different temperatures

corresponding to phase separating and ordering tendencies calculated using the above

parameters is shown in Figure 4.2 and Figure 4.3. It can be observed that CFs of

A2 phase are well reproduced in the single phase regions. The equilibrium value of ξ

obtained by substituting the polynomials for all the CFs in the Gibbs energy function

and minimizing it, agrees well with that obtained from standard CE–CVM procedures.

The CFs of B32 phase using the ξ values calculated above are also well reproduced.

This also resulted in the Gibbs energy of the system being well represented. The

variation of ξ with respect to η2 at two different compositions, viz. u0 � 0 and u0 � 0.2,

are calculated using the approximating polynomials as well as CVM and are shown in

Figure 4.4. From the figure it can be observed that the order of transformation is also

reproduced well with the approximating polynomials.

The miscibility gap and spinodal boundaries for phase separating systems as well

as A2–B32 boundary for ordering systems are calculated using these approximating

polynomials and are found to be closely comparable to the results of CE–CVM as

shown in Figure 4.5 and Figure 4.6.

These CFs are related to the Cowley-Warren short range order parameter on the

ith neighbour shell as

αi �
ui � u2

0

1 � u2
0

(4.53)

In this formula, ui refers to the ith neighbour pair CF. The comparison of the SRO in

the second neighbour shell is shown in Figure 4.7. From the plots it can be observed

that the SRO is also reproduced well with the polynomials also.

Thermodynamic functions such as Gibbs energy for any chosen state of the system

can be computed using the polynomials and are very closely comparable to their CVM

counterparts. Hence, the present formalism predicts equilibrium state of the system

without having to solve non-linear system of equilibrium equations. This procedure

holds promise for generalization to thermodynamic description of multicomponent

systems, for which CE–CVM will be grossly impractical owing to an exponential

increase in the number of the non-linear system of equilibrium equations.

For the chosen ei and T, the coefficients of the polynomials given in Eqs. (4.48),

(4.50) and (4.52) turn out to be real numbers with the solutions provided and the CF
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Figure 4.3: Comparison of CVM and polynomial data for ordering tendency of A2 and
B32 phases at various temperatures for (i) I-n pair CFs (u1), (ii) II-n pair CFs (u2),
(iii) triangle CFs (u3), (iv) tetrahedron CFs (u4), (v) order parameter of B32 phase
(ξ) and (vi) Gibbs energy of mixing (Gmix/RT ). The A2–B32 phase boundaries are
situated at compositions (0.32, 0.68) and (0.25, 0.75) respectively for T = 0.8TO

c and
0.6TO

c . The CVM data for A2 phase are represented by Z,S and j and the polynomial
data by , and respectively for T = TO

c , 0.8TO
c and 0.6TO

c .
CVM data for B32 phase are represented by Ë and Ì while the polynomial data are
represented by and for T = 0.8TO

c and 0.6TO
c respectively.
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Figure 4.4: Variation of ξ with η2 using approximating polynomials (Poly) and that
from CVM corresponding to u0 � 0 and u0 � 0.2.
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Figure 4.5: Comparison of miscibility gap and spinodal boundaries calculated using
CVM (Y and Z) and approximating polynomials ( and ).

polynomials becomes a function only of composition. For example, at 0.75TO
c , the II-n

pair CF reduces to

u2 � u
2
0 � �1 � u2

0

2
�2 ��0.9139 � 0.3207u2

0 � 0.0677u4
0� (4.54)

At the chosen composition these polynomials can be evaluated directly to get

the equilibrium values of the CFs. Solving the equilibrium equations using

Newton-Raphson method involves evaluation of elements of Hessian matrix and

solving a set of linear equations to find the correction in CFs at each iteration. This

involves � 492 floating point operations (FLOPs) at each iteration for A2 phase.
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Figure 4.6: Comparison of order-disorder boundaries calculated using CVM (É) and
approximating polynomials ( ).

Typically 8-10 iterations are required to arrive at equilibrium state starting from a

good set of initial values for the CFs. At TPS
c , the number of FLOPs required to

obtain the equilibrium values of the CFs is shown in Figure 4.8. However, evaluating

the above polynomials given above involve a maximum of 40 FLOPs to obtain the

values of the CFs at the selected value of η2 in the present case. Thus, the number

of FLOPS remain constant in the case of evaluation of polynomials and is lower than

that of conventional CVM by approximately two orders of magnitude.

The terms corresponding to II-n pair interactions in the configurational energy of

mixing can be expressed in terms of P2 as given below.

Umix
II-n pair � 3 �1 � u2

0��1

4
�1 � u2

0�P2 � 1� e2 (4.55)

This is formally very similar to that of CALPHAD methods except that there is only

one energy coefficient e2, in place of two such parameters usually represented by L0

and L2 in CALPHAD expressions. Further, the expressions such as that in Eq. (4.55)

account for the temperature dependence of configurational contributions, while the

CALPHAD methods use additional energy coefficients to represent the temperature

dependence of the total energy contributions using expressions such as Li � ai � biT .

Similar expressions can be obtained for the other interactions in the energy function.

Kaptay (2017) has suggested other functional forms for expressing the temperature

dependence of Li which also involve one or more additional energy/entropy coefficients.
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Figure 4.7: Comparison of CVM and polynomial data for A2 and B32 phases for phase
separating and ordering systems for Cowley–Warren SRO parameter in II-n shell (α2)
with composition at various temperatures. For the ordering system, the CVM data
is represented with S and Ë at 0.6TO

c and j and Ì at 0.8TO
c for A2 and B32 phases

respectively. The lines passing through these data points represent the corresponding
polynomial.
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Figure 4.8: The number of FLOPs required to obtain equilibrium values of CFs for A2
phase at TPS

c using CVM.

Therefore, this procedure resembles the current CALPHAD methods in terms of

its simplicity. Yet, it explicitly accounts for the often-neglected SRO as well as its

temperature dependence with the accuracy of CE–CVM. It must be emphasised that

this procedure involves model parameters namely, ei, whose number is comparable to

or less than those used in typical CALPHAD assessments. Therefore, in its general

form, this procedure provides accurate description of the thermodynamic state of the

system at a computational cost comparable to that of CALPHAD.
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For the chosen form of polynomials, the CFs can be approximated only over a

limited range of ηi, which can be explained using the configuration polygon bounded

by the inequalities corresponding to the CVs being positive. The configuration polygon

for the pair CF is a triangle in the (u0, u2) plane with its vertices located at ��1,1�,�0,�1� and �1,1� corresponding respectively to pure A (A2), AB (B32) and pure B

(A2), as depicted in Figure 4.9. Variation of u2 as a function of composition for different

constant values of P2 is shown in Figure 4.9.
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Figure 4.9: Variation of u2 for different constant values of P2.

Positive values of P2 represent phase separating behaviour, negative values represent

ordering behaviour while zero corresponds to ideal mixing. The polynomial of u2

is found such that the system independent features of the limiting values and its

limiting derivatives at both ends of the composition spectrum are satisfied. For P2 A 4

(corresponding to lower temperatures for phase separating system), u2 A 1 around u0

= 0, goes out of the edge AB of the configurational triangle, leading to negative values

for some of the CVs and consequently imaginary values for the Gibbs energy of the

system.

For the case of P2 @ �1 (corresponding to lower temperatures for ordering system),

u2 simultaneously moves out of the configurational triangle on the sides AC and BC.

This also leads to some of the CVs becoming negative for compositions around u0 � �1.

Therefore, the approximating polynomials can be used only over a specific range of

intermediate to high temperatures.

77


