
Chapter 3

Analytical solutions and
thermodynamics of binary BCC
and FCC phases for exclusive
second neighbour pair interactions

3.1 Introduction

The equilibrium state of a phase under the framework of CE–CVM can be

obtained by minimization of the Helmholtz energy, expressed in terms of CFs

which represent the configurational state of the system and CECs, apart from

temperature and composition. This involves solving nonlinear equilibrium equations

using numerical techniques such as Natural Iteration Method (NIM) (Anoune and

Aouachria, 2011; Kikuchi, 1974; Kiyokane and Mohri, 2011; Pretti, 2005; Xingjun

et al., 1995) and Newton - Raphson method (Harvey et al., 2013; Lele and Sarma,

2009; Yuille, 2002).

In the special case of pair approximation of quasi-chemical theory for a binary

alloy, which is equivalent to the first order approximation of CE–CVM, Guggenheim

(1935; 1952) obtained an analytical solution for the pair CF. For the close packed net

in 2D, analytical solutions of CFs could be found for exclusive pair interactions in

the triangle approximation, only at the equiatomic composition (Gorrey et al., 2015;

Kikuchi and Brush, 1967). Such results are not available for other types of basic clusters

such as tetrahedron cluster in 3D. In this Chapter, analytical solutions for the CFs are

obtained using exclusive second neighbour pair interactions for binary A2 &B32 phases

and A1 &L11 phases respectively under T and TO approximations of CVM.
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3.2 Analytical solutions for CFs in A2 phase

The formulation of CE–CVM for A2 phase using tetrahedron as basic cluster,

shown in Figure 3.1, involves five CFs in the orthogonal basis, namely, the point CF

(u0), first neighbour pair CF (u1), second neighbour pair CF (u2), triangle CF (u3)

and tetrahedron CF (u4). The CFs and other essential details used to formulate the

configurational Helmholtz energy of mixing (AmixA2 ) for A2 phase are presented in Table

3.1.

1

2

3

4

Figure 3.1: The irregular tetrahedron cluster in A2 phase.

Table 3.1: The clusters, their CFs, multiplicities (mi), number of sub-clusters j present
in each cluster i (nki ) and K-B coefficients (γi) for the A2 phase using T approximation.

Clusters CF mi n4
i n3

i n2
i n1

i n0
i γi

Irregular tetrahedron u4 6 1 4 2 4 4 1

Isosceles triangle u3 12 0 1 1 2 3 -1

II-n pair u2 3 0 0 1 0 2 1

I-n pair u1 4 0 0 0 1 2 1

Point u0 1 0 0 0 0 1 -1

The equilibrium equations for A2 phase in the tetrahedron approximation of

CE–CVM are obtained using Eq. (2.19). However, since ξ = 0, the first equation

is not applicable for this disordered phase. The equilibrium equations obtained in this

case are as follows:
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��1 � u1�2 � 4u2
0� ��1 � 4u1 � 2u2 � u4�2 � 16 �u0 � u3�2�3~2

��1 � 2u1 � u2�2 � �u0 � u3�2�3
� �1 � u1�2 ��1 � 2u1 � u2�2 � �3u0 � u3�2�3

�1 � 4u1 � 2u2 � u4�3 η1 � 0

(3.1)

��1 � u2�2 � 4u2
0� ��1 � u2�2 � �u0 � u3�2�4 �1 � 4u1 � 2u2 � u4�2��1 � 4u1 � 2u2 � u4�2 � 16 �u0 � u3�2� � ��1 � 2u1 � u2�2 � �u0 � u3�2�2

�1 � u2�2 �1 � 2u2 � u4�4 ��1 � 2u1 � u2�2 � �3u0 � u3�2�2
η2 � 0

(3.2)

�1 � u0 � u2 � u3�2 �1 � u0 � 2u1 � u2 � u3� �1 � 3u0 � 2u1 � u2 � u3��1 � 2u0 � 2u3 � u4�2 �1 � 4u0 � 4u1 � 2u2 � 4u3 � u4�
� �1 � u0 � u2 � u3�2 �1 � u0 � 2u1 � u2 � u3� �1 � 3u0 � 2u1 � u2 � u3��1 � 2u0 � 2u3 � u4�2 �1 � 4u0 � 4u1 � 2u2 � 4u3 � u4� η3 � 0

(3.3)

�1 � 2u2 � u4�4 �1 � 4u1 � 2u2 � u4�2 ��1 � 4u1 � 2u2 � u4�2 � 16 �u0 � u3�2�
� ��1 � u4�2 � 4 �u0 � u3�2�4

η4 � 0
(3.4)

For the case of exclusive second-neighbour pair interactions, e2 x 0, while e1 � e3 �

e4 � 0. An examination of the numerical solutions of the equilibrium equations reveals

that u1 is independent of e2, and must be equal to its random value of u2
0 in the limit

of infinite temperature (η2 � 1). Hence, in general,

u1 � u
2
0 (3.5)

Numerical results obtained by solving equilibrium equations conform to the above

analytical solution in the entire range of compositions and temperatures.

For an equiatomic alloy (u0 � 0 and accordingly u1 � 0), owing to symmetry, the

CFs corresponding to clusters having odd number of sites must vanish, i.e., u3 � 0. For

these conditions, the equilibrium equation corresponding to the tetrahedron CF (Eq.

(3.4)) can be solved to yield

u4 � u
2
2 (3.6)
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Further, it is observed that the above solution holds for all values of u0 and η2.

By substituting from Eqs. (3.5) and (3.6) in the equilibrium equation corresponding

to the triangle CF (Eq. (3.3)), one obtains

u3 � u0u2 (3.7)

Using these relations, the energy function is as follows

AmixA2 �3e2 �u2 � 1� � �3~4�RT ��1 � 2u0 � u2� ln �1 � 2u0 � u2�
�2 �1 � u2� ln �1 � u2� � �1 � 2u0 � u2� ln �1 � 2u0 � u2��
� �5~2�RT ��1 � u0� ln �1 � u0� � �1 � u0� ln �1 � u0�� �RT ln �2�

(3.8)

Thus, the equilibrium equation corresponding to the second neighbour pair CF

becomes,

�u2 � 1�2
� �u2 � 1�2

η2 � 4u2
0 � 0 (3.9)

This is a quadratic equation in u2 and can be solved in terms of u0 and η2. The solution

that reproduces the correct random value for the case of η2 = 1 is as follows.

u2 �
1 � η2 � 2

»
η2 � u2

0 �η2 � 1�
η2 � 1

(3.10)

It is interesting to note that this result is identical to that for the case of quasi-chemical

model in pair approximation (Guggenheim, 1952). The solutions obtained for the

CFs in Eqs. (3.5)–(3.7) & (3.10) analytically satisfy the equilibrium equations in

Eqs. (3.1)–(3.4) for the case of exclusive second neighbour pair interactions.

The Helmholtz energy becomes a function only of u0 and η2 after substitution of

the above analytical solutions of CFs for exclusive second neighbour pair interactions.

The consolute point of miscibility gap in a phase separating system can be determined

by simultaneously requiring the second and third derivatives of the Helmholtz energy

with respect to composition to vanish. The consolute point is thus found to be

u0 � 0 and ηPS
2c �

9

4
or TPS

c � �
4e2

R ln �9~4� (3.11)

The miscibility gap boundary is thus given by

T

TPS
c

�
ln �9~4�

ln � 4u20

�1�u20�1~3��1�u0�2~3��1�u0�2~3�
2 	 (3.12)
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Figure 3.2: Variation of CFs for first neighbour pair (u1), second neighbour pair (u2),
triangle (u3) and tetrahedron (u4) clusters with respect to composition at different
temperatures for phase separating system. The miscibility gap boundaries are located
at xB = 0.104 and 0.896 for T = 0.8 TPS

c .

Analytical solution for the spinodal boundary is given by

η2 �
�9~4� � u2

0

1 � u2
0

or u0 � �

¾
η2 � �9~4�
η2 � 1

or
T

TPS
c

�
ln �9~4�

ln � �9~4��u20
1�u20

� (3.13)

The variation of all CFs with respect to composition at various temperatures is given

in Figure 3.2 for phase separating systems. The miscibility gap and the spinodal

boundaries calculated using Eqs. (3.12) and (3.13) are depicted in Figure 3.3.
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Figure 3.3: Miscibility gap boundary and spinodal boundary calculated using the
analytical solutions.

3.3 Analytical solutions for CFs in B32 phase

The irregular tetrahedron cluster used to obtain Helmholtz energy expression for

B32 phase can be found in Figure A.1. The details of the subclusters, the corresponding

CFs, their multiplicities and the K-B coefficients used in the present formulation is

provided in Table A.1.

The point CFs u0.1 and u0.2 in B32 phase corresponding to the sublattice sites α

and β respectively are related to u0 and ξ, through

u0 �
u0.1 � u0.2

2
and ξ �

u0.2 � u0.1

2
(3.14)

The first neighbour pair CF u1 in the A2 phase splits into three pair CFs in B32

phase namely, u1.1, u1.2 and u1.3 corresponding to site occupancies on αα, αβ and ββ

sublattice sites respectively. In analogy with Eq. (3.5) for the A2 phase, the first

neighbour pair CFs in B32 phase satisfy the following relations

u1.1 � u
2
0.1, u1.2 � u0.1u0.2 and u1.3 � u

2
0.2 (3.15)

which is confirmed from numerical results. In an analogous manner, the triangle and
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tetrahedron CFs in B32 phase can be seen to satisfy the following relations

u3.1 � u0.1u2.1, u3.2 � u0.2u2.1 and u4.1 � u
2
2.1 (3.16)

By substituting from Eqs. (3.15) and (3.16), the simplified expression for Helmholtz

energy is given by

AmixB32 �3e2 �u2.1 � 1� � �3~4�RT ��1 � 2u0 � u2.1� ln �1 � 2u0 � u2.1�
� �1 � 2u0 � u2.1� ln �1 � 2u0 � u2.1� � �1 � 2ξ � u2.1� ln �1 � 2ξ � u2.1�
� �1 � 2ξ � u2.1� ln �1 � 2ξ � u2.1�� � �5~4�RT ��1 � u0 � ξ� ln �1 � u0 � ξ�
� �1 � u0 � ξ� ln �1 � u0 � ξ� � �1 � u0 � ξ� ln �1 � u0 � ξ�
� �1 � u0 � ξ� ln �1 � u0 � ξ�� �RT ln �2�

(3.17)

The equilibrium conditions can be obtained by minimizing the Helmholtz energy with

respect to ξ and u2.1 respectively and are given below.

��1 � ξ�2
� u2

0�5 �1 � u2.1 � 2ξ�6
� ��1 � ξ�2

� u2
0�5 �1 � u2.1 � 2ξ�6

� 0 (3.18)

�1 � 2u0 � u2.1� �1 � 2u0 � u2.1� � η2 �1 � 2ξ � u2.1� �1 � 2ξ � u2.1� � 0 (3.19)

The equilibrium condition in Eq. (3.19) is a quadratic in u2.1, which can be solved for

u2.1 in terms of η2, u0 and ξ. The solution that reproduces the correct value for η2 � 1

corresponding to random occupation of the sites in each of the sublattices is given by

u2 �
1 � η2 � 2

»
η2 � �u2

0 � η2ξ2� �η2 � 1�
η2 � 1

(3.20)

It may be noted that the complete set of solutions given in Eqs. (3.15), (3.16) and

(3.20) analytically satisfy the equilibrium equations.

An explicit solution for ξ in terms of u0 and η2 is not possible. However, it is

possible to express η2 as a function of u0 and ξ as follows. The equilibrium equation

for ξ, i.e., Eq. (3.18), can be rearranged to give

1 � u2.1 � 2ξ

1 � u2.1 � 2ξ
� ��ξ � 1�2

� u2
0�ξ � 1�2

� u2
0

	5~6
� Y , say (3.21)

The above equation can be solved for u2.1 in terms of Y to yield

u2.1 � 1 � 2ξ �Y � 1

Y � 1
� (3.22)
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Figure 3.4: Variation of order parameter with η2 for B32 phase at u0 � 0 and u0 � 0.2.

Substituting this relation in Eq. (3.19) and solving for η2 gives

η2 �
��Y � 1� � ξ �Y � 1��2 � u2

0 �Y � 1�2

4ξ2Y
(3.23)

Here Y is a function of u0 and ξ. The equilibrium value of ξ at chosen temperature and

composition can be found by numerically solving Eq. (3.23). However, the values of η2

for which the selected values of u0 and ξ remain in equilibrium can be found directly.

For ordering systems, the solutions for the second neighbour pair correlation

function for the A2 and B32 phases (given respectively by Eqs. (3.10) and (3.20))

at T = 0 K (i.e., η2=0) become identical and reduce to the following.

u2.1 � �1 � 2Su0S � u2 (3.24)

The equilibrium value of ξ at 0 K can be found by substituting from Eq. (3.24) in the

equilibrium condition for ξ, i.e., Eq. (3.18). After simplification, this equation becomes

a quintic in ξ. One of the solutions of this equation is ξ = 0, which corresponds to the

unstable disordered state of the system. On factoring out ξ, the physically relevant

solution of the resultant quartic is as under.

ξ0K
� �1 � Su0S�

¿ÁÁÀ�5Su0S � 2
»

1 � 4u2
0

2 � 3Su0S (3.25)

The variation of ξ with η2 at two different compositions, viz., u0 � 0 and u0 � 0.2 is

shown in Figure 3.4. This indicates that A2–B32 transformation is of second order and

the critical point can be calculated by simultaneously solving the following equations

∂AmixB32

∂ξ
� 0,

∂2AmixB32

∂ξ2
� 0 and

∂3AmixB32

∂ξ3
� 0 (3.26)
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Figure 3.5: Variation of order parameter with composition at different values of T ~TO
c .

It may be noted that the first one of the above equations is the equilibrium condition

given in Eq. (3.18). The critical point thus calculated is given by

uc
0 � 0 and ηO

2c �
4

9
or TO

c � �
4e2

R ln �4~9� (3.27)

The locus of A2–B32 phase boundary is calculated by solving the first equation

in Eq. (3.26) along with the equilibrium condition in Eq. (3.18) and is given below.

η2 �
�4~9� � u2

0

1 � u2
0

or u0 � �

¾�4~9� � η2

1 � η2

or
T

TO
c

� ln�4~9�~ ln ��4~9� � u2
0

1 � u2
0

	 (3.28)

Using the above equation, the limiting values of composition corresponding to η2 � 0

for A2–B32 phase boundary can be obtained as u0 � �2~3. These points are represented

with vertical arrow marks in the relevant Figures of the present Chapter. Further, for

TO
c ~2, the phase boundary composition can be obtained as �

»
4~13. The variation of

ξ with composition at various temperatures is evaluated by using the corresponding

equilibrium equation and Eq. (3.25) and is shown in Figure 3.5.

Subsequent to the numerical (for T x 0 K) or analytical (at T = 0 K) evaluation

of the equilibrium value of ξ, the CFs can be found using analytical results given above

(Eqs. (3.15), (3.16) and (3.20)). The variation of CFs for the A2 and B32 phases as a

function of composition at various temperatures is shown in Figure 3.6.

The A2–B32 phase boundary calculated using Eq. (3.28) is depicted in Figure

3.7. It may be noted that this boundary is in fact a spinodal ordering boundary and

not a true phase boundary, since the transformation A2� B32 is of second order.
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Figure 3.6: Variation of CFs for A2 and B32 phases with composition at 0 K, 0.8TO
c and

TO
c . The phase boundaries at 0 K are located at xB = (1/6, 5/6) and are represented

by vertical arrows.
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Figure 3.7: The A2–B32 phase boundary calculated using the analytical solution. The
dashed lines with arrowheads at T = 0 K indicate degenerate states as explained in
the text in Section 3.5.
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3.4 Analytical solutions for CFs in A1 and L11

phases

The details of the CFs under TO approximation for A1 phase can be found

elsewhere (Sarma et al., 2012). The solutions for all CFs of A1 phase can be found in

terms of u0 and u2 for the case of exclusive second neighbour pair interactions, guided by

the numerical results and symmetry requirements. They satisfy the following relations.

u1 � u2
0; u3 � u3

0; u4 � u0u2; u5 � u4
0

u6 � u2
0u2; u7 � u2

2; u8 � u0u2
2; u9 � u3

2

(3.29)

The above relations can be substituted in the equilibrium equation corresponding to

u2 and the simplified equilibrium equation can be solved for u2 to yield

u2 �
1 � η2 � 2

»
η2 � u2

0 �η2 � 1�
η2 � 1

(3.30)

which is identical to the solution obtained for the case of second neighbour pair CF for

A2 phase given in Eq. (3.10).

The tetrahedron and octahedron clusters considered in the L11 phase can be

found in Figure A.6. The two point CFs are related to u0 and ξ as given in Eq. (3.14).

The details of the clusters, the corresponding ordered cluster, their designations (i.j ),

multiplicities and the K-B coefficients can be found in Table A.6.

The Helmholtz energy is obtained using the above details as discussed in Section

2.2. The CFs of L11 phase for exclusive second neighbour pair interactions are related

to u0.1, u0.2 and u2.1 as under

u1.1 � u2
0.1; u1.2 � u0.1u0.2; u1.3 � u2

0.2

u3.1 � u3
0.1; u3.2 � u2

0.1u0.2; u3.3 � u0.1u2
0.2

u3.4 � u3
0.2; u4.1 � u0.1u2.1; u4.2 � u0.2u2.1

u5.1 � u3
0.1u0.2; u5.2 � u0.1u3

0.2; u6.1 � u2
0.1u2.1

u6.2 � u0.1u0.2u2.1; u6.3 � u2
0.2u2.1; u7.1 � u2

2.1

u8.1 � u0.1u2
2.1; u8.2 � u0.2u2

2.1; u9.1 � u3
2.1

(3.31)

Substitution of the above relations into Helmholtz energy expression reduces it to the

one identical to that of B32 phase given in Eq. (3.17). The simplified equilibrium
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equation corresponding to the CF u2.1 can be solved to obtain the following solution

that returns the correct numerical values.

u2.1 �
1 � η2 � 2

»
η2 � �u2

0 � η2ξ2� �η2 � 1�
η2 � 1

(3.32)

Therefore, the results given in the above Sections 3.2, 3.3 and the subsequent Sections

are equally valid for the present case as well.

3.5 Helmholtz energy

For the ordering system A2–B32, the configurational energy of mixing

(Umix~RTO
c ) and entropy of mixing (Smix/R) are calculated at 0 K and TO

c ~2 and are

shown in Figure 3.8. In addition, the configurational Helmholtz energy is also plotted

at the above temperatures and is shown in Figure 3.9.
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Figure 3.8: Variation of configurational energy of mixing (Umix~RTO
c ) and entropy of

mixing (Smix/R) with composition for A2 and B32 phases at 0 K and TO
c ~2.

Note that the value of the Helmholtz function at a particular composition becomes

equal to that of the configurational energy of mixing at the same composition at T � 0 K

since the entropy term vanishes at this temperature. Further, the configurational

energies of mixing for the A2 and B32 phases reduce to the same value at T = 0 K.

AmixA2 � AmixB32 � 3e2 �u2 � 1� � �6e2 �1 � Su0S� (3.33)

It can be observed that the Helmholtz energy expression is independent of ξ and a

linear function of composition (Figure 3.9). For T x 0 K, the microscopic state of

the system, governed by u2 for A2 phase and u2.1 for B32 phase, are different for

the selected u0 value inside A2–B32 boundary. For that T and composition, the
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Figure 3.9: Variation of Helmholtz energy with composition for A2 and B32 phases at
0 K and 0.8 TO

c .

Helmholtz energy of mixing for B32 phase is lower than that of mechanical mixture

of any other states in the entire composition range. However at T � 0 K, both the

ordered and disordered phases have reduced to the same microscopic state and have

same Helmholtz energy. This value is also equal to the weighted sum of the fraction of

the pure A (or B) phase and fraction of B32 phase obtained by lever rule multiplied

with the respective Helmholtz energies. This also shows that the system can posses

lower Helmholtz energy with multiple microscopic states. This clearly indicates a state

of degeneracy and apparent violation of the third law of thermodynamics. Abriata

and Laughlin (2004) have discussed in detail about the significance of the third law

of thermodynamics in the determination of phase diagrams by considering a few real

systems. Laughlin and Soffa (2018) have considered Bragg-Williams model for B2

phase and shown that for exclusive first pair interactions, the variation of Helmholtz

energy at 0 K is similar to that of A2–B32 phases shown in Figure 3.9 and the system

shows a state of degeneracy. The possible topologies of the phase diagrams for mixed

pair interactions have also been discussed. They have shown that this arises owing

to exclusive single pair interactions independently of the accuracy of the model. This

state is represented by a dashed arrow in Figure 3.7.
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3.6 Heat capacity

The configurational heat capacity of mixing of the disordered phase is given by

CA2
v �

dUmix
A2

dT
�
∂Umix

A2

∂u2

∂u2

∂η2

dη2

dT

�
3R �1 � u2

0�2
η2 ln η2

2
»
u2

0 � η2 �1 � u2
0� �1 �

»
u2

0 � η2 �1 � u2
0��2

(3.34)

Similarly, the configurational heat capacity of mixing of the ordered phase is given by

CB32
v �

dUmix
B32

dT
� �∂Umix

B32

∂u2.1

∂u2.1

∂η2

�
∂Umix

B32

∂ξ

∂ξ

∂η2

� dη2

dT
(3.35)

The required derivatives can be evaluated using Eqs. (3.20) and (3.23). The difference

in the heat capacity of the two phases at the phase boundary (ξ = 0) is given by

∆Cv � C
B32
v �CA2

v �
∂Umix

B32

∂ξ

∂ξ

∂η2

dη2

dT
(3.36)

Using the analytical solution of the boundary provided in Eq. (3.28), the difference in

the heat capacity at the boundary becomes

∆Cv �
27R �1 � u2

0� ��4 � 9u2
0� ln � �4~9��u20

1�u20
��2

40 �4 � 27u2
0� (3.37)

The variation of heat capacity with composition at TO
c ~2 is shown in Figure 3.10 (a).

The difference in heat capacity at equiatomic composition using Eq. (3.37) is identical

to that found by Guggenheim (1952) using quasi-chemical theory in pair approximation

with coordination number, z = 6 in his eq. 7.18.3.

In the heat capacity plot shown in Figure 3.10 (a), there is an anomalous peak

in the heat capacity of the ordered B32 phase near the stoichiometric composition,

the variation of which with changing temperature is depicted in Figure 3.10 (b). It

may be noted that the peak diminishes gradually, with a decrease in its height as well

as breadth as the temperature decreases and eventually disappears at 0 K. Further, it

may be pointed out that the compositions corresponding to the minima in the Cv curve

spread out on either side of the equiatomic composition with increasing temperature

and become equal to the composition of the phase boundary at around T = 0.84 TO
c .
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Figure 3.10: (a) Variation of heat capacity with composition for A2 and B32 phases at
TO

c ~2. (b) Variation of heat capacity with composition for the B32 phase at different
T ~TO

c temperatures. The minima in Cv are located at xB = (0.4715, 0.5285), (0.4215,
0.5785) and (0.3550, 0.6450) at T = 0.4TO

c , 0.6TO
c and 0.8TO

c respectively.

yAA
αβ

yBB
αβ

yAB
αβ

yBA
αβ

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

1.0

u0

y

-0.4 -0.2 0.0 0.2 0.4
0.00

0.01

0.02

0.03

0.04

0.05

u0

y

yAA
αβ

yBB
αβ

yAB
αβ

yBA
αβ

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

1.0

u0

y

Figure 3.11: The variation of CVs with point CF (u0) at 0.5TO
c . The thin red lines

indicate the corresponding CVs in the disordered phase.

The variation of order parameter (ξ) with composition is shown in Figure 3.5.

From the figure it can be observed that the departure of order parameter from

its maximum value has a minimum for composition away from the stoichiometric

composition (u0 � 0). Using the order parameter calculated numerically and the

analytical solutions obtained for the CF, the value of the CVs are calculated with

composition and is shown in Figure 3.11. From the figure, it can be observed that the

53



CVs, yαβAA and yαβBB, have a minimum away from the stoichiometric composition like

order parameter. It was mentioned that this behaviour is due to variation of ordering

on the sublattices. This anomalous behaviour in heat capacity has also been reported

earlier and explained by different authors (Kusoffsky and Sundman, 1998; Schön and

Inden, 1998; Sluiter and Kawazoe, 1999).

3.7 Thermodynamic stability function (ψ)

The thermodynamic stability function ψ (Lupis, 1983) which is also known as the

thermodynamic factor φ (Balogh and Schmitz, 2014) in diffusion literature is defined

as

ψ � xAxB
d2Gmix~RT

dx2
B

� �1 � u2
0� d2Gmix~RT

du2
0

(3.38)

The Gibbs energy will be approximated by the Helmholtz energy, which is valid for

condensed phases. Using Eqs. (3.8) and (3.10), the thermodynamic stability function

for A2 phase can be directly evaluated. However, the thermodynamic stability function

for B32 phase involves variation of ξ with respect to xB as given below.

ψB32 � xAxB

<@@@@>�∂
2Gmix

B32

∂x2
B

�
ξ

�
�� ∂∂ξ �∂Gmix

B32

∂xB

�
ξ

��
xB

dξ

dxB

=AAAA? (3.39)

For evaluating the differential (dξ~dxB) in Eq. (3.39), consider the total differential of

the order parameter equilibrium equation with respect to xB, which can be written as

d

dxB

�∂Gmix
B32

∂ξ
�
xB

�
�� ∂

∂xB

�∂Gmix
B32

∂ξ
�
xB

��
ξ

� �∂2Gmix
B32

∂ξ2
�
xB

dξ

dxB

� 0 (3.40)

Accordingly,

dξ

dxB

� �
�� ∂

∂xB

�∂Gmix
B32

∂ξ
�
xB

��
ξ

��∂2Gmix
B32

∂ξ2
�
xB

(3.41)

Substitution for (dξ~dxB) from Eq. (3.41) in Eq. (3.39) yields an expression for ψ

which can be evaluated at any composition and temperature after determining ξ from

equilibrium equations. However, this equation breaks down for ξ =0 at the A2–B32

phase boundary. To evaluate the difference in the stability function ∆ψ � ψB32�ψA2, at

the A2–B32 phase boundary where the compositions are identical for both the phases

and ξ = 0 in the B32 phase, we note that

�∂2Gmix
B32

∂x2
B

�
ξ

�
∂2Gmix

A2

∂x2
B

(3.42)
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Thus, at the phase boundary

∆ψ � �xAxB

�� ∂∂ξ �∂Gmix
B32

∂xB

�
ξ

��
xB

dξ

dxB

� �
xAxB

2ξ

�� ∂∂ξ �∂Gmix
B32

∂xB

�
ξ

��
xB

dξ2

dxB

(3.43)

At the phase boundary, the differential terms in the numerator as well as the

denominator in Eq. (3.41) vanish, making their ratio indeterminate. It can be

evaluated by considering

dξ2

dxB

� 2ξ
dξ

dxB

� �2ξ
�� ∂

∂xB

�∂Gmix
B32

∂ξ
�
xB

��
ξ

��∂2Gmix
B32

∂ξ2
�
xB

(3.44)

By evaluating the derivatives present on the RHS, as explained in detail in the

Appendix B, we have

∆ψ �
135u2

0

8 � 54u2
0

�
60 � 135η2

32 � 62η2

(3.45)

The analytical value for the difference in stability function provided in Eq. (3.45) agrees

well with the numerical values. The variation of the stability function with respect to

composition at TO
c ~2 is shown in Figure 3.12.
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Figure 3.12: Variation of stability function with respect to composition at TO
c ~2.
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3.8 Applications

The solutions of the CFs (given in Eqs. (3.10), (3.7) and (3.6)) at a fixed

composition are continuous functions of η2, which remain finite for all temperatures.

Such rational function (RF)forms can be used as an alternative to those suggested

by Kaptay (2014; 2017) for the parameters in R-K polynomials. These RF forms are

expected to be well behaved unlike the case of, say, linear model (Kaptay, 2014) given

by Lj � aj � bjT .

Further, the analytical solutions obtained for the CFs reduce to simple RF of η2

for a selected composition. So, the coefficients of polynomials used to approximate the

CFs can be written as RFs of η. The derivation of these polynomial functions and the

method to determine the parameters of the RFs is discussed in the next Chapter.
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