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Preface 

          The east-west trending Central India Tectonic Zone (CITZ) is located in the 

middle of peninsular India, which is about 1500 km long and is considered as 

Proterozoic mobile belt. The CITZ is the suture zone of the Southern Indian Block 

(SIB) and the Northern Indian Block (NIB), which develops the Great Indian landmass 

during the Proterozoic period. The CITZ has three parts from west to east; the central 

mainland region is located among the Mahakoshal Mobile Belt (MMB) in the north and 

the Sausar Mobile Belt (SMB) in the south, the Chhotanagpur Granite Gneiss Complex 

(CGGC) situated at the east of the central region and the eastern most part is Shillong-

Meghalaya Gneissic Complex (SMGC). The Monghyr-Saharsa Ridge and the South 

Purulia Shear Zone are bounded at the northern and southern periphery of the CGGC, 

respectively.  

          The Daltonganj area falls under the western edge of the CGGC, which covers a 

vast area (100,000 sq km) of eastern India. The CGGC is situated among the two 

mobile belts, the North Singhbhum mobile belt in the southern part and the MMB and 

Vindhyan sediments in the northwestern part of the CGGC. However, the western part 

is surrounded by the Gondwana fluviatile deposits. The Ganges alluvial covers the 

northern region, and the Rajmahal basalt bounds the northeastern part. The CGGC 

consists mainly of high-grade metamorphic terrain, with rocks ranging from 

amphibolite to granulite grade. The CGGC consists of mafic granulites, pelitic 

granulites, high-grade gneiss, khondalite, migmatites, leptynite, migmatites and meta-

igneous rocks, which are intruded by a variety of mafic to ultramafic rocks like; 

tholeiitic basalts (Rajmahal Traps), gabbro-anorthosite, dolerite, syenite, along with 

felsic rocks granite, rapakivi granite, pegmatite, and aplite during the various geological 

time. 
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          The study area around Daltonganj lies in the NW extremity of the CGGC within 

the Daltonganj (Palamau)-Hazaribagh-Dumka belt. The investigated area falls between 

latitude 23º54’50’’N to 23º58’30’’N and longitude 84º02’E to 84º06’30’’E in the 

Survey of India Toposheet number 73A/1. The study area extends in the east up to 

Renukoot and in the NNW direction to Japala of Garhawa district. A thrust separates it 

to Vindhyan Supergroup, which lies in Sasaram. The study area is located 14 km away 

from Daltonganj in the southwestern part. The study area consists of mafic granulite, 

pelitic granulite, high-grade gneiss (garnet-cordierite-gedrite gneiss, garnet-cordierite-

orthopyroxene gneiss), migmatitic granite gneiss, massive granite, khondalite (garnet-

cordierite-sillimanite-graphite gneiss), amphibolite, dolomitic marble and dyke in the 

localities around Datam, Sokra, Dokra, Nawa, Mahawat-Muria, Kui, Rakh Pahar and 

Khatauni.  

          Textural associations of mineral phases, mineral composition and transmission 

electron microscopy (TEM) analyses of the rock samples are suggested that the three 

stages of gedrite. The bundles, prismatic and fibrous are three different forms of 

gedrites, which have been observed under the TEM images. TEM nanophotographs and 

selected area electron diffraction patterns show the distribution of metallic element 

position at the different lattice site. TEM analyses revealed that some of the 

clinopyroxenes have exsolution texture, where orthopyroxene occurs as thin lamellae 

within the porphyroblast of clinopyroxene. The measured lattice parameters of Opx and 

Cpx were; a = 18.4, b = 8.8, c = 5.3 Å and a = 9.4, b = 8.9, c = 5.4 Å respectively 

determined by electron diffraction pattern.  

          Electron microprobe analyses (EPMA) of minerals from the different mineral 

assemblages are used to observe the characteristics of mineral phases. The XMg of 

garnet in the different rocks show the following trends: high-grade gneisses (0.21–0.30) 
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> mafic granulites (0.24–25) > pelitic granulites (0.17–0.23). The higher content of 

TiO2 in biotite from mafic granulites (More than 4 wt%) is similar to other granulite 

facies terrains. Cordierite has a variable range of XMg, ranging from 0.604 to 0.795; 

higher values correspond to the high-grade gneiss, whereas in pelitic granulites included 

cordierite within garnet shows 0.78 and matrix cordierite shows 0.68. The XMg ratio of 

hornblende ranges from 0.38 to 0.52, and AlIV and AlVI content varies from 1.453 to 

1.875 and 0.0 to 0.478 p.f.u. respectively. Although in gedrite, the XMg varies from 0.46 

to 0.53 and it contains a significant amount of Na2O, up to 1.95 wt%. In mafic 

granulites, orthopyroxene lies close to hypersthene and coexisting clinopyroxene plots 

within the diopside and augite field. The XCa = (Ca/Ca+Na+K) ratio of plagioclase from 

mafic granulites range from 0.52 to 0.93.   

          The high-grade gneisses are classified on the basis of total alkali versus silica 

(TAS) plot; in this classification scheme, all of the garnet-cordierite-amphibole gneisses 

lie in the basalt field, and the remaining two garnet-orthopyroxene-amphibole gneisses 

fall in the basaltic andesite field. However, mafic granulite samples show basaltic 

nature, and pelitic granulites display diorite and monzonite, whereas few samples are 

gabbroic in nature. High-grade gneiss shows excellent availability of the compatible 

element (Cr, Ni, Co, V) and low TiO2 suggests a mafic source rock or may be more 

possibility of mantle origin. The substantial depletion of K and Na is most pronounced 

if their protoliths are considered the mafic metavolcanic. Negative Nb and Sr anomalies 

suggest the involvement of subduction orogeny. Y–La–Nb triangular plot and Yb–Th 

discrimination diagram indicate the calc-alkaline basaltic nature of these gneisses 

developed at the island arc domain during subduction-related processes. The enhanced 

abundance of LREE and LILE (Th, Ta, U, Pb) is better interpreted due to enrichment by 

fluid-related metasomatism. High-grade gneiss shows calc-alkaline rich mafic fluids 
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intruded in the pre-existing rocks and then emit its mafic components (Fe, Mg). In the 

process, the modal availability of the felsic component of pre-existing rocks decreases, 

and it signifies a 'restitic' origin of the studied gneisses. The mafic granulite shows high 

elemental concentrations of Mg, V, Cr, and Co suggest that they be derived from 

primary magmatic sources. The amount of HFSE (Y, U, Pb, Hf, Nb, Ta) is small, 

indicating that the rock is derived from the mafic source. Nb has negative anomalies 

that showed crustal contamination. The Zr vs Nb/Zr diagram confined that protolith of 

pelitic granulite encountered a subduction-related tectonic setting. The Y vs Nb and Rb 

vs (Y+Nb) tectonic discrimination diagram reveals that the protolith has an affinity 

towards the within plate granite (WPG). After establishing the relationship between the 

(Y/Nb)N vs (Th/Nb)N diagram, it is used to establish the discrimination between oceanic 

islands, continental crust and convergent margin rocks, and all samples are located in 

the convergent margin rocks field. In pelitic granulite, some sedimentary features have 

also been observed as overall enrichment of ∑REE may be due to immobile REE 

accumulation during the sedimentation; also, low content of Sr attribute to the leaching 

effect. Sr is depleted because they are highly mobile and are easily transported during 

sediment dehydration. Pelitic granulites have a high Rb and Ba content, as the feldspar 

is a significant host of Rb and Ba in terrigenous sedimentary rocks.  

The P-T conditions of high-grade gneiss have been calculated by various conventional 

geothermobarometry. The garnet-orthopyroxene geothermometry suggests temperature 

lies between 735 and 809ºC, whereas garnet-cordierite and garnet-biotite exchange 

geothermometers reveal temperature ranges from 610 to 654ºC and 522 to 581ºC, 

respectively. However, garnet–cordierite–sillimanite–quartz geobarometer shows 

pressure lies between 6.9-7.43 kbar. Pseudosection modelling of high-grade gneiss in 

the NCKFMASH system using the software Perple_X shows the The pre-peak 
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metamorphic stage was recorded between the range of 5.78–6.15 kbar and 600–622°C, 

and the first stage Grt1 developed under pressure conditions of 6.70 kbar. The P-T 

condition of the peak metamorphism is at 8.65–9.42 kbar and 772–788°C. For the post-

peak metamorphic stage, the mineral assemblage Grt3-Amp3-Crd-Bt-melt-Plg-Qz 

remains as orthopyroxene-free phase. This post-peak stage is confined at 5.71–6.18 

kbar and 745–762°C, which is constrained by the isopleth lines of garnet (XMg) and 

cordierite (XMg). Various methods to constrain the P-T conditions of mafic granulites 

have been used, such as conventional and multi-equilibrium thermobarometry as well as 

forward thermodynamic modelling. Results from multi-equilibrium thermobarometry, 

using the software THERMOCALC, suggest that the mafic granulite's peak conditions 

at average pressure-temperature (PTav) conditions of 6.7±1.19 kbar/ 814±60°C. In 

contrast, exsolution bearing opx-cpx minerals crystallised at a relatively lower 

temperature (772±14°C), determined by the conventional geothermometers. The peak 

to retrograde evolution of these mafic granulites is constrained through phase 

equilibrium modelling in the NCKFMASHTO model system. Phase equilibria results of 

peak conditions (i.e. 6.0-6.78 kbar and 775-808°C) are consistent for those obtained 

through multi-equilibrium and conventional thermobarometry, while the retrograde path 

is defined down to ~4.5 kbar and ~540°C. The same model system as mafic granulite is 

chosen for the pelitic granulites. The pseudosection is characterized by large high 

variance (F = 3-6) garnet-bearing fields. Garnet-biotite geothermometer is used to 

calculate temperature condition and the estimated temperature varies from 716 to 

806°C, and garnet-biotite-plagioclase-quartz geobarometer inferred that the pressure 

lies at 8.47. However, garnet-cordierite geothermometer provides the temperature 

condition ranges from 661 to 717°C, whereas garnet-cordierite-sillimanite-quartz 

geobarometer was used to estimate the pressure and it ranges from 5.35 to 6.24 kbar. 
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The P-T condition of pre-peak metamorphism is found at ~3.2 kbar and ~620ºC, and the 

P-T condition of this stage is derived by the XMg isopleth contour lines of garnet and 

cordierite which are similar to the analyzed microprobe data. The P-T stability field for 

the peak assemblage (grt + bt + plg + sill + kfs + melt + ilm + qz) ranges from 7.40 to 

9.10 kbar and 815 to 835°C. Tetravariant fields dominate the pseudosection. The 

textural interpretation reveals that the retrograde metamorphic assemblage in P-T 

pseudosection contains grt + crd + bt + plg + kfs + melt + ilm + qz + mag, which are 

stable at pressure ~4.0 kbar and temperature ~790°C. Our results have two fold 

implications: (i) they show how the integrating of different geothermobarometric 

methods is the best proxy to constrain the evolution of high-grade metamorphic rocks, 

and (ii) they pavement to new constraints on the Paleoproterozoic to Neoproterozoic 

evolution of the CGGC. 

The CGGC consists of a wide variety of rocks and is exhibiting four stages of 

metamorphism (M1 to M4) and deformation that recorded in the: the M1 occurred at 

about 1.87–1.66 Ga, the M2 is considered to happen between 1.55–1.45 Ga, the M3 

varies from 1.2–0.93 Ga, and the last M4 event lies between 0.87–0.78 Ga. The first 

metamorphic event has been recorded from the pelitic granulites at ~1680–1580 Ma; 

previously, their protolith must have derived from the different sources which contain 

the variable age domains ~2400 Ma, ~2000 Ma ~ 1800–1700 Ma. The geochronological 

age of detrital zircon demarcates the protolith of pelitic granulites and their origin 

source. It has inferred that the NW CGGC area's pelitic granulite underwent a 

progressive phase of tectonothermal processes where initially occurrence of crustal 

thickening (M1) followed by quick exhumation of the crustal lithosphere (M2), these 

both processes indicate that collision or subduction-related tectonic processes. Mafic 

granulites show all the age data gathered near the 1600 Ma, with two ages lying over 
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the Concordia line. However, the weighted average age plot shows 1629±6 Ma 

(MSWD=1.4), validly constraining the magmatic emplacement event. The EPMA 

analysis of high-grade gneisses produced three age population at 1424 ± 64 Ma, 972 ± 

28 Ma and 855 ± 31 Ma with 95% confidence, it indicates that these ages are in the 

vicinity of the Mesoproterozoic and Neoproterozoic ages. 

          It has been observed the Earth's evolutionary history must have been a cycle of 

multiple stages for the accretion and breakup of a supercontinent. The Columbia 

supercontinent's amalgamation took place between ~2000 Ma to ~1800 Ma, and further 

breakdown process began after ~1500 Ma. The Indian peninsular shield has preserved a 

strong signature of the Columbia assembly. The formation of Rodinia supercontinent 

was started from the Grenvillian orogeny (~1100–900 Ma). The CGGC preserves the 

age of 1100–900 Ma, showing evidence of a Grenvillian orogeny, and suggesting that 

the Grenvillian orogeny suture was possessed by the CGGC of India. 


