CERTIFICATE

This is to certify that the revised thesis entitled "**Analysis of Effect of Carbonation on Reinforced Cement Concrete**" is being submitted by Mr. Alok Ranjan in partial fulfilment for the award of Ph.D. in Department of Civil Engineering IIT (BHU), Varanasi is a record of bonafide work carried out by him.

Date of Submission:

Prof. Rajesh Kumar

Prof. Devendra Mohan

(Supervisor)

(Co-supervisor)

Forwarded by:

Signature of Head of Department

DECLARATION BY THE CANDIDATE

I, Alok Ranjan, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervisions of Prof. Rajesh Kumar and Prof. Devendra Mohan in "Department of Civil Engineering" from "23rdJuly 2014 to 11th February 2021" at the Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertation, thesis, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date:

Place:

(Alok Ranjan)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

Prof. Rajesh Kumar (Supervisor) Department of Civil Engineering IIT (BHU), Varanasi Prof. Devendra Mohan (Co-Supervisor) Department of Civil Engineering IIT (BHU), Varanasi

Signature of Head of Department

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Analysis of Effect of Carbonation on Reinforced Cement Concrete

Name of the Student: Alok Ranjan

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) all rights under copyright that may exist in and for the above thesis submitted for the award of the "*Doctor of Philosophy*".

Date:

Place:

(Alok Ranjan)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institutes copyright notice are indicated.

ACKNOWLEDGEMENTS

I express my deep sense of gratitude and indebtedness towards my guides Dr. Rajesh Kumar, Professor, Department of Civil Engineering and Dr. Devendra Mohan, Professor, Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, for providing their continuous support, motivation and guidance throughout the course of this study and in the participation of this thesis. Without their support, I would not be able to reach this mark of submission of thesis report.

I would like to thank Prof. Prabhat Kumar Singh Dikshit (Head), Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, for motivating me and assisting me with all the facilities to carry out my research work.

I would also like to express my sincere thanks to RPEC member's Prof. S Mandal, Department of Civil Engineering and Prof. R S Singh, Department of Chemical Engineering, Dr. Anurag Ohri, Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, for their advice and recommendation which catalyzed the improvement of my research from various perspectives.

I wish to express deep regards to Prof. S.B. Dwivedi, Department of Civil Engineering, Prof. Virendra Kumar, Department of Civil Engineering, Prof. Prabhat Kumar Singh, Department of Civil Engineering and all the teachers and Research Associates of Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, for their kind support at all moments during the progress of my research.

With a deep sense of gratitude I express my sincere thanks to Central Instrument Facility Centre (CIFC) - Indian Institute of Technology (Banaras Hindu University) Varanasi, for their help in carrying out sample analysis. I am grateful to my Laboratory Assistant, Department of Civil/Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi, for the assistance extended by him time to time during this research work. I am also grateful to all Laboratory staff and all supporting staffs of Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, for the assistance help in this research work.

I am grateful to all the office staff and authorities of Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, for their kind help during the period of my stay to complete the thesis work.

I am thankful to my fellow friends Mr. Shashi Kumar, Mr. Chayan Gupta, Mr. Sujeet Kumar, my colleagues and juniors for their support, cooperation and sincere help in many ways.

I would like to thank my parents for being my pillars of strength, my wife for support and motivation and my beloved son Pragyan for being my inspiration for life.

I would like to offer special thanks to BHEL for granting me study leave for the course of PhD.

Finally, I bow with reverence and gratitude to thank the Almighty who has enriched me with such an excellent opportunity and infused the power in my mind to fulfill the work assigned to me.

Date: Place:

(Alok Ranjan)

TABLE OF CONTENTS

	List of Figures	xix
	List of Tables	xxiii
	Notations	xxvii
	Preface	xxix
Chapter 1	INTRODUCTION	1
1.1	Background	1
	Durability	2
	Reinforcement Corrosion	3
	Carbonation	5
	Chemistry of Carbonation	6
	Deterioration of Concrete	7
	Factor Influencing Carbonation	10
	Carbonation Rate in Concrete (K)	14
	Determination of Carbonation through Experimental Procedures	15
1.2	Need for Further Research	16
1.3	Aims of the Research Programme and Scope of Study	17
1.4	Scope of Study	17
1.5	Outline of the Thesis	18
Chapter 2	LITERATURE REVIEW	21
2.1	Introduction	21
2.2	Development of Indian and International Cement Standards with respect to OPC and PPC	22
2.3	Physical and Chemical Characteristics of OPC and PPC and Components	25

2.4	Hydration of Cement	26
2.5	Fresh Concrete Properties	27
2.6	Strength Development of Concrete	28
2.7	Effect of Various Factors on Depth of Carbonation in Concrete: Carbonation Resistance of Concrete	28
2.7.1	Water/Binder (W/B) ratio	28
2.7.2	Mineral Admixture	31
2.7.3	CO ₂ Concentration	38
2.7.4	Relative Humidity	39
2.7.5	Curing Period	41
2.7.6	Porosity	43
2.7.7	Super Plasticizers	44
2.7.8	Concrete Cover, Surface Coating and Period of Exposure	45
2.8	Literature Review on Effect of Carbonation on Compressive Strength	46
2.9	Test Methods for Determination of Carbonation	46
2.10	Conclusions	48
Chapter 3	EXPERIMENTAL PROGRAMME, MATERIAL AND METHODOLOGY	51
3.1	Introduction	51
3.2	Materials	51
3.2.1	OPC and PPC	51
3.2.2	Aggregate	53
3.2.3	Super Plasticizer	55
3.2.4	Mineral Admixtures	56
3.2.5	Water	59
3.2.6	Paint	59
3.3	Mix Design	60
3.4	Experimental Programme	69

3.5	Pre - Conditioning Parameters	72
3.6	Tests Conducted	74
3.7	Compressive Strength	75
3.8	Measurement of Depth of Carbonation by Various Methods	75
3.8.1	Phenolphthalein Indicator	75
3.8.2	FTIR Method	76
3.8.3	X-Ray Diffraction Analysis	78
3.8.4	SEM	82
3.9	Conclusions	83
Chapter 4	THE TEST RESULTS AND DISCUSSIONS	85
4.1	Introduction	85
4.2	Carbonation Depth from Phenolphthalein Indicator	86
4.2.1	OPC Concrete (Without Super Plasticizer)	86
4.2.2	OPC Concrete (With Super Plasticizer)	87
4.2.3	OPC Concrete with Fly Ash Replacement of Cement	88
4.2.4	OPC Concrete with Micro Silica Replacement of Cement	89
4.2.5	OPC concrete with Fly Ash Replacement of Fine Aggregate	91
4.2.6	OPC Concrete with GGBS Replacement of Cement	92
4.2.7	OPC Concrete with GGBS Replacement of Fine Aggregate	94
4.2.8	Period of Exposure for OPC Concrete	95
4.2.9	External Cover of OPC Concrete	96
4.2.10	PPC Concrete (Without Super Plasticizer)	97

4.2.11	PPC Concrete (With Super Plasticizer)	99
4.2.12	PPC Concrete with Fly Ash Replacement of Cement	100
4.2.13	PPC Concrete with Micro Silica Replacement of Cement	101
4.2.14	PPC Concrete with Fly Ash Replacement of Fine Aggregate	102
4.2.15	PPC Concrete with GGBS Replacement of Cement	104
4.2.16	PPC Concrete with GGBS Replacement of Fine Aggregate	105
4.2.17	Period of Exposure of PPC Concrete	106
4.2.18	External Cover of PPC Concrete	107
4.3	Carbonation Depths from Phenolphthalein Indicator at Variable Parameters	108
4.3.1	CO ₂ Concentration on OPC Concrete	108
4.3.2	CO ₂ Concentration on PPC Concrete	109
4.3.3	Relative Humidity on OPC Concrete	110
4.3.4	Relative Humidity on PPC Concrete	111
4.4	Carbonation Depths From XRD Analysis	112
4.4.1	OPC Concrete with W/C 0.4	113
4.4.2	OPC Concrete with W/C 0.45	114
4.4.3	OPC Concrete with W/C 0.5	115
4.4.4	PPC Concrete with W/C 0.4	116
4.4.5	PPC Concrete with W/C 0.45	117
4.4.6	PPC Concrete with W/C 0.5	118

4.5	Results Obtained from FTIR Method	119
4.5.1	OPC Concrete with W/C 0.4	119
4.5.2	OPC Concrete with W/C 0.45	120
4.5.3	OPC Concrete with W/C 0.5	121
4.5.4	PPC Concrete with W/C 0.4	122
4.5.5	PPC Concrete with W/C 0.45	123
4.5.6	PPC Concrete with W/C 0.5	123
4.6	Results Obtained from SEM-EDX Analysis	124
4.6.1	OPC Concrete with W/C 0.4	125
4.6.2	OPC Concrete with W/C 0.45	126
4.6.3	OPC Concrete with W/C 0.5	127
4.6.4	PPC Concrete with W/C 0.4	128
4.6.5	PPC Concrete with W/C 0.45	129
4.6.6	PPC Concrete with W/C 0.5	130
4.7	Comparison of Carbonation Depth Obtained from Various Methods	131
4.8	Comparison of Carbonation Depths of OPC Concrete and PPC Concrete	133
4.9	Conclusions	134
Chapter 5	DISCUSSION OF RESULTS OTHER THAN CARBONATION	137
5.1	Introduction	137
5.2	Results of Compressive Strength of Carbonated and Non-carbonated Concrete	137

5.3	Compressive Strength of Concrete Samples	138
5.4	Conclusions	146
Chapter 6	OPC AND PPC: CARBONATION RESISTANCE OF CONCRETE	149
6.1	Introduction	149
6.2	Carbonation Resistance of OPC and PPC Concrete	149
6.3	Conclusions	151
Chapter 7	THE WAY FORWARD FOR USING PPC IN CONCRETE CONSTRUCTION INDUSTRY	153
7.1	Introduction	153
7.2	Way Forward for using PPC in the Concrete Construction Industry	153
7.3	Conclusions	155
Chapter 8	CONCLUSIONS AND SCOPE OF FURTHER STUDY	157
Chapter 8 8.1	CONCLUSIONS AND SCOPE OF FURTHER STUDY Introduction	157 157
-		
8.1	Introduction	157
8.1 8.2	Introduction Impact of W/C Ratio	157 157
8.1 8.2 8.3	Introduction Impact of W/C Ratio Impact of Type of Cement	157 157 158
8.1 8.2 8.3 8.4	Introduction Impact of W/C Ratio Impact of Type of Cement Impact of CO ₂ Concentration	157 157 158 158
 8.1 8.2 8.3 8.4 8.5 	Introduction Impact of W/C Ratio Impact of Type of Cement Impact of CO ₂ Concentration Impact of Relative Humidity	157 157 158 158 158
8.1 8.2 8.3 8.4 8.5 8.6	Introduction Impact of W/C Ratio Impact of Type of Cement Impact of CO ₂ Concentration Impact of Relative Humidity Impact of Curing Period	157 157 158 158 158 158
8.1 8.2 8.3 8.4 8.5 8.6 8.7	Introduction Impact of W/C Ratio Impact of Type of Cement Impact of CO ₂ Concentration Impact of Relative Humidity Impact of Curing Period Impact of Period of Exposure	157 157 158 158 158 159 159
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	Introduction Impact of W/C Ratio Impact of Type of Cement Impact of CO ₂ Concentration Impact of Relative Humidity Impact of Curing Period Impact of Period of Exposure Impact of External Protective Covers like Plaster and Paint	157 157 158 158 158 159 159 159
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	Introduction Impact of W/C Ratio Impact of Type of Cement Impact of CO ₂ Concentration Impact of Relative Humidity Impact of Curing Period Impact of Period of Exposure Impact of External Protective Covers like Plaster and Paint Impact of Addition of Super Plasticizer	157 157 158 158 158 159 159 159 160

8.13	Impact of Addition of FA as Fine Aggregate Replacement	162
8.14	Impact of Addition of GGBS as Fine Aggregate Replacement	162
8.15	Accuracy of Experimental Procedures	163
8.16	Compressive Strength	163
8.17	Inference	163
8.18	Scope of Further Study	165
	References	167
	List of Publications	181
	Appendix	183

LIST OF FIGURES

FIGURE		PAGE
NO.	DESCRIPTION	NO.
1.1	RCC Structure indicating Passivating Film around Reinforcement Bar	5
1.2	Free body Diagram of Concrete and Reinforcement Bar subject to Pressure	8
1.3	Spalling of Concrete	9
3.1	All in Aggregate as per IS-383, Table 5 for W/C 0.4	61
3.2	All in Aggregate as per IS-383, Table 5 for W/C 0.45	62
3.3	All in Aggregate as per IS-383, Table 5 for W/C 0.5	63
3.4	Preparation of Concrete Cubes and Placing of Samples in Carbonation Chamber	72
3.5	Carbonation Chamber - Departmental Laboratory, IIT (BHU), Varanasi	74
3.6	Concrete Sample Tested with Phenolphthalein Indicator	76
3.7	FTIR Instrument - Departmental laboratory, IIT (BHU), Varanasi	77
3.8	XRD apparatus- Departmental laboratory, IIT (BHU), Varanasi	80
3.9	Analysis of test data on Philip's X'PERT High Scorer software	81
3.10	SEM instrument- Departmental laboratory, IIT (BHU), Varanasi	82
4.1	Carbonation Depth of OPC Concrete without Super Plasticizer	86
4.2	Carbonation Depth of OPC Concrete using Super Plasticizer	87
4.3	Carbonation Depth of OPC Concrete with Fly Ash Replacement of Cement	89
4.4	Carbonation Depth of OPC Concrete with Micro Silica Replacement of Cement	90
4.5	Carbonation Depth of OPC Concrete with Fly Ash Replacement of Fine Aggregate	92

4.6	Carbonation depth of OPC Concrete with GGBS Replacement of Cement	93
4.7	Carbonation Depth of OPC Concrete with GGBS Replacement of Fine Aggregate	95
4.8	Carbonation Depth vs. Period of Exposure for OPC Concrete	96
4.9	Carbonation Depth vs OPC Concrete with/without Plaster and Paint	97
4.10	Carbonation Depth of PPC Concete at Various Curing Periods	98
4.11	Carbonation Depth of PPC Concrete Using Super Plasticizer at Various Curing Periods	99
4.12	Carbonation Depth of PPC Concrete with Fly Ash replacement of Cement	101
4.13	Carbonation Depth of PPC Concrete with Micro Silica Replacement of Cement	102
4.14	Carbonation Depth of PPC Concrete with Fly Ash Replacement of Fine Aggregate	103
4.15	Carbonation Depth of PPC Concrete with GGBS Replacement of Cement	105
4.16	Carbonation Depth of PPC Concrete WITH GGBS Replacement of Fine Aggregate	106
4.17	Carbonation Depth vs. Periods of Exposures at Variable W/C for PPC Concrete	107
4.18	Carbonation Depth vs PPC Concrete with/without Plaster and Paint	108
4.19	Carbonation Depth vs. Percentage of CO_2 at Variable W/C for OPC Concrete	109
4.20	Carbonation Depth vs. Percentage of CO_2 at Variable W/C for PPC Concrete	110
4.21	Carbonation Depth vs. Percentage of Relative Humidity at Variable W/C for OPC Concrete	111
4.22	Carbonation Depth vs. Percentage of Relative Humidity for PPC Concrete	112
4.23	XRD Results for OPC Concrete at W/C 0.4	113
4.24	XRD Results for OPC Concrete at W/C 0.45	114

4.25	XRD Results for OPC Concrete at W/C 0.5	115
4.26	XRD Results for PPC Concrete at W/C 0.4	116
4.27	XRD Results for PPC Concrete at W/C 0.45	117
4.28	XRD Results for PPC Concrete at W/C 0.5	118
4.29	FTIR Results for OPC Concrete at W/C 0.4	119
4.30	FTIR Results for OPC Concrete at W/C 0.45	120
4.31	FTIR Results for OPC Concrete at W/C 0.5	121
4.32	FTIR Results for OPC Concrete at W/C 0.4	122
4.33	FTIR Results for OPC Concrete at W/C 0.45	123
4.34	FTIR Results for OPC Concrete at W/C 0.5	124
4.35	Comparison of Carbonation Depth of OPC Concrete by Various Methods	132
4.36	Comparison of Carbonation Depth of PPC concrete by Various Methods	133
5.1	Compressive Strength vs. Addition of Super plasticizer for OPC Concrete	140
5.2	Compressive Strength vs. Percentage Replacement of Cement with Fly Ash for OPC Concrete	141
5.3	Compressive Strength vs. Percentage Replacement of Cement with Micro silica for OPC concrete	141
5.4	Compressive Strength vs. Percentage Replacement of Cement with GGBS for OPC concrete	142
5.5	Compressive Strength vs. Addition of Super plasticizer for PPC Concrete	142
5.6	Compressive Strength vs. Percentage Replacement of Cement with Fly ash for PPC Concrete	143
5.7	Compressive Strength vs. Percentage Replacement of Cement with Micro silica for PPC concrete	143
5.8	Compressive Strength vs. Percentage Replacement of Cement with GGBS for OPC concrete	144

LIST OF TABLES

TABLE	DESCRIPTION	PAGE
2.1	Classification of Cement as per Indian and International Standards	24
3.1	Physical Properties of OPC and PPC	52
3.2	Chemical Properties of OPC and PPC	52
3.3	Sieve Analysis of 20 mm Nominal Size Aggregate	54
3.4	Sieve Analysis of 10 mm Nominal Size Aggregate	54
3.5	Sieve Analysis of Sand	55
3.6	Physical Properties of Aggregates	55
3.7	Properties of Super Plasticizer	56
3.8	Physical and Chemical Properties of SF	57
3.9	Physical and Chemical Properties of Fly Ash	58
3.10	Physical and Chemical Properties of GGBS	59
3.11	All in Aggregate as per IS-383, Table 5 for W/C 0.4	60
3.12	All in Aggregate as per IS-383, Table 5 for W/C 0.45	61
3.13	All in Aggregate as per IS-383, Table 5 for W/C 0.5	62
3.14	Table for Mix Design of Various Concrete Samples Prepared for the Experimental Study	64
4.1	Carbonation Depth of OPC Concrete Mixes (Without Super Plasticizer)	86
4.2	Carbonation Depth of OPC Concrete Mixes (With Super Plasticizer)	87
4.3	Carbonation Depth of OPC Concrete Mixes with Fly Ash Replacement of Cement	88
4.4	Carbonation Depth of OPC Concrete Mixes with Micro silica Replacement of Cement	89
4.5	Carbonation Depth of OPC Concrete Mixes with Fly Ash Replacement of Fine Aggregate	91

4.6	Carbonation Depth of OPC Concrete Mixes with GGBS Replacement of Cement	92
4.7	Carbonation Depth of OPC Concrete Mixes with GGBS Replacement of Fine aggregate	94
4.8	Carbonation Depth of OPC Concrete Mixes for Various Periods of Exposure	95
4.9	Carbonation Depth vs. OPC Concrete Mixes with/without Plaster and Paint	96
4.10	Carbonation Depth of PPC Concrete Mixes (without Super Plasticizer)	98
4.11	Carbonation Depth of PPC Concrete Mixes (with Super Plasticizer)	99
4.12	Carbonation Depth of PPC Concrete Mixes with Fly Ash Replacement of Cement	100
4.13	Carbonation Depth of PPC Concrete Mixes with Micro silica Replacement of Cement	101
4.14	Carbonation Depth of PPC Concrete Mixes with Fly Ash Replacement of Fine Aggregate	103
4.15	Carbonation Depth of PPC Concrete Mixes with GGBS Replacement of Cement	104
4.16	Carbonation Depth of PPC concrete Mixes with GGBS Replacement of Fine Aggregate	105
4.17	Carbonation Depth of PPC Concrete Mixes for Various Periods of Exposure	107
4.18	Carbonation Depth vs. PPC Concrete Mixes with/without Plaster and Paint	108
4.19	Carbonation Depth of OPC Concrete Mixes for Various Percentages of CO_2	109
4.20	Carbonation Depth of PPC Concrete Mixes for Various Percentages of CO_2	110
4.21	Carbonation Depth of OPC Concrete for Various Percentages of Relative Humidity	110
4.22	Carbonation Depth of PPC Concrete for Various Percentages of Relative Humidity	112

4.23	Comparison of Carbonation Depth of OPC Concrete by Various Methods	131
4.24	Comparison of Carbonation Depth of PPC Concrete by Various Methods	132
4.25	Carbonation Depth of OPC Concrete vs. PPC Concrete	133
5.1	Compressive Strength of Carbonated and Non-Carbonated OPC Concrete	137
5.2	Compressive Strength of Carbonated and Non-Carbonated PPC Concrete	137
5.3	Experimental Results of Compressive Strength of Concrete Samples at Variable Parameters	138

List of Notations

Notation	Full Form
CO ₂	Carbon Di-oxide
CA	Coarse Aggregate
CSH	Calcium Silicate Hydrate
СН	Calcium hydroxide
FA	Fly Ash
GGBS	Ground Granulated Blast Furnace Slag
NVC	Normally-Vibrated Concrete
OPC	Ordinary Portland Cement
PC	Portland Cement
PPC	Portland Pozzolana Cement
RCC	Reinforced Cement Concrete
RH	Relative Humidity
SF	Silica Fume
W/C	Water Cement Ratio
SCM	Supplementary Cementitious Material
CSM	Condensed Silica Fume
XRDA	X-ray Diffraction Analysis
FTIR	Fourier Transformation Infra-red
SEM	Scanning Electron Microscopy
HVFA	High Volume Fly Ash
TGA	Thermal Gravimetric Analysis
PCA	Poly Carboxylic Acid

PREFACE

Concrete is the most widely used construction material across the globe. Durability of hardened concrete depends upon several factors and the same is a major concern for civil / structural engineers to ensure sustainability of structures. Detailed study of deterioration of concrete structures, its causes and remedial tools is the need of the hour. As such, no concluding remarks may be made from the studies since the results of different researchers are different. Since concrete structures are widely used and the issue of reinforcement corrosion demands serious concern, it is important to be able to determine carbonation accurately and to be able to design structures accordingly. Carbonation is one of the most important factors upon which durability greatly depends. The natural process of Carbonation of concrete structures in our surroundings is very slow. However, for the purpose of study, carbonation effect on the concrete can be accelerated which simulates the actual behavior of effect of carbonation on concrete. Further, the magnitude of carbonation in concrete can be analyzed through various procedures. It is equally important to assess accurate values of carbonation through the most effective methodology to be able to ascertain correct data for design purpose. Past experiments have also shown that the depth of carbonation is distinctly influenced by multiple factors including both mix proportion and constituents as well as external factors.

In this study, experiments have been conducted on concrete cubes by varying multiple factors such as type of cement, water/cement ratio, effect of super plasticizer, CO₂ concentration, replacement of cement and fine aggregate with fly ash, micro silica and GGBS and curing period, paint, plaster, exposure period and percentage of relative humidity (RH) in order to assess the depth of carbonation under various conditions. Carbonation effect on concrete has been simulated in controlled carbonation chamber in

short duration of time. Phenolphthalein indicator method, being the most widely used and economic methodology of determination of depth of carbonation has been used for most samples to assess carbonation depth and analyze the impact of various factors on carbonation in concrete for both OPC and PPC concrete. Further, in this study, concrete samples have also been tested through advanced techniques such as XRD analysis, FTIR method and SEM. Experiments through advanced techniques have been conducted for few samples only by varying type of cement and water cement ratio (W/C), mainly to determine the magnitude of results and accuracy of data.

Experimental investigations have resulted in clear indication of the impact of various factors on the depth of carbonation. It is seen that carbonation increases with the increase of water/cement, CO₂ concentration and exposure period. Carbonation depth decreases with increasing curing period, use of super plasticizers, paint, plaster, partial replacement of cement with fly ash, micro silica and GGBS and replacement of fine aggregate with fly ash and GGBS. Further the trend of increase/decrease of carbonation on account of other factors have also been determined with the help of experimental data and have been graphically represented in this study. It is also found that the depths of carbonation in PPC concrete are higher than that in OPC concrete. Results also show that the carbonation depth values of advanced techniques are nearly double that of the conventional phenolphthalein indicator method.

The results of the experiments can be analyzed to determine the practical depths of carbonation in concrete subject to various conditions. The significance of the carbonation depths for different concrete types and exposure conditions obtained from the experiments will act as a tool to design concrete structures resistant to carbonation.

ххх