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PREFACE 
 

Alloying has long been used to confer desirable properties to materials. A good 

understanding of alloy phase stability and phase equilibria under various service 

conditions is essential in designing and developing new materials. We know that the 

properties of materials depend significantly on the nature, number, amounts, and 

morphology of various possible phases present in the microstructure, and this can be 

further controlled by altering these quantities. High entropy alloys (HEAs), a new class of 

alloys, are designed by a combination of multiple principal elements in high 

concentrations compared to the conventional strategy of adding relatively small amounts 

of secondary elements to one or two principal elements. HEAs are solid solutions of 

nearly equiatomic alloys of five or more components with high configurational entropy 

and low mixing enthalpy and, despite the chemical complexity, are characterized by 

having simple crystal structures (i.e., FCC, BCC, or HCP solid solutions) with often 

remarkably better mechanical properties than those of the elemental components. It was 

observed that the effect of configurational entropy plays a significant role in minimizing 

the number of phases in these multicomponent alloys. Yeh and co-workers have 

designated the term ‘High Entropy Alloys’ in 2004 for this new class of materials. The 

multi-dimensional compositional space to understand the phase stability that can be 

tackled is practically limitless, and only tiny regions of which have been investigated so 

far. 

The processing of this new class of advanced materials is equally necessary for 

ensuring the enhanced properties for technological applications. The HEAs can be mostly 

synthesized by conventional casting and solid-state techniques. The non-equilibrium 

processing route, such as mechanical alloying, produces nanostructured HEAs for 
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enhancing the physical and mechanical properties. The consolidation of these 

nanostructured alloys using conventional methods is a challenging task that can be 

accomplished through non-equilibrium consolidation techniques like spark plasma 

sintering (SPS). The HEAs can also be synthesized by liquid state techniques, i.e., 

vacuum arc melting.  

The present work deals with the synthesis and processing of the nanostructured 

CrFeCoNiCu and low-density MgAlMnFeCu high entropy alloys by mechanical alloying. 

In addition, two refractory high entropy alloys, namely TiVZrMoW and TiVZrYHf alloys 

have been prepared by solidification casting technique. The study aims at understanding 

the phase evolution process during mechanical alloying and arc melting along with the 

thermal stability of these synthesized alloys. Attempts were made to understand the phase 

stability of the evolution of the equilibrium phases using theoretical methods, namely 

density functional theory (DFT) and CALPHAD (using Thermo-Calc software) as well as 

parametric approaches advocated in literature. 

The present thesis is divided into six chapters. Chapter 1 deals with the basic 

understanding of the new class of advanced materials based on the literature review 

available in this area. The four core effects of HEAs are discussed to understand their 

impact on the properties of these advanced materials. The phase equilibria rules in the 

binary system that helps in developing an understanding of phase stability in the 

multicomponent systems are also brought into consideration. Parametric approaches are 

utilized to make a fast and reasonably correct prediction of the phases that may form in 

the chosen alloy systems. This chapter also explains the various processing techniques 

that may be adopted for the synthesis of HEAs. Motivation and the objectives of the 

present work are presented at the end of the chapter. 
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Chapter 2 describes the experimental and theoretical methods adopted in the 

present investigation along with the equipment used and the protocols followed for the 

synthesis and characterization of the alloys studied. The mechanical alloying technique is 

used to produce nanostructured CrFeCoNiCu and MgAlMnFeCu HEAs, while the other 

two refractory alloys are prepared using the vacuum arc melting technique. The structural 

and microstructural features of these nanostructured powders, as-cast, and annealed 

samples are examined through X-ray diffraction (XRD) and transmission electron 

microscope (TEM), and scanning electron microscope (SEM) equipped with energy 

dispersive spectroscope. The phase evolution of the synthesized alloys during the time-

temperature domain is investigated through differential scanning calorimetry (DSC), in-

situ XRD, and ex-situ XRD (of the annealed sample). An eight atom special quasi-

random structure (SQS) is generated to mimic a disordered state in binary subsystems of 

CrFeCoNiCu and TiVZrMoW HEAs by alloy theoretic automated toolkit (ATAT). Then 

the energy of the geometrically relaxed SQS is calculated using DFT (Quantum Espresso 

software). The enthalpy values of binary systems are extrapolated using the regular 

solution model to predict the enthalpy of mixing for the disordered quinary systems. 

CALPHAD approach (using Thermo-Calc software) is used to calculate equilibrium 

diagrams representing the number and amount of phases. Single point equilibrium 

calculations are also done for examining compositional variation in the phases as a 

function of temperature. 

Chapter 3 presents the study of CrFeCoNiCu HEA. The Miedema model, DFT 

and CALPHAD approaches are used for the prediction of stable phases. This HEA 

prepared by MA, forms two phases, i.e., BCC phase (a = 2.87  0.02 Å) and a small 

amount of FCC phase (a = 3.62 ± 0.02 Å) after 65 h of milling. From the scanning 

electron micrographs, the flaky nature of milled powders and a wide range of particle 
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sizes (5 to 10 μm) can be seen. The nanostructure of the crystallites evolved in the 65 h 

milled powder is analysed using XRD and by selected area electron diffraction 

techniques, as well as through in-situ high-temperature X-ray diffraction (HT-XRD) over 

a range of temperatures. The as-milled powder showing two phases is thermally stable up 

to 400 °C, and then the precipitation of the tetragonal (Cr-Co/Fe) based sigma (σ) phase 

(a = 8.45 ± 0.02 Å, c = 4.54 ± 0.02 Å) occurs. On annealing at 400 °C, precipitation of the 

σ phase was observed, while on annealing at 800 °C, the BCC phase disappears along 

with a decrease in the amount of σ phase. Eventually, the FCC1 (a = 3.62 ± 0.02 Å) 

appears to be the major phase along with a small amount of σ and FCC2 (3.61 ± 0.02 Å) 

phase. 

Chapter 4 deals with the synthesis and characterization of low-density 

MgAlMnFeCu HEA. The low-density MgAlMnFeCu HEA has been synthesized 

successfully by mechanical alloying (MA). Phase evolution of MgAlMnFeCu HEA has 

been studied using X-ray diffraction (XRD), transmission electron microscopy (TEM) 

and energy dispersive spectroscopy (EDS/XEDS). Milling up to 60 h leads to the 

formation of a mixture of two phases consisting of a BCC phase (a = 2.87 ± 0.02 Å) and 

γ-brass type phase (a = 8.92 ± 0.03 Å), with ~2 μm powder particle size. The as-milled 

alloy after spark plasma sintering (SPS) at 900 ˚C exhibits an experimental density of 

4.946 ± 0.13 g cc
-1

, which is 99.80% of the theoretical density. SPS leads to the formation 

of C15 Laves phase (MgCu2 type; a = 7.034 ± 0.02 Å) and B2 (AlFe type; (a = 2.89 ± 

0.02 Å)) intermetallic along with the γ-brass type phase. The SPSed sample has 

exceptional hardness value (~5.06 GPa), high compressive strength (~1612 MPa) and 

appreciable failure strain (~6.4%) coupled with relatively low density. Various 

thermodynamic parameters have been considered for understanding the phase evolution 

and their stability during MA. 
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Chapter 5 presents the investigation of phase stability of two TiVZr based, i.e., 

refractory HEAs TiVZrMoW and TiVZrYHf. The first section (5.1) and the second 

section (5.2) deal with the results and discussion of TiVZrMoW and TiVZrYHf refractory 

HEAs, respectively. The prediction of phases that may form on the synthesis of 

TiVZrMoW is attempted by following (i) Semi-empirical Miedema model, (ii) an 8 atom 

SQS generated using ATAT software, and the enthalpy of mixing value for the structure 

(FCC, BCC and HCP) calculated using DFT and (iii) CALPHAD approach. The as-cast 

alloy shows the presence of major BCC1 (a = 3.17 ± 0.02 Å) being Mo and W rich and 

minor BCC2 (a = 3.65 ± 0.02 Å) being Ti, Zr rich along with C15 type ternary  

Zr(Mo, W)2 Laves phase (a = 7.58 ± 0.02Å). The DSC analysis of the as-cast sample 

exhibits two endothermic peaks of solid-solid transformation up to 620 °C. However, the 

alloy does not show any transformation in the temperature range of 620 - 1000 °C. The 

annealed sample (at 900 °C) reveals that two BCC phases present in the as-cast sample 

are transformed into the ordered B2 structure. The DFT approach in the study of phase 

stability of second refractory alloy, i.e., TiVZrYHf is a variation of cluster expansion 

method with fixed composition and cell size. Enthalpy of mixing of BCC and HCP 

structures are calculated for the distinct configuration of atoms on the lattice sites using a 

ten atom cell. The annealed alloy has been examined by XRD, SEM, and SEM-EDS. The 

annealed sample confirms the presence of two disordered HCP1 (a = 3.18 ± 0.02 Å, c/a = 

1.58) and HCP2 (a = 3.67 ± 0.02 Å, c/a = 1.55), along with BCC (a = 3.16 ± 0.02 Å) and 

the ordered (Hf, Zr)V2 (C15 type Laves phase, a = 7.41 ± 0.02 Å) phase which is in 

accordance to the theoretically predicted phases. The SEM-EDS mapping of the annealed 

sample establishes that the major HCP1 phase contains Hf and Zr predominantly along 

with some Ti. 
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Chapter 6 describes a summary of the work indicating major findings from the 

present work along with the suggestions for future work. 

References section lists all the references cited in Chapters 1-6 of the thesis.  

 


