Contents

Title Page	i
Certificates	iii-vii
Acknowledgement	ix
List of Figures	xvii
List of Tables	XXV
List of Notations/Abbreviations	xxvii
Preface	xxxi
1. Introduction	
1.1 General	1
1.2 Liquefaction Mechanism	3
1.3 Factors affecting Liquefaction	5
1.4 Hydrocarbon Contamination	5
1.4.1 Sources of Hydrocarbon Contamination	6
1.4.1.1 Small-scale contamination	7
1.4.1.2 Large-scale contamination	7
1.4.2 Oil Spill Statistics	8
1.4.3 Geotechnical Concerns	10
1.5 Motivation of the Study	11
1.6 Research Objectives	12
1.7 Organization of the thesis	13
2. Literature Review	
2.1 General	15
2.2. Liquefaction Susceptibility	16
2.3 Liquefaction Studies	18
2.3.1 Laboratory Investigations	18
2.3.1.1 Studies on Cyclic Triaxial Tests	19
2.3.1.2 Studies on Shake Table Tests	23
2.3.1.3 Studies on Shear wave velocity based assessment	27
2.3.2 Field Observed Phenomenon and In-situ Investigations	30
2.4 Dynamic Response of Hydrocarbon Contaminated Sand	35

2.5 Liquefaction Mitigation Strategies	37
2.5.1 Densification	37
2.5.2 Soil Reinforcement	39
2.5.3 Mixing of Fines	40
2.5.3.1 Non-plastic fines	40
2.5.3.2 Plastic fines	42
2.5.4 Application of waste materials	43
2.5.5 Bio-cementation	45
2.5.6 Induced Desaturation	46
2.5.7 Passive Site Remediation	47
2.5.7.1 Colloidal Silica Grouting	47
2.5.7.2 Grouting using Nanomaterials	48
2.6 Summary	51
3. Material and Methods	55
3.1 General	55
3.2 Soil Sampling	55
3.3 Crude Oil	57
3.4 Artificial Contamination of Soil	57
3.5 Geotechnical Properties of Guwahati Sand	58
3.5.1 Particle Size Distribution	58
3.5.2 Specific Gravity	59
3.5.3 Hydraulic Conductivity	61
3.5.4 Compaction Characteristics	64
3.5.5 Triaxial Tests	65
3.6 Mineralogical Studies	68
3.6.1 X-Ray Diffraction Studies	68
3.6.2 FTIR Studies	69
3.7 Morphological Studies	69
3.7.1 Scanning Electron Microscopy	69
3.7.2 Volumetric Oil Content	70
3.8 Methods of Liquefaction Assessment	71
3.8.1 Cyclic Triaxial Test	73
3.8.1.1 Pore Water Pressure based criterion	73
3.8.1.2 Strain/ Deformation based criterion	73
3.8.2 Liquefaction Assessment using Bender Element Test	74
3.8.3 Liquefaction Assessment through 1g-shake table testing	75
3.9 Methodology Adopted	75
3.10 Summary	77
4. Bender Element Test	
4.1 General	79

4.2 Description of Experimental Setup	80
4.2.1 Test Combinations and Selection of Parameters	80
4.2.2 Instrumentation Details	82
4.2.3 Sample Preparation and Test Procedure	83
4.3 Signal Interpretation	85
4.3.1 Peak-to-Peak Method	85
4.3.2 Start-to-Start Method	85
4.3.3 Boundary effects	87
4.4 Results Interpretation and Discussion	88
4.4.1 Effect of Excitation Frequency	88
4.4.2 Effect of Crude Oil Content on Homogeneously Contaminated Samples	92
4.4.3 Effect of Confinement	93
4.4.4 Comparison with Past Reported Results	96
4.4.5 Effect of Crude Oil Content on Layered Samples	98
4.4.6 Coupled Effect of Crude Oil content and Contamination Depth Ratio	101
4.5 Summary	102
5. Liquefaction Evaluation Using Shake Table Test	
5.1 General	105
5.2 Test Procedures and Conditions	105
5.2.1 Test Procedures	105
5.2.2 Test Conditions	106
5.2.3 Cone Penetration Test	108
5.2.4 Shake Table	110
5.3 Model Description	111
5.3.1 Sand	111
5.3.2 Container	111
5.3.3 Back Saturation Arrangement	111
5.3.4 Pore Pressure Sensors	113
5.3.5 Accelerometer	115
5.3.6 Shake Table Performance	116
5.3.7 Model Boundaries	117
5.4 Sample Preparation	117
5.5 Signal Conditioning and Data Acquisition System	119
5.6 Test Results	122
5.6.1 Influence of Hydrocarbon on Pore Pressure Response of Guwahati Sand	122
5.6.2 Cone Penetration Index and DPI Recovery	128
5.6.3 Effect of Depth of Contamination on Pore Pressure Response	131
5.6.4 Coupled effect of Degree and Depth of Contamination	142
5.7 Summary	143

6. Cyclic Triaxial Test and EICP Stabilization

6.1 General	145
6.2 Test procedures and Conditions	146
6.2.1 Chemicals	146
6.2.2 Falcon Tube Tests	146
6.2.3 Specimen Preparation	148
6.2.4 Testing program	150
6.3 Experimental Results and Discussions	152
6.3.1 Pore Pressure Response of Hydrocarbon Contaminated Guwahati Sand	152
6.3.2 Pore Pressure Response of EICP treated Hydrocarbon Contaminated	157
Sand	
6.3.3 Cyclic Secant Shear Modulus and Modulus Degradation curve	165
6.4 Summary	173
7. Conclusions and Future Recommendations	
7.1 Conclusions of the Study	175
7.2 Contributions of the Study	179
7.3 Limitations and Future Scope of Study	180
References	181
Appendix A	215
Author's Publications	217

List of Figures

Fig. 1.1 (a) Toppling of a building during Niigata earthquake in 1964 (b) Sand boil
during California, earthquake, 1979 (Steinbrugge Collection, Earthquake
Engineering Research Center, University of California, Berkeley)2
Fig. 1.2 Grain size range of soil susceptible to liquefaction
Fig. 1.3 General liquefaction concept (Image source: Dash et al.,2010)4
Fig. 1.4 Distribution of potential sources of hydrocarbon contamination
(Source: Global Oil Pollution Information Gateway, 2016)7
Fig. 1.5 A view of contaminated site at Bomu station due to severe spillage
(Image source:www.google.com)8
Fig. 1.6 Global statistics of oil spill volume and number of incidents through different sources10
Fig. 1.7 The volumes of different types of hydrocarbon contaminations (2002–2015)10
Fig. 2.1 Grain size distribution curve for liquefiable soils as proposed by Tsuchida (1970)
(redrawn after Marto and Tan 2012)16
Fig. 2.2 Chinese Criteria for liquefaction susceptibility (after Seed and Idriss 1982)17
Fig. 2.3 Modified chinese criteria for liquefaction susceptibility (after Seed and Idriss 1982)18
Fig. 2.4 Excess pore pressure-time history and typical stress strain curve for Nevada sand at
$D_r = 40\%$ (redrawn after Yang et al. 2003)20
Fig. 2.5 Comparison of cyclic stress ratio versus number of cycles to liquefaction
(Pathak et al. 2010)24
Fig. 2.6 Effect of relative density on PWP ratio (Varghese and Latha 2014)24
Fig. 2.7 Comparison of cyclic stress ratio versus relative density (Pathak et al. 2010)25
Fig. 2.8 Threshold frequency proposed by Varghese and Latha (2014)25
Fig. 2.9 Effect of shaking history on the pore pressure ratio (Wang et al. 2019)26
Fig. 2.10 Comparison of shear modulus measurements from resonant column and bender
element test (Yang and Liu 2016)28

Fig. 2.11 Comparison of cyclic resistance of undisturbed block sample to reconstituted

samples (Baxter et al. 2008)29
Fig. 2.12 Soil specific $CSR - V_S$ relationship independent of sample preparation methods
(Baxter et al. 2008)
Fig. 2.13 Liquefaction criterion proposed for clean, uncemented soils from compiled
case histories (Reproduced from Andrus and Stokoe 2000)32
Fig. 2.14 Plot showing means of field case histories of liquefaction (solid circles) and non-
liquefaction (open circles) and new probabilistic curves (Kayen et al.
2013)
Fig. 2.15 Development of correlation between (a) CPT tip resistance and (b) shear wave
velocity and liquefaction resistance of artificial sand fill (Wichtman et al. 2019)34
Fig. 2.16 Effect of oil content on cyclic resistance of sandy soil
(after Naeni and Shojaedin. 2014)35
Fig. 2.17 Shear wave velocity (m/s) of clean and crude oil contaminated firoozkooh sand
(Rajabi and Sahrifipour 2017b)37
Fig 2.18 Effect of soil densification on pore pressure distribution(a) No densification effect
(b) Densification effect included (after Selcuk and Kayabali 2015)
Fig 2.19 Variation of cyclic resistant ratio (CRR) with silt content (after Karim and Alam 2014)41
Fig. 2.20 Effect of fine content on the minimum mean effective stress of the specimens
(after Abedi and Yasrobi 2010)42
Fig. 2.21 Shear strain (γ) versus number of cycles (N) evolution of samples prepared at
(a) different cement contents; (b) different curing ages (after Suaozo et al. 2016)43
Fig. 2.22 Effect of LS content on the undrained behavior of sandy silt under various
loading conditions as a function of the number of cycles when σ 3 '=30kPa;
(a) plastic axial strain; (b) normalized excess pore pressure (after Chen et al. 2014)44
Fig. 2.23 Effect of bio-cementation on the development on excess pore water pressure
under constant confining stress and cyclic stress ratio (after Xiao et al. 2018)46
Fig. 2.24 Seismic response of saturated and desaturated sands under a_{max} = 1.5 m/s
(after He et al. 2013)47
Fig. 2.25 Cyclic response of (a) bentonite treated soil (after El Mohtar 2012) (b) Laponite
treated soil (after Huang and Wang 2016)49
Fig. 2.26 (a) Microstructure of sand-laponite suspensions (b) 3% laponite permeated specimen

at 1000x magnification (after Howayek et al. 2014)49
Fig. 2.27 Research framework linking existing research topics in liquefaction to future
research directions
Fig. 3.1 Soil sampling locations in Assam, India (Source: National Disaster Risk
Reduction Portal)
Fig. 3.2 Chart indicating initial assessment of relative liquefaction susceptibility of three
samples based on Chinese criterion57
Fig. 3.3 Particle size distribution curve of Guwahati sand
Fig. 3.4 Variation of apparent specific gravity with crude oil content60
Fig. 3.5 Compaction curves for contaminated and uncontaminated sand
Fig. 3.6 Variation of OMC and MDD with crude oil content
Fig. 3.7 Oil evaporation study of contaminated sand
Fig. 3.8 Variation of coefficient of permeability with crude oil content
Fig. 3.9 Shear strength characteristics of uncontaminated and contaminated Guwahati
sand
Fig. 3.10 Stress-strain curves of clean and contaminated Guwahati sands obtained under
consolidated drained triaxial tests67
Fig. 3.11 X-ray diffraction patterns of uncontaminated sand and crude oil
contaminated sand68
Fig. 3.12 FTIR analysis results of hydrocarbon contaminated Guwahati sand69
Fig. 3.13 Scanning electron microscopy images for (a) uncontaminated sand (b) 4% contaminated sand
(c) 8% contaminated sand and (d) 10% contaminated sand under x1000 magnification70
Fig. 3.14 Volumetric oil content versus absolute oil content71
Fig. 3.15 Liquefaction analysis approaches72
Fig. 3.16 Workflow chart for research methodology76
Fig. 4.1 Schematic depicting working of bender element test set-up
Fig. 4.2 Steps involved in sample preparation and assembly in bender element testing
Fig. 4.3 Schematic representation of samples for evaluation of depth of
hydrocarbon contamination84
Fig. 4.4 Typical oscilloscope screen showing input and output signals
Fig. 4.5 Typical oscilloscope screen indicating peaks of input and output signals

Fig. 5.7 Pore pressure transducer calibration chamber115
Fig. 5.8 Calibration and Performance check of Pore Pressure Transducers115
Fig. 5.9 Accelerometer116
Fig. 5.10 Base input acceleration and measured acceleration on shake table116
Fig. 5.11 Adjustable sieve arrangement for rainfall technique118
Fig. 5.12 Density calibration curves for uncontaminated and contaminated sand118
Fig. 5.13 Krypton-3-STG Data Acquisition System120
Fig. 5.14 Typical DEWESOFT interface showing excess pore pressure data without filter120
Fig. 5.15 Filter application after data logging in DEWESOFT121
Fig. 5.16 Excess pore pressure data after filter application121
Fig. 5.17 Excess pore pressure-time histories at varying oil dosages for three shaking
events at d=30 cm
Fig. 5.18 Excess pore pressure-time histories at varying oil dosages for three shaking
events at d=15 cm
Fig. 5.19 Comparison of maximum excess pore pressure ratio, ru, max, and time
to liquefaction, T_L for homogenous sand bed at (a) $d = 30$ cm and (b) $d = 15$ cm127
Fig. 5.20 Cone penetration test results before and after shaking events
Fig. 5.21 Variation of DPI recovery with oil content
Fig. 5.22 Schematic view of preparation of layered sand bed132
Fig. 5.23 Excess pore pressure-time histories for different shaking events at varying oil content,
ω, for $β = 0.356$ and $d = 30$ cm
Fig. 5.24 excess pore pressure-time histories for different shaking events at varying oil content, ω ,
and $\beta = 0.356$ and $d = 15$ cm
Fig. 5.25 Excess pore pressure-time histories for different shaking events at varying oil
content, ω , and $\beta = 0.55$ at 15 cm depth
Fig. 5.26 Excess pore pressure-time histories for different shaking events at varying oil
content, ω , for $\beta = 0.55$ and $d = 30$ cm
Fig. 5.27 Excess pore pressure-time histories for first and third shaking events at varying
oil content, ω , for $\beta = 0.75$ and $d = 15$ cm
Fig. 5.28 Excess pore pressure-time histories for first and third shaking events at varying
oil content, ω , for $\beta = 0.75$ and d = 30cm

Fig. 5.29 Comparison of maximum excess pore pressure ratio, $r_{u, max}$, and time to liquefaction,
T _L for homogenous sand bed at 30 cm depth for (a) $\beta = 0.356$, (b) $\beta = 0.55$,
and (c) $\beta = 0.75$
Fig. 5.30 Coupled effect of variation in crude oil content, ω , and contamination depth ratio,
β on normalized excess pore pressure ratio
Fig. 6.1 (a) Falcon tubes containing EICP solution (b) Filter papers containing calcite
Precipitate147
Fig. 6.2 Experimental setup for cyclic triaxial system151
Fig. 6.3 Applied cyclic shear strain versus number of cycles152
Fig. 6.4 Results of strain-controlled cyclic test for ω = 2%, σ_c = 1.0kg/cm ² , γ = 1.0%
(a) deviatoric stress with cyclic shear strain; (b) deviatoric stress with no. of cycles;
(c) effective stress path; (d) mean effective stress with number of cycles154
Fig. 6.5 Normalized cyclic pore pressure response of crude oil contaminated Guwahati sand
at $\gamma = 0.5\%$, $\sigma_c = 1.0 \text{ kg/cm}^2$ 155
Fig. 6.6 Normalized cyclic pore pressure response of crude oil contaminated Guwahati sand
at $\gamma = 0.5\%$, $\sigma_c = 1.0 \text{ kg/cm}^2$ 157
Fig. 6.7 Normalized cyclic pore pressure response of EICP treated sand specimens for
different crude oil content at $\gamma = 0.5$
Fig. 6.8 Normalized cyclic pore pressure response of EICP treated sand specimens for
different crude oil content at $\gamma = 1.0\%$
Fig. 6.9 SEM images of untreated sand (a) at $\omega = 4\%$, (b) $\omega = 8\%$ and EICP uncontaminated
sand exhibiting cementation (c) at grain to grain contact surface and (d) on the sand
grain surface162
Fig. 6.10 Coupled effect of crude oil contamination and EICP treatment on maximum pore
pressure ratio at (a) $\gamma = 0.5\%$ and (b) $\gamma = 1.0\%$
Fig. 6.11 Variation of theoretically calculated cycles to liquefaction with crude oil content at
(a) $\gamma = 0.5\%$ and (b) $\gamma = 1.0\%$
Fig. 6.12 Deviatoric stress versus cyclic shear strain profiles before and after EICP treatment
for $\omega = 0\%$, 4% and 8% and $\gamma = 0.5\%$
Fig. 6.13 Deviatoric stress versus cyclic shear strain profiles before and after EICP treatment
for $\omega = 0\%$, 4% and 8% and $\gamma = 1.0\%$

Fig. 6.14 Coupled effect of crude oil contamination and EICP treatment on G_{max} values at
(a) $\gamma = 0.5\%$ and (b) $\gamma = 1.0\%$
Fig. 6.15 Variation of degradation index, δ_N , with the number of cycles. N, and the
degradation parameter, t, for untreated contaminated specimens at (a) $\gamma = 0.5\%$ and
(b) $\gamma = 1.0\%$
Fig. 6.16 Variation of degradation index, δ_N , with the number of cycles. N, and the
degradation parameter, t, for EICP treated specimens at $\gamma = 0.5\%$ for (a) 7 days and
(b) 14 days curing172
Fig. 6.17 Variation of degradation index, δ_N , with the number of cycles. N, and the
degradation parameter, t, for EICP treated specimens at $\gamma = 1.0\%$ for (a) 7 days and
(b) 14 days curing173

List of Tables

Table 1.1 Major Oil Spills Occurred Worldwide (Source: Rajabi and Sharifipour (2019))9
Table 2.1 Summary of some significant Laboratory Investigations over the past decade21
Table 2.2 Earthquake-induced damage observed from field investigations
Table 2.3. Overview of past studies with geosynthetics as a liquefaction countermeasure40
Table 2.4 Evolution of liquefaction mitigation techniques in recent years 50
Table. 3.1 Chinese criterion for soil liquefaction
Table 3.2 Properties of light crude oil
Table 3.3. Basic Properties of Guwahati sand
Table. 4.1 Variables along with their considered range
Table. 4.2 Summary of Bender element testing series in the present study
Table 4.3 Comparison of properties of Guwahati sand and other sands from past literature96
Table 5.1. Summary of shake table tests
Table 5.2 Specifications of shake table
Table 6.1 Summary of tube tests 148
Table 6.2. Summary of cyclic triaxial tests conducted at $\sigma_c = 1.0 \text{ kg/cm}^2$ and void ratio,
e = 0.749150