
Chapter 1

Introduction

1.1 Computational thermodynamics of alloys

Phase diagrams play an important role in alloy development by providing the

regions of thermodynamic stability for different phases present in a chosen materials

system, depicted as a function of composition, temperature (T ) and pressure. The

number of experiments required to determine these diagrams or these stability regions

increases significantly with the number of components present in the system. Thus,

determination of phase diagrams exclusively by conventional methods is a very

cumbersome and tedious process. However, the efforts required to determine these

diagrams can be considerably reduced with the help of computational thermodynamics

(CT). In CT, the Gibbs energy or any other thermodynamic state property of each

phase is represented using appropriate thermodynamic models. Physically based

models can predict the thermodynamic properties even in the meta-stable regions in

a fairly reliable manner. Once such physically based models are developed for each

phase in a (multicomponent) system by optimizing the various types of data available

for the system, the phase diagrams and thermodynamic properties can be readily

computed and plotted as a function of the chosen set of variables.

The so-called CALPHAD (calculation of phase diagrams) methodology is widely

used in CT of alloys (Kaufman and Bernstein, 1970; Lukas et al., 2007; Saunders and

Miodownik, 1998; Sundman et al., 2018). In this methodology, a sequential modelling

is carried out starting from the unary- to binary- to ternary- subsystems, etc. up

to the required multicomponent- system of interest (Kattner, 1997). For example,

Gibbs energies of phases present in a binary system are modelled using the standard
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representation for unary phases given in the unary system database, namely, the

SGTE database (Dinsdale, 1991) such that the available thermodynamic properties

and the phase diagram data are reproduced to the level of desired accuracy. Such an

exercise is usually called as thermodynamic assessment. Using these models for all

the three binary subsystems corresponding to a chosen ternary system, phase diagram

of the ternary system is predicted/ computed initially by assuming that the ternary

interactions are negligible. The phase diagram and thermodynamic data thus computed

are compared with the available ternary system data. If ternary system data are not

available, careful experiments could be conducted in the regions of critical interest in

the predicted phase diagram. Based on the agreement between the predicted and the

actual phase diagrams (and thermodynamic data), the ternary system is reassessed to

determine the hitherto neglected ternary interactions, keeping the already determined

binary interactions intact. If required, the lower order systems are also reassessed

to readjust the binary interactions. This procedure can be extended to model any

multicomponent materials system. This procedure is quite feasible due to the fact

that interactions beyond quaternary level are negligible in metallic materials due to

which, phase diagrams of systems beyond quaternary can be computed purely by

extrapolation. Further, this methodology becomes indispensable for multicomponent

systems, especially for visualization and graphical representation of different views and

sections of phase diagrams and property diagrams, as per the requirement. A graphical

illustration of this methodology is given in Figure 1.1.

The expression for molar Gibbs energy (G) of a phase typically contains terms

corresponding to contributions from mechanical mixture of the components (G0), the

configurational entropy of ideal mixing (Gid) apart from an excess Gibbs energy term

(Gxs). In general, for a binary phase α in an alloy system we have

Gα
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The excess Gibbs energy term contains contributions from different effects such

as configurational, vibrational, electronic, etc. The former is very dominant, but

contributions from, say, vibrational effects can significantly affect the quantitative

details such as critical temperatures in phase diagrams. Additional terms such as

Gphys are also included in the expression for G in order to account for specific physical

phenomena such as ferromagnetism. Thermodynamic models of varying degrees of

2



Binary  Assessment 

  

 

Ternary   Extrapolation 

  +Assessment 

 

 

Quaternary                             Extrapolation 

  +Assessment 

 

Quinary and        

Higher order      

systems       

xs

BinG

xs

TerG

xs

QuaG

xsid GGGG  0

 xs

BinG

   xs

Ter

xs

Bin GG

   xs

Qua

xs

Ter

xs

Bin GGG

Figure 1.1: CALPHAD methodology for assessment of multicomponent systems
(Kattner, 1997).

sophistication are available in literature for representing these effects (Lukas et al.,

2007). The standard CALPHAD methodology uses Redlich-Kister polynomials

(Redlich and Kister, 1948) for the disordered phases, Gorsky-Bragg-Willams (Bragg

and Williams, 1934, 1935; Gorsky, 1928; Williams, 1935) or compound energy

formalism (Sundman and Ågren, 1981; Sundman et al., 2018) for the ordered phases

or compounds. In addition, cluster/site approximation (CSA) (Chang et al., 2004);

cluster expansion–cluster variation method (CE–CVM) (de Fontaine, 1994; Inden,

2005; Kikuchi, 1951; Sanchez et al., 1984), etc. are also occasionally used. Some of

these models are implemented in software packages such as Thermo-Calc (Andersson

et al., 2002), OpenCalphad (OC) (Sundman et al., 2015), PANDAT (Cao et al., 2009;

Chen et al., 2002), FactSage (Bale et al., 2016), CaTCalc (Shobu, 2009), etc.

Another important class of techniques is the Monte-Carlo simulations (MCS)

(Bichara and Inden, 1991; Binder and Heermann, 2010; Binder et al., 1981; Inden,

2005; Lanzini and Romero, 2015). In MCS, a virtual crystal is defined in computer as

a 3D array of memory spaces, in which, each memory space is assumed to correspond to

a specific atomic site in the corresponding real crystal. A variable, say σi, is associated

with each site i in the crystal. In a binary system, σi, can take the values �1 and

�1 for representing say, A and B atoms respectively. The evolution of the atomic

configuration in the structure is simulated by considering interchange between an atom
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which is randomly chosen in the structure and one of its nearest neighbours. The

atom exchanges in the structure are accepted or rejected by following the Metropolis

algorithm (Metropolis et al., 1953). The difference in energy of the system is computed

by using an appropriate ‘Hamiltonian’ or ‘energy function’. Quite frequently, only

pair-wise interactions are considered up to second neighbour distances, to limit the

computational burden. This procedure is repeated for each atom in the structure.

Due to its kinetic nature, it is difficult to attain strict equilibrium, especially close to

critical points. However, well-simulated Monte-Carlo results are treated as accurate,

against which, different approximations of methods like CE–CVM are judged (Finel,

1989, 1994).

Availability of quality experimental data is always critical for validating the

models. However, such data are often not available. Due to the rapid progress

made in the recent past in the computation of thermophysical properties using the

first-principles quantum mechanical methods based on density functional theory

(Calderon et al., 2015; Mardirossian and Head-Gordon, 2017; Toher et al., 2018),

these data are being increasingly used in the CALPHAD methodology (Enoki et al.,

2020; Shi et al., 2020; Yen et al., 2020). Thus, CT, first-principles computations and

experiments can go hand in hand supporting one another in accelerated design and

development of novel materials.

It is important to recognise that CT forms the foundation for modern-day alloy

design and component development. This is increasingly being performed using the

so-called integrated computational materials engineering (ICME) approach. The ICME

consists of many computational tools and has been proven to hasten the development

of both the product and processes. The ICME involves study of materials from

atomic level using techniques such as ab initio calculations, molecular dynamics to

crafting of microstructures involving design of heat treatment and mechanical working

processes to obtain the desired set of properties and performance in the materials

and the engineering components. In ICME, at first, a desired set of properties of the

component to be developed is identified. Then, by integrating the information from

all the materials databases, physical metallurgy expertise and modelling information

available across different length scales, suitable materials are selected and processing

schedules designed to fulfill the engineering requirements of the components
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(Gong et al., 2017; Olson and Kuehmann, 2014; Xiong and Olson, 2015) and the

successful cases published in the world congress reports published by TMS such as

(Mason et al., 2017). Clearly, integration of models across the length scales from

quantum mechanical- to statistical mechanical- to classical/macroscopic levels is of

paramount importance. This is being done by bridging the gaps, if necessary, even

by primitive models at present, all the way to engineering applications (National

Academies of Sciences, Engineering, and Medicine, 2019). The 6th world congress

by TMS on ICME is going to be held in April, 2021.

On the other hand, it is also vital to improve the models at different length

scales that form part of the ICME, such that they have sound physical basis, yet

remain algebraically simple, mathematically tractable and computationally efficient.

This thesis presents the details of such an effort, in which, a direct solution of the

correlation functions is obtained in a binary phase using polynomial expressions, which

in turn represent the often neglected configurational short range order (SRO).

A brief account of some of the important thermodynamic models, which are used

to describe disordered and ordered binary substitutional solid solutions, is presented

below. Accordingly, phases such as interstitial solutions, oxides and other compounds

with ionic constituents, topologically close packed (TCP) phases, amorphous phases,

liquids, etc. will not be included in the following summary.

1.2 Thermodynamic models

Any model has advantages as well as limitations depending on the set of

assumptions and approximations made. Based on the limitations, the models are

modified from time to time. In this section the details of the formalism, limitations

and advantages and some of the improvements that have taken place in the modelling

of thermodynamics of alloys, which are directly relevant to the thesis are discussed.

An important structural feature which is generally neglected in most of the

modelling efforts is the chemical or configurational SRO, which is always present in

materials and accordingly influences the properties. In addition to the configurational

SRO, the topological SRO is also present in amorphous materials and liquids.

A quantitative description of the configurational SRO in crystalline materials is

commonly represented by using Cowley-Warren parameters (Cowley, 1950, 1960,
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1965), which, in a binary system characterize the departure of the probability of

occurrence of unlike pairs from ideal/random distribution (see Chapter 4, Eq. (4.53)).

A generalized representation of configurational SRO in materials is difficult, but

can be accomplished by the CE–CVM in terms of the microscopic state variables

called multi-site correlation functions as calculated and shown in Chapter 4. Even

though some thermodynamic models provide quantitative description of long range

chemical order (LRO), many models tend to neglect the important contributions of

SRO. The SRO can be measured by using experimental techniques such as X-Ray,

electron and neutron diffraction studies. Owen et al. (2016) have recently introduced

a new method to obtain the information of SRO from X-Ray powder diffraction. A

comprehensive review on the influence of SRO and LRO on surface segregation and

related phenomena is presented by Polak and Rubinovich (2000). The role of SRO on

the properties of the materials can be found in Abe and Sundman (2003), Owen et al.

(2016) and in the references therein.

In a disordered substitutional solid solution, atoms of different components occupy

the same set of atomic sites. In the presence of LRO, a phase would have several

distinct sublattices in the structure, while some of the sublattices may be preferred by

certain components. Two distinct types of LRO are observed in alloys. In the most

common case of LRO, the sublattices are crystallographically different. For example,

the σ phase has 5 different sublattices while the Laves phase can have two or more

sublattices. The other type of LRO occurs in phases which undergo order/disorder

transformation in certain ranges of T and composition. They are usually based on

simple structures like FCC (A1), BCC (A2) or HCP (A3), e.g., B2 ordering in Al–Fe

system. The transformation can be of first order which is associated with a two-phase

region in the corresponding phase diagram, or it can also be of second order without

exhibiting any two-phase region in the phase diagram. Modelling both the ordered and

disordered states using the same Gibbs energy function makes it theoretically sound

to describe the order/disorder transformations of first order, while it is mandatory for

describing those of second order.
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1.2.1 CALPHAD methodology

The CAPHAD methodology proposed by Kaufman (1970) is widely used to

represent the Gibbs energy of the phases. In this methodology, the Gibbs energies of

the disordered phases are represented using Redlich-Kister polynomials (Redlich and

Kister, 1948) and those of the ordered phases are represented using compound energy

formalism which is reviewed by Sundman et al. (2018).

Redlich-Kister polynomials

The Redlich-Kister (R-K) polynomials are used along with the ideal entropy of

mixing to represent the excess Gibbs energy of a disordered phase. For a binary phase

having components A and B, the excess Gibbs energy is expressed in the form of R-K

polynomial as

Gxs
� xAxB

n

Q
i�0

Li �xB � xA�i (1.2)

In this expression, the index i usually takes the values ‘0’ to n such that the resulting

expression of Gibbs energy represents the available experimental data in a satisfactory

manner. The interaction parameters, Li, are written as linear functions in T Li �

ai � biT where ai and bi are parameters to be determined for each phase. This is

referred to as linear model. It was reported by Chen et al. (2001) that many of the

phase diagrams optimized using experimental and/or theoretical data with this model

exhibit formation of inverted miscibility gaps in the liquid phase region above the

liquidus boundary and/or stabilization of low temperature solid solution phases in the

liquid phase at high temperatures.

Kaptay (2004) considered Gxs with i � 1 and analysed the parameters in L1

obtained for different binary systems in the literature. A constraint on the values

of �ai~bi� is obtained to avoid high temperature artefacts such as inverted miscibility

gaps for a chosen phase. Further, a new form for the interaction parameter has been

suggested with an exponential function as

Li � ai exp��T
τi
� (1.3)

where ai and τi are the parameters to be determined by optimization of experimental

data. Unlike the linear model, this model could retain the values of Gxs finite even in
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the limit of T �ª. However, this model may sometimes result in the low-temperature

artefact of re-stabilization of liquid phase at low temperature.

An additional model is also proposed by Kaptay (2014), which is a combination

of linear and exponential functions, known as linear-exponential function, defined as

Li � �ai � bi T � exp��T
τi
� (1.4)

For this linear-exponential function, Kaptay suggested a methodology to be followed

to obtain the model parameters for alloy systems that are thermodynamically distinct.

Kaptay (2017) has further suggested a piecewise fit to the liquid phase considering

two different functional forms. For temperatures less than T � (the lowest temperature

in the solidus boundary for the chosen alloy system), a functional form similar to the

one used to represent the standard Gibbs energy by Dinsdale (1991) is used. However,

for the higher temperatures, exponential or linear-exponential forms given in Eqs. (1.3)

and (1.4) can be used. It must be ensured that both the functions and their derivatives

with respect to T up to third order are equal.

Even though the modified Li forms can satisfy all the thermodynamic limits for

T � 0 and T � ª without resulting in any artefacts in the phase diagrams assessed,

this model cannot describe the SRO present in the alloys.

Compound energy formalism

In this formalism, compounds with a specific constituent on each sublattice are

considered to be the end members instead of the individual components, as a general

case, since it may not always be possible to separate the properties of individual

components in a phase. The Gibbs energy expression is obtained in terms of these

end member compounds and hence the name compound energy formalism (CEF). The

general form of the Gibbs energy expression for an ordered phase is given by Sundman

and Ågren (1981) and Hillert (2001), based on the formalism used earlier by Hillert

and Staffansson (1970) for an interstitial solid solution of C in Fe. The configurational

entropy of the given ordered phase is written in terms of constitutional variable, yλi

(for the constituent i on the sublattice λ) as

Sconf � �RQ
λ

aλQ
j

yλj ln yλj (1.5)

8



where aλ is the number of sites on the sublattice λ and yλj is the fraction of sites of

sublattice λ occupied by constituent j. These constitutional variables, yλj , are related

to the average composition of the phase as

xi �
Pλ aλPj bijyλj
Pλ aλPjPk bjkyλj

(1.6)

where bij is the stoichiometric factor of component i in the constituent j.

Using this formalism, the phases which remain always ordered (such as line

compounds, compounds that melt congruently), those which undergo order-disorder

transformation, those containing defects, etc. can be modelled. It is stated that SRO

also can be modelled in an approximate manner as a part of LRO contributions in this

formalism (Sundman et al., 2018), unlike Gorsky-Bragg-Williams approximation.

Thus, the R-K polynomials for the disordered phase and CEF for the ordered

phases provide a useful framework in CT for expressing the configurational Gibbs

energy of phases.

1.2.2 Cluster expansion–cluster variation method

Cluster expansion method

Though cluster expansion (CE) method shares its roots with CVM, it was formally

developed as an independent method by Sanchez et al. (1984). In this method the

configurational energy of the system is expressed as a bilinear sum of the products of

all the cluster functions and their system specific adjustable model parameters, called

cluster expansion coefficients (CECs). The principle behind this series is that the

contributions of the larger clusters are negligible, i.e. the series is convergent. The

CECs introduced by Sanchez et al. (1984) are independent of composition. Later

Asta et al. (1991) have shown that for a finite chosen cluster, the CECs should be

composition dependent to have convergence. However, they have shown that for a

grand canonical ensemble, the composition dependence of the CECs is taken care of

by the cluster functions alone and in the case of canonical ensemble the composition

dependence is taken care of by cluster functions as well as CECs together (Asta et al.,

1991; Wolverton et al., 1991).

The CE has been widely used in conjunction with the CVM (Inden, 2005) as

well as the DFT calculations (Chinnappan et al., 2016) in order to predict and model
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physical and thermodynamic properties in a variety of disordered systems. Several

attempts have been made to reduce the computational burden from selection of clusters

to methods to obtain a good fit discussing different aspects (Aldegunde et al., 2016;

Blum and Zunger, 2004). The CE has been used to predict the ground states of the

system, determination of phase boundaries at low temperatures where the experimental

phase boundaries could not be obtained (based on the ground states), band gap

engineering, diffusion studies (Zhang and Sluiter, 2016), prediction of properties of

surfaces, like chemisorption and physiosorption properties (Sluiter and Kawazoe, 2003),

as well as nano structures (Cao et al., 2018).

Recently, Sanchez (Sanchez, 2017) has pointed out that the Connoly-Williams

(C-W) method (Connolly and Williams, 1983) that approximates the energy by an

Ising-like model forms the lowest level of a hierarchy of approximations provided

by the CE method, while at the next level is the variable basis cluster expansion

(VBCE) method proposed by Sanchez (2010) that incorporates only the concentration

dependence of the CECs. Sanchez (2017) has also demonstrated with reference to the

Mo-Ta system that the correct implementation of CE requires the determination of

the CECs as a function of the full set of correlation functions, done in a self-consistent

manner with the calculation of the configurational Gibbs energy of the system.

Cluster variation method

Kikuchi (1951) introduced cluster variation method (CVM) as a systematic

hierarchy of approximations for obtaining the configurational entropy of a phase by

explicitly accounting for SRO to different degrees of accuracy. In this method, the

configurational entropy of mixing is expressed in terms of Boltzmann summation of

chosen maximal clusters and its overestimation due to overcounting of overlapping

of smaller clusters is corrected such that all the (sub-)cluster configurations present

in the structure are counted only once. A simplified method for obtaining these

correction coefficients is provided by Barker (1953) and accordingly these are called

Kikuchi-Barker (K-B) overlap correction coefficients. Schlijper (1983) showed that

an appropriate sequence of clusters ensures that the entropy functional converges

monotonically to the exact value in the thermodynamic limit.
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As pointed out earlier, CE–CVM together offer a systematic hierarchy of

approximations for expressing the configurational contributions to the Gibbs energy

of a phase, by explicitly accounting for the configurational SRO present in the system.

The zeroth level of the approximation corresponds to the ideal solution model for

disordered phases and to the Gorsky-Bragg-Williams approximation for the phases

exhibiting LRO, while the first level approximation corresponds to quasichemical

model in the pairwise approximation, etc. In general, the same cluster approximation

is used for the disordered phase and the corresponding ordered phases, such that a

single Gibbs energy expression represents SRO and LRO states of different symmetries.

Finel et al. (1989; 1994) have considered a larger cluster for the disordered phase

(quadruple tetrahedron (QT) or 13-14 pt) but smaller cluster(s) for ordered phase(s)

(tetrahedron - octahedron clusters (TO)) and computed prototype phase diagrams for

FCC ordering systems which are in good agreement with the MCS results computed

using the same first neighbour pair interactions. Such an approximation is referred to

as mixed CVM. Further, the values of the correlation functions obtained from the MCS

are used along with the CVM and transition temperatures and other thermodynamic

properties such as enthalpy and entropy are obtained. Such calculations are referred

to as MCS-CVM in literature.

For the chosen cluster, the configurational energy is in general written using CE

with CECs independent of composition while the configurational entropy is expressed

using CVM to obtain the Gibbs energy of the chosen alloy. This energy expression

has to be minimized for a chosen thermodynamic state of the system with respect to

the microscopic state variables. Kikuchi introduced natural iteration method (NIM)

(Kikuchi, 1974) to minimize the grand potential of the selected system. The other

methods involve solving a non-linear system of equations by using numerical techniques

such as Newton-Raphson, conjugate gradient method, etc. (Mebane and Wang, 2010;

Yuille, 2002).

The first iso-energy phase diagram with non-vanishing multi-site interactions is

calculated using CVM by van Baal (1973). Following van Baal, Au-Cu phase diagram

is calculated by Kikuchi and de Fontaine (1978). Many binary and ternary phase

diagrams of real systems have been calculated using CVM in combination with data

from MCS, ab initio DFT methods (Bourgeois et al., 2019; Colinet, 2001; Eleno et al.,
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2014; Inden, 2005; Kiyokane et al., 2017; Sodré et al., 2009; Yamada and Mohri, 2020;

Zarkevich et al., 2008). The first principles data along with CVM coupled with phase

field modelling is used to study microstructures (Mohri et al., 2007; Wang et al., 2007).

A few other applications can be found in Finel (1994) and Mohri (2017), among others.

This methodology is also reviewed from time to time (de Fontaine, 1979, 1994; Inden,

2005; Pelizzola, 2005).

A methodology, called simultaneous optimization using CE-CVM, is introduced

by Sarma (2000) and Lele and Sarma (2009) to obtain the values of CECs of the selected

system by minimizing a merit function defined using thermodynamic, structural and

phase diagram data. This methodology is applied for the systems Sc–Zr, Ti–Zr,

Hf–Zr and Sc–Ti. They have also included the often neglected vibrational mixing

contributions to the Gibbs energy by using high temperature expansion of Debye model.

In order to have good estimates for the initial CECs in simultaneous optimization,

empirical polynomials are derived as functions of temperature and composition of the

consolute point and congruent point by Gupta et al. (2008; 2005). Such estimates

ensure correct topology of the phase diagram in the beginning itself and are critical

for the success of optimization. Further, they lead to significant reduction in the

computational burden involved in optimization.

Further, a new method, called overlap and rescaling method, was introduced by

Sluiter (1994) to obtain distant interactions with smaller clusters and the accuracy

of the CFs obtained in this method is good. Further, Jindal et al. (2013; 2014)

have considered modification of the number of clusters per site (multiplicity) such

that the phase diagrams calculated using the accurate MCS or that of larger cluster

approximations can be obtained with smaller clusters with a reduction in the

computational burden. In this modification, improvement in the thermodynamic

properties is also observed. Sanchez and Mohri (2016) have given the relation between

the orthogonal basis and the variable (composition) basis. They have considered some

of the variable basis cluster functions to be ‘0’ and calculated the equilibrium value

for the remaining cluster functions. Transformation of these variable basis cluster

functions to the orthogonal basis results in non-zero values. It is shown that the

values of the CFs obtained by this method are in good agreement with those obtained

directly from CVM. Tamerbet et al. (2018) have applied genetic algorithm to optimize

12



the grand potential of the system under CVM framework.

In conventional CVM, the configurational entropy of mixing is expressed by

permutation of atoms on the rigid lattice. In general, lattice distortions are caused

due to atomic size differences, thermal lattice vibrations and elastic interactions. In

conventional CVM, these effects are not considered. Considering the effects of atomic

size differences accounting for displacement of atoms around their lattice points,

continuous displacement CVM (CDCVM) is formulated (Finel, 1994; Kikuchi, 1998).

The possible positions of the atoms due to displacement are taken around the lattice

points and are referred to as quasi lattice points. The atoms on the quasi lattice

points are treated as a different atom and the configurational entropy is calculated by

mapping it into the entropy of the multi-component system. A comparison of CVM

and CDCVM can be found in (Mohri, 2013, 2017).

The variation of CECs with change in atomic distance is estimated using different

approximations such as Lennard-Jones potentials, Morse potential (Mohri, 2009; Mohri

et al., 2009). The calculations based on these show that the phase boundaries and

transition temperatures are significantly affected due to atomic displacements. For

pair interactions, a comparison of phase boundaries computed using CVM and CDCVM

showed that the transition temperatures are decreased and the phase boundaries are

shifted towards the side of smaller atoms. Using this methodology, properties such

as thermal expansion (Mohri, 2008), displacive phase transformation (Kiyokane and

Mohri, 2013, 2018; Mohri et al., 2013), order-disorder transformations (Mohri, 2011)

are also studied. Since the atoms occupying the quasi lattice points are treated as a

different kind of atoms, the number of cluster variables increases significantly even for

a simple approximation in 2D lattice. Since the number of variable with respect to

which the energy function has to be minimized increases significantly, new algorithms

are proposed to reduce the computational burden (Kiyokane and Mohri, 2011).

It is clear that the CE–CVM framework has a physically sound basis, but

it involves significant algebraic complexity and prohibitively large amount of

computational burden, especially for multicomponent systems. Therefore, several

efforts have been made to reduce the computational burden, even by significantly

undermining the accuracy of the method. One such method is the so-called cluster-site

approximation (CSA).
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1.2.3 Cluster-site approximation

The cluster-site approximation (CSA) is based on the generalized quasi-chemical

method introduced by Yang and Li (Li, 1949; Yang, 1945). In this approximation,

the configurational entropy is written for a chosen maximal cluster. The number

of maximal clusters is chosen such that they share only points which ensures that

the first neighbour pairs get counted accurately. However, this number is different

from the actual number of clusters shared by the atoms in the structure. Thus, the

correction to be made to the entropy of the maximal cluster (Sclust) is only for removing

the over counting of the points (Spt) shared by all the clusters. Hence the name

cluster-site approximation. Accordingly, the configurational entropy expression for an

n-site cluster becomes

Sconf �mSclust � �mn � 1�Spt (1.7)

in which m is the number of energetically non-interfering clusters per site. This m,

calculated using a value different from the geometrical value of the structure, is further

modified by Oates et al. (1999) for the FCC system under tetrahedron approximation

to improve the agreement between the phase diagrams calculated using CSA and MCS.

The CSA has advantages like (i) simplified form for the entropy expression,

(ii) reduction in the number of independent variables to be considered (from Cn

to Cn where C is number of components and n is number of lattice points in the

cluster) to obtain the lowest energy state of the system. Such a reduction in the

number of variables becomes very significant for multi-component systems. Using this

methodology, many binary (Chang et al., 2004), ternary (Cao et al., 2005a,b, 2007)

and quaternary (Zhu et al., 2007) systems are assessed. In addition, CSA is coupled

with first principles methods and phase diagrams are also calculated (Zereg and Bourki,

2009; Zhang et al., 2008a,b, 2009). This method is also used to calculate the interphase

boundary energy using sum-method (Cao et al., 2006) and applied to study stability of

Co-Cu nano-structures (Cao et al., 2005c). The SRO parameters also can be calculated

in this approach, but they are not as accurate as those of CVM obtained using the

same cluster approximation or those obtained using MCS, since the number of clusters

per site considered in CSA is different from that of the actual value.
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1.3 Scope of the thesis

Unlike R-K polynomials, both CSA and CVM approaches consist of a set of

internal variables to be calculated for each thermodynamic state of the selected system

by numerically solving a set of non-linear equations. Vul and de Fontaine (1992)

have given hierarchy for selection of clusters for different two and three dimensional

lattices. Sanchez and de Fontaine (1978) have reported that tetrahedron - octahedron,

double tetrahedron and double tetrahedron - octahedron clusters have 10, 16 and 19

independent internal variables respectively for the binary FCC phase. The number

of internal variables depends on the size and symmetry of the cluster chosen. For

an ordered structure, due to loss of symmetry, this number is always higher than

its disordered counterpart (refer to supplementary section for a comparison). It is

apparent that increase in the size of the cluster can increase the accuracy of the results

and make them comparable with those of MCS. But considering larger clusters results

in increase in the number of internal variables. This number can be very significant

for multi-component systems and can be as high as Cn where C is the number of

components and n is the number of sites in the cluster chosen.

As a part of the present work, two aspects are discussed.

1. Approximating the CFs as a function of composition, temperature and the CECs

so that solving the non-linear equations can be avoided for the selected cluster.

2. Improvement of accuracy of CE-CVM under tetrahedron (T) approximation

for FCC phases such that results of the larger clusters or MCS results can be

reproduced.

Sarma et al. (2012) have considered dilute solution basis with a transformation of

CFs and calculated the limiting values and the derivatives with respect to compositions

for BCC phase under T approximation as well as for FCC and CPH phases under

TO approximation. In these calculations, it is found that the limiting values and

their derivative with respect to composition are functions of CECs and temperature.

However, the values of the CFs in orthogonal basis and their first derivatives with

respect to composition are independent of both CECs and temperature. In Chapter 2,

a methodology is discussed to obtain the limiting values and the derivatives of the CFs

(expressed in newly defined sublattice solvent bases) with respect to composition and
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order parameter for the ordered phases at the stoichiometric composition. Further,

for the orthogonal basis CFs, the limiting values and the derivatives with respect to

composition as well as order parameter are obtained. The specific advantages of the

sublattice solvent bases and the applications of these results are also discussed.

For a three dimensional cluster, the analytical solutions for the CFs as a function of

composition, temperature and CECs are usually not available for both disordered and

ordered phases. In Chapter 3, the analytical solutions for the CFs are obtained for A2 &

B32 and A1 & L11 phases for exclusive second neighbour pair interactions respectively

under T and TO approximations. Using these solutions, analytical forms are calculated

for the miscibility gap-spinodal boundary and order-disorder boundaries. Further,

expressions are obtained for the difference in the heat capacity and thermodynamic

stability function for order-disorder transformation.

In order to avoid solving the non-linear equations to obtain the equilibrium values

of the CFs, polynomials are derived as a function of point CF, which is related to

the composition of the system, for both disordered and ordered phases in Chapter 4.

These polynomial forms are derived such that the results of Chapter 2 for the ordered

phase and those obtained by Sarma et al. (2012), are satisfied. From the analytical

solutions obtained in Chapter 3, it is observed that the CFs are rational functions of

CECs and T for the selected composition. So, the coefficients of these polynomials

are expressed as rational functions of CECs and T. Following this, a methodology is

developed for obtaining the polynomials for the CFs of A2–B32 system for exclusive

second neighbour pair interactions under T approximation. Thus, this avoids solving

of non-linear equilibrium equations for all the second neighbour pair interactions under

T approximation to obtain the estimates of SRO parameters.

Jindal et al. (2014) have approximated the entropy functional to improve

the agreement between the prototype systems of FCC system of CVM under TO

approximation and the accurate MC results. Even though the approximation is

carried out only for the phase diagram data, it is observed that there is improvement

even in the thermodynamic data. In the light of this improvement, the entropy of

the T cluster, having a smaller number of correlation functions than TO cluster, is

modified by adjusting the multiplicities of the tetrahedron, triangle and pair clusters

in Chapter 5. In this approach also there is significant improvement in the prototype
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phase diagrams as well as the thermodynamic data with reduction in computational

burden than TO approximation. Using this modified entropy functional, Au–Cu

phase diagram is also calculated. However, it must be concluded that the modified T

approximation does not have sufficient flexibility/degrees of freedom to reproduce the

topology of the Au–Cu phase diagram.

In Chapter 6, the summary and the scope for future work are discussed.
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