
Chapter 2

Analytical solutions for
correlation functions of
ordered phases

2.1 Introduction

The correlation functions (CFs) take different values for the same thermodynamic

state of the system based on the basis used. However, the probability of occurrence

of a specific atomic configuration on the selected cluster called cluster variable (CV)

and the thermodynamic properties such as enthalpy, entropy, etc. remain invariant

irrespective of the basis chosen. Sluiter and Kawazoe (2005) have shown that for a

linear transformation of basis, the energy of the system remains invariant. Some of the

bases used in literature are orthogonal basis, variable basis, mixed basis, tensorial basis

(van de Walle, 2008), solvent basis, etc. Of these bases, orthogonal basis is widely used

and variable basis is gaining greater attention in the recent times.

Sanchez et al. (1984) have provided general guidelines for selection of values in

orthogonal basis for multi-component systems. In orthogonal basis, the CFs form an

independent set of configurational variables. The variable basis is also introduced by

Sanchez (2010). In this basis, the energy of formation of an alloy gets separated into

two components: the energy of formation of random alloy as a function of composition

and the ordering energy. The cluster expansion coefficients are composition dependent

and the series converges faster in this basis. The mixed basis introduced by Laks et al.

(1992) uses reciprocal method to obtain the CECs of the system. Due to the conditions

used in this method, the pair interactions that are not necessary are set equal to ‘0’
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and short ranged pairs are chosen in preference to long ranged ones. This method is

able to predict the short range as well as the long range superlattices. Sarma et al.

(2012) have used solvent basis for the disordered solid solution phases in which the CVs

that are exclusively occupied by solute atoms become the CFs. Further, they expressed

each CF as a product of random value of the corresponding CV and its departure from

its random value. Such a transformation has resulted in factoring of the random values

from the CVs and cancellation of terms corresponding to point CFs in the excess Gibbs

energy expressions. These simplified equilibrium equations do not underflow even for

compositions in the solvent rich ends.

In this Chapter, a new set of bases referred to as the sublattice solvent bases

is introduced. Using these bases, the methodology followed to obtain the values of

the CFs and their derivatives with respect to the point CF �u0� and the long range

order parameter �ξ� is discussed. Further, this methodology is demonstrated to obtain

the limiting CFs and their derivatives in the sublattice solvent bases as well as in

the orthogonal basis for the B2 and L10 phases at the corresponding stoichiometric

compositions.

The details of the limiting values and derivatives of CFs in the orthogonal basis

are provided in Appendix A for the BCC based ordered phases B32 and D03 using

T approximation, FCC based ordered L12 phase using T and TO approximations,

L10 and L11 phases using TO approximation, CPH based B19 and D019 phases using

triangle-tetrahedron (TT) and TO approximations.

2.2 CE–CVM formulation for an ordered phase

having two sublattices

Consider a crystalline system exhibiting long range chemical order having N

atomic sites corresponding to two sublattices, say α and β. In a binary system, the α

and β sublattice sites are occupied preferentially by, say atoms of components A and

B respectively. The configuration of the system at the atomic level can be described

using a site occupation operator (Inden, 2005) for each of the sites i on the sublattice
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λ defined as

pλX,i �

¢̈̈̈̈̈̈̈
¦̈̈̈̈̈̈
¤̈

1
if atom X (= A or B) is present onthe site i of

the sublatticeλ �� α orβ�
0 otherwise

(2.1)

In the absence of vacancies, every site is occupied by one of the atoms of the chosen

system. Hence, for the site i on the sublattice λ, it follows that

1 � pλA,i � p
λ
B,i (2.2)

Another operator, called site operator (σλi ), is defined as

σλi � τ
λ
A p

λ
A,i � τ

λ
B p

λ
B,i (2.3)

where τλA and τλB take different numerical values, which serve as labels for A and B

atoms respectively. This set of values is known as the basis.

These equations can be expressed in matrix form as follows.<@@@@@>
1

σλi

=AAAAA? �
<@@@@@>

1 1

τλA τλB

=AAAAA?
<@@@@@>
pλA,i

pλB,i

=AAAAA? (2.4)

The rows of the square matrix on the right hand side are orthogonal if

1 � τλA � 1 � τλB � 0 or τλB � �τλA (2.5)

The columns of the above square matrix are orthogonal if

1 � 1 � τλA � τ
λ
B � 0 or �τλA�2

� 1 (2.6)

Thus, the square matrix is orthogonal only if

τλA � �1, τλB � �1 (2.7)

This leads to the commonly used orthogonal basis �τλA, τλB� � ��1,�1�. As shown

by Sanchez et al. (1984), the orthogonal basis is complete. It follows that any

other basis for which the basis matrix is non-singular is also complete. Any other

choice of basis such as �τλA, τλB� � �0,1� or �1,0�, is not orthogonal. For the case

of disordered structures, these bases are referred to as solvent bases. For ordered

phases such bases are defined specific to each sublattice, and are accordingly referred
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to as sublattice–solvent bases by Gorrey et al. (2020). Zhang and Sluiter (2016) have

discussed the completeness of a basis which is essentially equivalent to the solvent basis

utilized here.

Using Eqs. (2.2) and (2.3), we get

pλA,i �
τλB � σ

λ
i

τλB � τ
λ
A

and pλB,i �
�τλA � σ

λ
i

τλB � τ
λ
A

(2.8)

For the choice of τλA � �1 and τλB = 1 the site occupation operators become

pλA,i �
1 � σλi

2
and pλB,i �

1 � σλi
2

(2.9)

CE–CVM is formulated in terms of a basic cluster or set of clusters of atomic sites. A

specific occupation of these sites by A or B atoms constitutes a cluster configuration.

Each symmetry-wise distinct cluster in the disordered cluster is identified with a serial

number i. On ordering, there is a loss of symmetry and as a result each cluster

of type i may give rise to several symmetry-wise distinct clusters designated as i.j.

The probability of occurrence of a specific configuration of atoms on a cluster in

the structure can be expressed as the average of the product of the appropriate site

occupation operators in the structure (Inden, 2005). This averaged product is referred

to as cluster variable (CV), denoted by yi.jX for configuration X of cluster type i.j. The

point CVs are identical to the mole fractions on that sublattice as shown below. Using

Eq. (2.9), the mole fractions can be expressed as

xαA � `pαA,ie � `�1 � σαi �~2e � �1 � u0.1�~2
xαB � `pαB,ie � `�1 � σαi �~2e � �1 � u0.1�~2
xβA � `pβA,ie � `�1 � σβi �~2e � �1 � u0.2�~2
xβB � `pβB,ie � `�1 � σβi �~2e � �1 � u0.2�~2

(2.10)

where we have introduced the point CFs, `σαi e � u0.1 and `σβi e � u0.2. Accordingly, the

point CFs can be expressed as

u0.1 � 1 � 2xαA � 2xαB � 1

u0.2 � 1 � 2xβA � 2xβB � 1
(2.11)

In a similar manner, CVs corresponding to larger clusters can be expressed as linear

functions of the CFs (ui.j), which are defined as the averages of the products of site
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operators corresponding to symmetry-wise distinct clusters of the type i.j (Inden,

2005).

The point CFs corresponding to the two sublattices of the ordered phase are

related to point CF of its disordered counterpart (u0) through

u0 �
m0.1u0.1 �m0.2u0.2

m0

�m0.1u0.1 �m0.2u0.2 (2.12)

The multiplicities of the ordered clusters are denoted as mi.j and are equal to the

number of such clusters present in the structure per atomic site. Here, m0.1 and m0.2

are the multiplicities of the point clusters on α and β sublattice sites, which are also

equal to the respective site fractions with m0 being unity.

The Bragg-Williams long range order parameter ξ can be defined as

ξ � xβB � x
α
B � �u0.2 � u0.1� ~2 (2.13)

Using cluster expansion (Inden, 2005; Sanchez et al., 1984), the configurational

energy of the system is expressed as a trilinear sum of the products of all the ui.j, their

respective energy coefficients ei and the mi.j, i.e.,

U �Q
i.j

eimi.jui.j (2.14)

The ei in the above summation are taken to be identical for the disordered as well as

the ordered structures. The configurational energy of mixing is written as

Umix
� U � �1 � xB�UA � xBUB (2.15)

where UA and UB are the energies of pure A and pure B.

The CVM configurational entropy of mixing is written in terms of the Boltzmann

entropy summations of the subclusters (Si.j) using the K-B overlap correction

coefficients (γi.j) such that each symmetry-wise distinct cluster is counted only once

(Inden, 2005; Kikuchi, 1951), as in the following.

Smix �Q
i.j

mi.jγi.jSi.j (2.16)

Here the Si.j can be written in terms of Boltzmann entropy summation of all the CVs

pertaining to that cluster. As an example, for the first neighbour pair αβ cluster,

Si.j � �R �yi.jAA ln yi.jAA � y
i.j
AB ln yi.jAB � y

i.j
BA ln yi.jBA � y

i.j
BB ln yi.jBB� (2.17)
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The configurational Helmholtz energy of mixing is thus written as

Amix � Umix
� TSmix (2.18)

For a given set of CECs, the equilibrium values of CFs corresponding to a

thermodynamic state defined by xB and T , are given by

�∂Amix
∂ξ

�
ui.j

� 0 and �∂Amix
∂ui.j

�
uk.l,k.lxi.j ,ξ

� 0 (2.19)

It is convenient to introduce a set of dimensionless parameters ηi as in the following,

ηi � exp��2ri ei
RT

� (2.20)

in which, ri is the number of sites in the ith cluster. The limiting values of the

CFs in the limit of perfect ordering and other results are discussed in terms of these

dimensionless parameters. For the ordering system, for which ei A 0, the value of ηi

varies smoothly from 0 to 1 as T varies from 0 to ª. However for the phase separating

system, ei @ 0, and accordingly ηi varies from 1 to ª as T varies from 0 to ª. This is

depicted in Figure 4.1.

2.3 Correlation functions in sublattice solvent

bases

Sarma et al. (2012) have considered non-orthogonal basis with τA = 0 and τB = 1

for obtaining the values of the CFs and their derivatives with respect to composition in

the limit of infinite dilution of B atoms in solvent of A atoms for disordered structures.

For this choice, the CVs for configurations in which all the sites are occupied by the

solute atoms, i.e., B atoms, become identical to the CFs in the new basis. This choice

of basis is referred to as A-solvent basis.

In the present Chapter, a separate solvent basis is chosen for each sublattice with

ταA = 0 and ταB = 1 for the α sublattice and τβA = 1 and τβB = 0 for the β sublattice, as

the α sublattice is preferentially occupied by A atoms and β sublattice by B atoms.

For this choice, the CVs for configurations in which all α sublattice sites are occupied

by B atoms and all β sublattice sites occupied by A atoms become identical to the

corresponding CF. These bases are referred to as the sublattice-solvent bases. Each

of the CVs for which the cluster configurations exclusively contain wrong occupancies
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Figure 2.1: The irregular tetrahedron basic cluster [1-2-3-4] in the B2 phase along with
the sublattice sites designated α and β.

(which are identical to the corresponding CFs) in the sublattice solvent bases can be

expressed as product of its random value and a new variable (vi.j) denoting its departure

from the random value.

yi.jBpAq � �xαB�p �xβA�q vi.j (2.21)

where p and q are the number of α and β sites respectively in the i.j th cluster.

This transformation of CFs leads to a considerable simplification of the equilibrium

equations analogous to those given in Eq. (2.19). These new variables vi.j can be

referred to as transformed CFs which take the value of unity corresponding to random

occupation of the sites in each of the sublattices. The CFs in the orthogonal basis can

be expressed in terms of those in the sublattice solvent bases by using equations such as

Eq. (2.11). The values of the CFs and their derivatives with respect to u0 and ξ at the

stoichiometric composition in the limit of perfect ordering are calculated using these

bases. Subsequently, these values are used to calculate the CFs and their derivatives

in the orthogonal basis. The procedure is demonstrated using T approximation for B2

and L10 phases respectively in the next two Sections.
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2.4 Analytical solutions for the CFs of B2 phase

The irregular tetrahedron cluster in B2 phase is shown in Figure 2.1. The details

of the distinct clusters in the B2 ordered phase, their designations, mi.j and γi.j (Inden,

2005) are given in Table 2.1.

Table 2.1: Details of the clusters, their designations (i.j ), multiplicities (mi.j), number
of sub-clusters k.l present in each cluster i.j (nk.li.j ) and K-B coefficients (γi.j) for the
B2 structure using T approximation.

Clusters
Ordered

B2 cluster
i.j mi.j n4.1

i.j n3.2
i.j n3.1

i.j n2.2
i.j n2.1

i.j n1.1
i.j n0.2

i.j n0.1
i.j γi.j

Irregular
tetrahedron

ααββ
(1,3,2,4)

4.1 6 1 2 2 1 1 4 2 2 1

Isosceles
triangle

αββ
(1,2,4)

3.2 6 0 1 0 1 0 2 2 1

-1ααβ
(1,3,2)

3.1 6 0 0 1 0 1 2 1 2

II-n pair

ββ
(2,4)

2.2 3/2 0 0 0 1 0 0 2 0

1αα
(1,3)

2.1 3/2 0 0 0 0 1 0 0 2

I-n pair
αβ

(1,2)
1.1 4 0 0 0 0 0 1 1 1 1

Point

β
(2)

0.2 1/2 0 0 0 0 0 0 1 0

-1α
(1)

0.1 1/2 0 0 0 0 0 0 0 1

The point CFs corresponding to the two sublattices in the B2 phase are related

to point CF (u0) of the disordered A2 phase through

u0 � �u0.1 � u0.2� ~2 (2.22)

Recall the definion of ξ given in Eq. (2.13) as

ξ � xβB � x
α
B � �u0.2 � u0.1� ~2

For the limiting case of perfect order in stoichiometric B2 phase, u0.1 � �1 and u0.2 � �1,

corresponding to u0 � 0 and ξ � �1.

The configurational energy, entropy and Helmholtz energy of mixing can be

obtained by substituting from Table 2.1 for mi.j and γi.j in Eqs. (2.15), (2.16) and
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(2.18) respectively. The CFs in the orthogonal basis can be expressed in terms of

those in the sublattice solvent bases after transformation as given in Eq. (2.21), by

using equations such as Eq. (2.11). Thus, we obtain

u1.1 � �1 � 2xαB � 2xβA � 4xβAx
α
Bv1.1

u2.1 � 1 � 4xαB � 4 �xαB�2
v2.1

u2.2 � 1 � 4xβA � 4 �xβA�2
v2.2

u3.1 � 1 � 4xαB � 2xβA � 8xαBx
β
Av1.1 � 4 �xαB�2

v2.1 � 8 �xαB�2
xβAv3.1

u3.2 � �1 � 2xαB � 4xβA � 8xαBx
β
Av1.1 � 4 �xβA�2

v2.2 � 8xαB �xβA�2
v3.2

u4.1 � 1 � 4xαB � 4xβA � 16xβAx
α
Bv1.1 � 4 �xαB�2

v2.1 � 4 �xβA�2
v2.2

� 16 �xαB�2
xβAv3.1 � 16xαB �xβA�2

v3.2 � 16 �xαBxβA�2
v4.1

(2.23)

Using these relations, one can write the configurational energy of mixing as well as the

configurational entropy of mixing in terms of vi.j. A dimensionless ratio K � xβA~xαB
is introduced such that K remains finite and non-vanishing, even in the limit xαB � 0

and xβA � 0 and is used to eliminate xβA from the Helmholtz energy function. The

configuration space of (u0, ξ) and (u0.1, u0.2) is given in Figure 2.2 showing the locus of

points corresponding to a particular value of K. The equilibrium equations in terms of

the new variables vi.j become

�∂Amix
∂ξ

�
vi.j

� 0 and �∂Amix
∂vi.j

�
vk.l,k.lxi.j ,ξ

� 0 (2.24)

Further simplification of equilibrium equations such as those in Eq. (2.24) occurs due to

factorization and subsequent cancellation of terms such as Kq �xαB�p�q. This facilitates

evaluation of CFs in the limit of perfect ordering at stoichiometric composition. In the

case of ordered structures, usually ξ is treated as an independent variable in addition

to u0 for computing the variation of other microscopic variables, vi.j by solving the

equilibrium equations for chosen values of u0 and ξ.

At the stoichiometric composition for the state of perfect order, u0=0 and ξ=1,

i.e., xαB=0 and xβA=0, the equilibrium equations become independent of K which can

be solved directly for vi.j. The values of the transformed CFs in this limit are denoted

by v0
i.j and are given by

v0
1.1 �

η
3~2
4

η1

; v0
2.1 � η1η

2
3η4; v0

2.2 �
η2η4

η2
3
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u0

ξ
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u0.2

1
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-1
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1
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0

A2(A) A2(B)

B2(AB)

B2(BA)

Figure 2.2: The configuration space of (u0, ξ) and (u0.1, u0.2) for B2 phase. The ground
states of the system correspond to the vertices of the configuration square. The dashed
arrow represents a particular value of K � xβA~xβA. Variation of K corresponds to
rotation of the dashed arrow.

v0
3.1 �

η2η3η3
4

η2
2

v0
3.2 �

η2η3
4

η2
1η3

; v0
4.1 �

η2
2η

5
4

η4
1

(2.25)

The first order variation of vi.j with respect to u0 in the limit of perfect ordering at

stoichiometric composition can be found by considering the equilibrium equations (for

all values of i.j ), corresponding to infinitesimally small changes in u0, as follows.

�∂Amix
∂vi.j

�
vk.l,k.lxi.j,ξ

RRRRRRRRRRRu0�δu0 � 0 (2.26)

By considering Taylor series expansion around u0, Eq. (2.26) becomes

�∂Amix
∂vi.j

�
vk.l,k.lxi.j ,ξ

�
d

du0

�∂Amix
∂vi.j

�
vk.l,k.lxi.j ,ξ

δu0 � 0 (2.27)

The first term in Eq. (2.27) vanishes at equilibrium. Note that the second term involves

a total derivative with respect to u0, the explicit and implicit variations of which can

be expressed as

�� ∂

∂u0

�∂Amix
∂vi.j

�
vk.l,k.lxi.j ,ξ,u0

��
vi.j ,ξ

�Q
m.n

�� ∂

∂vm.n
�∂Amix
∂vi.j

�
vk.l,k.lxi.j ,ξ,u0

��
vi.j,i.jxm.n,ξ,u0

dvm.n
du0

� 0

(2.28)

Using standard abbreviated notation for partial derivatives, this equations can be

expressed as follows.

Amix�i.j�0 �Amix�i.j��m.n�0v�m.n�0 � 0 (2.29)
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Here the subscripts i.j and 0 stand for partial derivative with respect to vi.j and u0

respectively. The derivatives of the energy expression with respect to the CFs can be

evaluated directly at u0 = 0 and ξ = 1 using the equilibrium CFs, given in Eq. (2.25)

and the limiting derivatives of the transformed CFs with respect to u0, represented as

v0�i.j�0 are obtained as given below.

v0�1.1�0 � �
3

2
v0

1.1 �v0
2.1 � v

0
2.2� � 3

2
�v0

3.1 � v
0
3.2�

v0�2.1�0 � v0
2.1 ��1 � 4v0

1.1 � v
0
2.1� � 2v0

3.1

v0�2.2�0 � v0
2.2 �1 � 4v0

1.1 � v
0
2.2� � 2v0

3.2

v0�3.1�0 � v0
3.1 ��1

2
� 2v0

1.1 � 3v0
2.1 � 2v0

2.2 �
2v0

3.1 � v
0
3.2

v0
1.1

�
v0

3.1

2v0
2.1

� � v0
4.1

v0�3.2�0 � v0
3.2 �1

2
� 2v0

1.1 � 2v0
2.1 � 3v0

2.2 �
v0

3.1 � 2v0
3.2

v0
1.1

�
v0

3.2

2v0
2.2

� � v0
4.1

v0�4.1�0 � v0
4.1 ��4v0

2.1 � 4v0
2.2 � 2

v0
3.1 � v

0
3.2

v0
1.1

�
v0

4.1

v0
3.1

�
v0

4.1

v0
3.2

�

(2.30)

By considering Taylor series expansion of equilibrium equations given in Eq. (2.24)

with respect to ξ, the derivatives of the CFs with respect to ξ can be calculated using

the equation

Amix�i.j�ξ �Amix�i.j��m.n�v�m.n�ξ � 0 (2.31)

The limiting derivatives of the transformed CFs with respect to ξ at u0 = 0 and

ξ � 1, v0�i.j�ξ, are given by

v0�1.1�ξ �
1

2
v0

1.1 ��8 � 8v0
1.1 � 3v0

2.1 � 3v0
2.2� � 3

2
�v0

3.1 � v
0
3.2�

v0�2.1�ξ � v0
2.1 ��3 � 4v0

1.1 � v
0
2.1� � 2v0

3.1

v0�2.2�ξ � v0
2.2 ��3 � 4v0

1.1 � v
0
2.2� � 2v0

3.2

v0�3.1�ξ � v0
3.1 ��17

2
� 8v0

1.1 � 3v0
2.1 � 2v0

2.2 �
2v0

3.1 � v
0
3.2

v0
1.1

�
v0

3.1

2v0
2.1

� � v0
4.1

v0�3.2�ξ � v0
3.2 ��17

2
� 8v0

1.1 � 2v0
2.1 � 3v0

2.2 �
v0

3.1 � 2v0
3.2

v0
1.1

�
v0

3.2

2v0
2.2

� � v0
4.1

v0�4.1�ξ � v0
4.1 ��14 � 12v0

1.1 � 4v0
2.1 � 4v0

2.2 � 2
v0

3.1 � v
0
3.2

v0
1.1

�
v0

4.1

v0
3.1

�
v0

4.1

v0
3.2

�

(2.32)

A similar methodology can be used to obtain limiting values of higher order derivatives

of the CFs.
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Using Eq. (2.23), the limiting values of the CFs at u0 = 0 and ξ = 1, u0
i.j are

found to be

u0
1.1 � �1; u0

2.1 � 1; u0
2.2 � 1

u0
3.1 � 1; u0

3.2 � �1; u0
4.1 � 1 (2.33)

Considering the total derivative of CFs in the orthogonal basis with respect to u0 and
ξ, the limiting first derivatives of the CFs (with respect to u0 and ξ), u0�i.j�0 and u0�i.j�ξ
respectively, are calculated as

u0�1.1�0 � 0; u0�2.1�0 � �2; u0�2.2�0 � 2

u0�3.1�0 � �1; u0�3.2�0 � �1; u0�4.1�0 � 0

u0�1.1�ξ � �2; u0�2.1�ξ � 2; u0�2.2�ξ � 2

u0�3.1�ξ � 3; u0�3.2�ξ � �3; u0�4.1�ξ � 4 (2.34)

Similarly, the limiting values of second derivatives of the CFs in the orthogonal
basis with respect to u0 and ξ, u0�i.j�00 and u0�i.j�ξξ, and the mixed derivatives u0�i.j�ξ0
respectively, are found to be

u0�1.1�00 � 2v0
1.1; u0�2.1�00 � 2v0

2.1

u0�2.2�00 � 2v0
2.2; u0�3.1�00 � �4v0

1.1 � 2v0
2.1

u0�3.2�00 � 4v0
1.1 � 2v0

2.2; u0�4.1�00 � �8v0
1.1 � 2v0

2.1 � 2v0
2.2 (2.35)

u0�1.1�ξ0 � 0; u0�2.1�ξ0 � �2v0
2.1

u0�2.2�ξ0 � 2v0
2.2; u0�3.1�ξ0 � �2v0

2.1

u0�3.2�ξ0 � �2v0
2.2; u0�4.1�ξ0 � �2v0

2.1 � 2v0
2.2 (2.36)

u0�1.1�ξξ � �2v0
1.1; u0�2.1�ξξ � 2v0

2.1

u0�2.2�ξξ � 2v0
2.2; u0�3.1�ξξ � 4v0

1.1 � 2v0
2.1

u0�3.2�ξξ � �4v0
1.1 � 2v0

2.2; u0�4.1�ξξ � 8v0
1.1 � 2v0

2.1 � 2v0
2.2 (2.37)

Calculation of the third derivatives of the CFs in the orthogonal basis involves

first derivative of the CFs in the sublattice solvent bases, which are given in Eqs. (2.30)

and (2.32).

2.5 Analytical solutions for the CFs of L10 phase

The tetrahedron cluster used in the formulation for L10 phase is shown in Figure

2.3. This structure consists of two sublattices, α and β. The details of the distinct

clusters, the corresponding ordered CFs and their distribution over the sublattices,

multiplicities and the K-B coefficients are given in Table 2.2.
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Figure 2.3: The regular tetrahedron basic cluster [1-2-3-4] in the L10 phase along with
the sublattice sites designated α and β.

Table 2.2: The clusters, their designations (i.j ), multiplicities (mi.j), number of
sub-clusters k.l present in each cluster i.j (nk.li.j ) and K-B coefficients (γi.j) for the
L10 phase using T approximation.

Cluster
Ordered
L10 cluster

i.j mi.j n3.1
i.j n2.2

i.j n2.1
i.j n1.3

i.j n1.2
i.j n1.1

i.j n0.2
i.j n0.1

i.j γi.j

Tetrahedron
ααββ

(1,2,3,4)
3.1 2 1 2 2 1 4 1 2 2 1

Equilateral
triangle

αββ
(1,3,4)

2.2 4 0 1 0 1 2 0 2 1

0ααβ
(1,2,3)

2.1 4 0 0 1 0 2 1 1 2

I-n pair

ββ
(3,4)

1.3 1 0 0 0 1 0 0 2 0

-1αβ
(1,3)

1.2 4 0 0 0 0 1 0 1 1

αα
(1,2)

1.1 1 0 0 0 0 0 1 0 2

Point

β
(3)

0.2 1/2 0 0 0 0 0 0 1 0

5α
(1)

0.1 1/2 0 0 0 0 0 0 0 1

Using these data, the configurational energy and the entropy of mixing for

the L10 phase are written based on Eqs. (2.15) and (2.16) in the orthogonal basis.

Subsequently, the Helmholtz energy expression is obtained using Eq. (2.18).
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The CFs in the orthogonal basis can be expressed in terms of those in the

sublattice solvent bases in a manner similar to that followed for the B2 phase and

are given below.

u1.1 � 1 � 4xαB � 4 �xαB�2
v1.1

u1.2 � �1 � 2xαB � 2xβA � 4xαBx
β
Av1.2

u1.3 � 1 � 4xβA � 4 �xβA�2
v1.3

u2.1 � 1 � 4xαB � 2xβA � 4 �xαB�2
v1.1 � 8xαBx

β
Av1.2 � 8 �xαB�2

xβAv2.1

u2.2 � �1 � 2xαB � 4xβA � 8xαBx
β
Av1.2 � 4 �xβA�2

v1.3 � 8xαB �xβA�2
v2.2

u3.1 � 1 � 4xαB � 4xβA � 4 �xαB�2
v1.1 � 16xαBx

β
Av1.2 � 4 �xβA�2

v1.3

� 16 �xαB�2
xβAv2.1 � 16xαB �xβA�2

v2.2 � 16 �xαBxβA�2
v3.1

(2.38)

As in the case of B2 phase, a dimensionless ratio K � xβA~xαB is introduced such that

K remains a finite non-zero number, even in the limit xαB � 0 and xβA � 0 and is used

to eliminate xβA from the equilibrium equations. The transformed energy expression

is used to write the equilibrium equations as given in Eq. (2.24). The equilibrium

equations can be significantly simplified after making this substitution and can be

solved for the limiting values of the CFs at the stoichiometric composition at u0 = 0

and ξ = 1. The limiting values of the CFs thus obtained are as follows.

v0
1.1 � η1η

2
2

º
η3; v0

1.2 �

º
η3

η1

; v0
1.3 �

η1
º
η3

η2
2

v0
2.1 �

η2η3

η1

; v0
2.2 �

η3

η1η2

; v0
3.1 �

η2
3

η2
1

(2.39)

The limiting values of first derivatives of the CFs with respect to u0 and ξ respectively

are evaluated using Eqs. (2.29) and (2.31) in terms of limiting values of the transformed

CFs given in Eq. (2.39). These are given by

v0�1.1�0 � v0
1.1 ��1 � v0

1.1 � 4v0
1.2� � 2v0

2.1

v0�1.2�0 � v0
1.2 ��v0

1.1 � v
0
1.3� � v0

2.1 � v
0
2.2

v0�1.3�0 � v0
1.3 �1 � 4v0

1.2 � v
0
1.3� � 2v0

2.2

v0�2.1�0 � v0
2.1 ��1 � 2v0

1.1 � 3v0
1.2 �

3

2
v0

1.3 �
v0

2.1

v0
1.1

�
v0

2.1 � v
0
2.2

v0
1.2

� � v0
3.1

2

v0�2.2�0 � v0
2.2 �1 �

3

2
v0

1.1 � 3v0
1.2 � 2v0

1.3 �
v0

2.1 � v
0
2.2

v0
1.2

�
v0

2.2

v0
1.3

� � v0
3.1

2

v0�3.1�0 � v0
3.1 ��3v0

1.1 � 3v0
1.3 �

v0
2.1

v0
1.1

� 2
v0

2.1 � v
0
2.2

v0
1.2

�
v0

2.2

v0
1.3

�

(2.40)
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and

v0�1.1�ξ � v0
1.1 ��3 � v0

1.1 � 4v0
1.2� � 2v0

2.1

v0�1.2�ξ � v0
1.2 ��3 � v0

1.1 � 3v0
1.2 � v

0
1.3� � v0

2.1 � v
0
2.2

v0�1.3�ξ � v0
1.3 ��3 � 4v0

1.2 � v
0
1.3� � 2v0

2.2

v0�2.1�ξ � v0
2.1 ��7 � 2v0

1.1 � 7v0
1.2 �

3

2
v0

1.3 �
v0

1.2

v0
1.1

�
v0

2.1 � v
0
2.2

v0
1.2

� � v0
3.1

2

v0�2.2�ξ � v0
2.2 ��7 �

3

2
v0

1.1 � 7v0
1.2 � 2v0

1.3 �
v0

2.1 � v
0
2.2

v0
1.2

�
v0

2.2

v0
1.3

� � v0
3.1

2

v0�3.1�ξ � v0
3.1 ��12 � 3v0

1.1 � 12v0
1.2 � 3v0

1.3 �
v0

2.1

v0
1.1

� 2
v0

2.1 � v
0
2.2

v0
1.2

�
v0

2.2

v0
1.3

�

(2.41)

Using the relations among the CFs in the sublattice-solvent bases and those in

the orthogonal basis, the limiting values, the first and the second derivatives of the

CFs with respect to u0 and ξ are evaluated and are given in Table 2.3.

Table 2.3: The limiting values and the limiting derivatives of the orthogonal CFs for
L10 phase using T approximation.

i.j u0
i.j u0�i.j�0 u0�i.j�ξ u0�i.j�00 u0�i.j�ξ0 u0�i.j�ξξ

1.1 1 -2 2 2v0
1.1 �2v0

1.1 2v0
1.1

1.2 -1 0 -2 2v0
1.2 0 �2v0

1.2

1.3 1 2 2 2v0
1.3 2v0

1.3 2v0
1.3

2.1 1 -1 3 2v0
1.1 � 4v0

1.2 �2v0
1.1 2v0

1.1 � 4v0
1.2

2.2 -1 -1 -3 4v0
1.2 � 2v0

1.3 �2v0
1.3 �4v0

1.2 � 2v0
1.3

3.1 1 0 4 2v0
1.1 � 8v0

1.2 � 2v0
1.3 �2v0

1.1 � 2v0
1.3 2v0

1.1 � 8v0
1.2 � 2v0

1.3

2.6 Discussion and conclusions

The CVM configurational entropy of mixing (∆Smix) expression contains terms

such as xαB lnxαB, which underflow in numerical computations for xαB B 10�14 (in

standard double precision calculations), corresponding to nearly perfect order. The

choice of sublattice solvent bases makes the CFs in these bases identical to the CVs

corresponding to clusters whose sites are occupied exclusively by solute atoms on the

respective sublattice sites. Transformation of these CFs as products of random and

non-random parts (as given in Eq. (2.21)) results in cancellation of terms such as
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xαB lnxαB from the equilibrium equations. The equilibrium equations thus simplified

do not underflow even in the limits of perfect order and stoichiometric composition.

This offers a significant advantage in numerical computations. The limiting values

of equilibrium CFs and their derivatives with respect to u0 and ξ can then be easily

found. These provide a set of good initial values for the CFs for chosen values of CECs,

temperature and composition close to the state of perfect order and stoichiometric

composition.

These equilibrium equations in the simplified form when used with initial values

of transformed CFs estimated using the limiting values become amenable to numerical

solutions to much lower temperatures compared to the conventional procedures using

CFs in the orthogonal basis. An illustration of the above for B2 and L10 phases under

T approximation is given below.

For B2 phase the equilibrium values of CFs are calculated as follows. At first,

the limiting values of the vs, namely v0
i.j, are substituted into the Helmholtz energy

expression and the equilibrium equation with respect to ξ is obtained. The value of ξ

obtained by solving this equation (ξ�) and the random values (vrnd, vi.j = 1) or v0
i.j can

be considered as two different sets of initial values to obtain the equilibrium values of ξ

and the other CFs. The calculations are carried out for first neighbour pair interactions

for u0 = 0 at two different η1 values, namely η2
1,c �T ~Tc � 1~2� and η1 corresponding to

ξeq = 0.999999 (η1,min). The details of the calculations such as condition number of the

Hessian matrix for the initial (κi) and the converged (κc) values of the CFs, number

of iterations, etc. are given in Table 2.4.

Table 2.4: Comparison of condition number of the Hessian matrices, number of
iterations to convergence and the equilibrium value of ξ at two different temperatures
η1,min and η2

1,c for the random values of CFs in orthogonal basis (urnd), CFs in the
sublattice solvent bases (vrnd) and the limiting values (v0

i.j) for B2 phase using T
approximation.

at η1,min, ξ
�
� 0.999999 at η2

1,c, ξ
�
� 0.983254

Initial values urnd� vrnd v0
i.j urnd vrnd v0

i.j

κi - 2.25 � 106 2.03 � 1012 5.91 � 108 1.22 � 102 2.83 � 104

Number of
iterations

- 13 3 8 9 4

ξeq - 0.999999 0.983209
κc - 2.04 � 1012 3.49 � 106 2.62 � 104

* Due to accumulated round off errors, the calculations could not be carried out at η1,min.
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Table 2.5: Comparison of condition number of the Hessian matrices, number of
iterations to convergence and the equilibrium value of ξ at two different temperatures
η1,min and η2

1,c for the random values of CFs in orthogonal basis (urnd), CFs in the
sublattice solvent bases (vrnd) and the limiting values (v0

i.j) for L10 phase using T
approximation.

at η1 � η1,min,
ξmin � 0.9999995, ξinit � 0.9999999

at η1 � η
2
1,c,

ξmin � 0.9998, ξinit � 0.9999
Initial values urnd� vrnd v0

i.j urnd vrnd v0
i.j

κi - 2.25 � 107 1.94 � 1014 1.02 � 1015 2.25 � 104 1.67 � 109

Number of
iterations

- 17 9 12 13 9

ξeq - 0.999999 0.999513
κc - 1.69 � 1015 2.93 � 108 5.80 � 109

* Due to accumulated round off errors, the calculations could not be carried out at η1,min.

It can be observed from Table 2.4 that the condition number of the Hessian matrix

in the orthogonal basis in both the cases, namely, initial and converged CFs at η2
1,c, is

higher than that for all the cases of the sublattice solvent bases. However, in the case of

sublattice solvent bases, the condition number of the Hessian matrix with the random

initial values is less than that with v0
i.j as initial values. The number of iterations

required to convergence is reduced when v0
i.j are used as initial values.

For L10 phase under T approximation with first neighbour pair interactions, it

is found that the Helmholtz energy approximated by substituting v0
i.j does not have

a minimum with respect to ξ at u0 = 0 within the physically permitted configuration

space defined by �1 B u0 B 1, �1 B ξ B 1 and 0 B yi.jx B 1. Hence, the value of

ξ corresponding to the smallest possible value of the Helmholtz energy within the

physically permitted configuration space can be found in the following manner. The

v0
i.j are substituted in the equations corresponding to CVs being equal to 0 or 1 and are

solved for ξs. Among these, the maximum value of ξ corresponds to the lower bound of

possible ξs and is given by ξmin � 1 � 2η1 �»1 � η1 � 1�. The initial value for ξ �ξinit� is

chosen to be slightly greater than ξmin using which the equilibrium state of the system

is found at two different values of ξ as given in Table 2.5.

For B2 phase using T approximation, the limiting values of the CFs of the ordered

phase, v0, are used to approximate the CFs. By substituting these into the Helmholtz

energy expression, the equilibrium equation corresponding to ξ is obtained. By solving

this equation, the approximate value of ξ (ξ�) is obtained at equiatomic composition as
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Figure 2.4: Comparison of the ξ calculated using the approximated Helmholtz energy
expression (a) (ξ�) at equiatomic composition and (b) (ξ�) at T ~Tc � 0.5 with CVM
(ξeq) for B2 phase with exclusive I-n pair interactions using T approximation.

a function of T ~Tc for exclusive first neighbour pair interactions. The comparison of ξ

obtained using CVM (ξeq) and that of ξ� is shown in Figure 2.4 (a). Similarly at T ~Tc �
0.5, the approximate values of ξ (ξ�) are obtained as a function of composition near to

stoichiometric composition and are shown in Figure 2.4 (b). The same methodology is

utilized for L11 phase using TO approximation to obtain the equilibrium values of ξ in

the temperature - composition domain where the order parameter is significantly high.

The corresponding plots are presented in Figure 2.5. From these two cases, it can be

observed that the equilibrium values of ξ are reproduced well as functions of both T

and composition around stoichiometric composition where the system is highly ordered.

Hence, the approximate Helmholtz energy function utilized in the above calculation can

be used as an alternative to the CVM expression in the regions where ξeq is high for

these structures.

It is evident from the above calculations that transforming the CFs to sublattice

solvent bases yields a set of equilibrium equations using which equilibrium CFs can be

calculated to much lower temperatures in all the cases with proper selection of initial

ξ value. Hence, the methodology presented here can serve as an alternative to the

approximation of the grand potential of the ordered phases by series expansion at low

temperatures suggested by Kohan et al. (1998). Further, the present methodology

gives SRO estimates in terms of the CFs whereas the methodology followed by Kohan

et al. can yield only macroscopic thermodynamic functions.

The limiting values of CFs in the orthogonal basis and their first derivatives with
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Figure 2.5: Comparison of the ξ calculated using the approximated Helmholtz energy
expression (a) (ξ�) at stoichiometric composition and (b) (ξ�) at T ~Tc � 0.5 with CVM
(ξeq) for L11 phase with I-n pair interactions being 10% of II-n pair interactions using
TO approximation.

respect to u0 and ξ are independent of the system under consideration. However, the

second derivatives of the CFs are functions of CECs and temperature. The results for

disordered phases (Sarma et al., 2012) and those obtained in this Chapter can be used

for choosing appropriate forms of polynomials for approximating equilibrium values of

CFs for disordered as well as ordered phases as shown in Chapter 4.
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