

CERTIFICATE

It is certified that the work contained in the thesis titled **"Study on retrofitted girders and its applications in bridges**" by **Mr. Anjani Kumar Shukla** (Roll No. 16061502) has been carried out under my supervision and guidance and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy, and SOTA for the award of Ph.D. Degree.

Signature:

Supervisor

(Dr. Pabitra Ranjan Maiti)
Associate Professor
Department of Civil Engineering
Indian Institute of Technology
(Banaras Hindu University)
Varanasi, U.P.-221005

DECLARATION BY THE CANDIDATE

I, Anjani Kumar Shukla, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of *Dr. Pabitra Ranjan Maiti* from January 2017 to May 2021 at the Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date:

Place: Varanasi

Signature of the Student

Anjani Kumar Shukla

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my knowledge.

Supervisor

Dr Pabitra Ranjan Maiti Associate Professor Dept. of Civil Engineering IIT (BHU), Varanasi

Signature of Head of Department

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Study on retrofitted girders and its applications in bridges Name of the Student: Anjani Kumar Shukla

Copyright Transfer

The undersigned hereby assigns to the Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "Doctor of Philosophy".

Date:

Signature of the Student

Place: Varanasi

Anjani Kumar Shukla

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Acknowledgment

Firstly, I would like to express my sincere gratitude to my Supervisor, Mentor, and Guru Dr. Pabitra Ranjan Maiti, for the continuous support of my Ph.D. study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my Ph.D. study. Besides my advisor, I would like to thank the rest of my thesis committee: Prof. K. K Pathak, and Prof S Mukhopadhyay for their insightful comments and encouragement, and also for the hard question which incented me to widen my research from various perspectives.

My sincere thanks also go to head of department, Civil Engineering Prof P. K Singh Dixit, and esteemed faculty of Civil Engineering dept. Prof Ramji Agrawal, Prof V Kumar, Prof Rajesh Kumar, Dr Rosalin Sahoo, and almost all faculty of Civil Engineering department who helped me whenever I experienced unexpected wrenches. I would like to thanks structural laboratory staff who gave access to the laboratory and research facilities. Also I thanks my friends, alphabetically: Dr. Alok, Ankit, Gyanendra and Dr. Saurav, who's moral support was irreplaceable throughout my journey.

The role of Dr. Gopal Rai, CEO, Dhirendra Group of Companies, was peerless in completing this work for which I will be highly thankful to him. He gave me the chance to work with him on a various project Like Ratlam Rail Bridge (M.P.), Pul mithai (New Delhi) and Pusa Bridge (Bihar) with an opportunity to learn about the bridge rehabilitation along with its retrofitting. Last but not the least, I would like to thank my family including my mother who left me forever very earlier, my father Baley Shukla: whatever I am because of him only, my siblings, my wife Mona and son Madhav who sacrifices their part of time of my life and supported me spiritually throughout writing this thesis and my life in general.

Date:

Place: IIT (BHU), Varanasi

(Anjani Kumar Shukla)

या कुन्देन्दुतुषारहारधवला या शुभ्रवस्तावृता या वीणावरदण्डमण्डितकरा या श्वेतपद्मासना। या ब्रह्माच्युत शंकरप्रभृतिभिर्देवैः सदा वन्दिता सा मां पातु सरस्वती भगवती निःशेषजाड्यापहा।।

माँ सरस्वती और पूज्य पिता जी के चरणो में समर्पित

Table of Contents

Certificate	ii
Declaration by the candidate	iii
Copyright transfer certificate	iv
Acknowledgement	v
Dedication	vi
Table of Content	vii-xi
List of Figures	xii-xvii
List of Tables	xviii
Preface	xix-xxii

CHAPTER 1	INTRODUCTION	1
1.1 General		1
1.2 Strengthening o	of structures	3
1.4 Composite mate	erial	5
1.4 Fibre reinforced	l polymers/plastic (FRP)	6
1.4.1 Properties of o	different fibre reinforced plastic (FRP)	9
1.5 Motivation		11
1.6 Organisation of	f thesis	11
CHAPTER 2	LITERATURE REVIEW	13
2.1 General		13
2.1 Damages analys	sis of girders	13
2.1 Strengthening to	echniques of girders	15
2.1 FRP retrofitting	g of bridges	18
2.1 Critical observa	tions	28
2.1 Scope of presen	it study	28
CHAPTER 3	ANALYSIS OF FIBRE LAMINATED GIRDER	30
3.1 General		30
3.2 Analysis of the	girder	31

3.2.1 Numerical analysis of girder	32
3.2.2 Geometric and elastic properties of benchmark problem	32
3.3 Modelling of prismatic girder	34
3.3.1 Convergence study	36
3.3.2 Properties of fibre laminates used in lamination	38
3.3.3 Parametric study	39
3.4 Result and discussions	40
3.4.1 Variation in deflection, tensile stress and strain energy of beams with different aspo	ect ratio
(b/d):	42
3.4.2 Variation in frequency with respect to aspect ratio for different modes	43
3.4.3 Variation in deflection with respect to aspect ratio for different modes	46
3.4.4 Variation in deflection, tensile stress and strain energy of beams with different percent	centage
of steel (p %)	48
3.4.5 Variation in frequency with respect to percentage of steel for different modes:	49
3.4.6 Variation in deflection with respect to percentage of steel for different modes:	52
3.4.7 Variation in deflection, tensile stress and strain energy of beams with different unit	ormly
distributed loading intensities (w):	54
3.4.8 Variation in frequency with respect to loading intensity for different modes	55
3.4.9 Variation of deflection with respect loading intensity for different modes	58
3.5 Analysis of prismatic girder with varying length	60
3.6 IRC Loading of prismatic girder	60
3.6.1 Maximum deformation of prismatic girder	61
3.6.2 Maximum Von Mises strain of prismatic girder	62
3.6.3 Maximum compressive Stress of prismatic girder	64
3.6.4 Maximum tensile stress of prismatic girder	65
3.6.5 Maximum Von Mises stress of prismatic girder	67
3.6.6 Strain energy of prismatic girder	68
3.6.7 Frequency of prismatic girder with carbon laminated fibre for different modes	70
3.7 Analysis of I-girder	78
3.6.1 Dimension of I- girder	78
3.6.2 Loading on I- girder	79
3.8 Result and discussion	80
3.8.1 Maximum deformation of laminated I- girder	80
3.8.2 Max Von Mises strain of laminated I- girder	82
3.8.3 Maximum compressive stress of laminated I- girder	83

3.8.4	Maximum tensile stress of laminated I- girder	85
3.8.5	Maximum Von-Mises stress of laminated I- girder	86
3.8.6	Strain Energy of laminated I- girder	88
3.8.7	Frequency of laminated I -girder for different modes	90
3.9 Reg	ression analysis	98
3.9.1	Parametric relations of beam without FRP	98
3.9.2	Parametric relations of beam with single layer FRP	99
3.9.3	Parametric relations of beam with double layer FRP	100
3.9.4	Parametric relations of beam with triple layer FRP	101
3.10 Su	mmary	101
СНАРТЕ	CR 4 ANALYSIS AND STRENGTHENING OF VEHICLE B	RIDGE
GIRDER	AT PUSA: A CASE STUDY	103
4.1 Genera	1	104
4.2 Bac	kground of Pusa Bridge	105
4.3 Dam	nage analysis of Pusa bridge	106
4.4 Mod	leling of bridge girder and deck slab	109
4.4.1	Loading details on bridge	110
4.4.2	Maximum deformation in the girder of Pusa bridge	112
4.4.3	Von-Mises Stress in the girder of Pusa bridge	114
4.4.4	Strain energy in the girder of Pusa bridge	116
4.4.5	Maximum compressive stress in girder	118
4.4.6	Frequency of girder in different Modes	119
4.4.7	Von-Mises strain in the girder	129
4.4.8	Maximum tensile stress in the Pusa bridge girder	130
4.5 Rec	ommendation and procedure of strengthening	132
4.6 Loa	d Testing of bridge	135
4.6.1	Measuring instruments	135
4.7 Resu	ult and discussion	140
4.8 Sum	imary	142

CHAPT	ER 5 ANALYSIS AND STRENGTHENING OF RAIL BRIDGE GIRD	ER AT
RATLA	M : A CASE STUDY	142
5.1	General	143
5.2	Background of bridge no 114	144
5.2.1	Details of bridge	144
5.2.2	Cross section details	145
5.2.3	Inspection report of bridge no 114	146
5.3	Numerical analysis of bridge girder	147
5.3.1	Deformation of girder	149
5.3.2	Von Mises strain of girder	151
5.3.3	Maximum compressive stress	153
5.3.4	Maximum tensile stress	155
5.3.5	Maximum Von-Misses stress	156
5.3.6	Strain energy	158
5.3.7	Frequency of girder for different mode shape	160
5.4	Strengthening scheme of girder	169
5.4.1	Strengthening of bridge no 114	170
5.5	Field testing of bridge	171
5.5.1	Testing procedure	172
5.5.2	Testing apparatus of bridge girder	172
5.6	Pre-strengthening test of girder	175
5.6.1	Maximum deflection under static loading before strengthening	175
5.6.2	Maximum deflection under dynamic loading before strengthening	176
5.6.3	Maximum natural frequency under dynamic loading in bridge girder before stren	gthening
	176	
5.7	Post strengthening deflection and natural frequency of bridge	178
5.7.1	Maximum deflection under static loading in bridge no 114 after strengthening	178
5.7.2	Maximum deflection under dynamic loading after strengthening	178
5.7.3	Maximum natural frequency in bridge girder after strengthening	179
5.7.4	Post strengthening result for bridge no 114	180
5.8	Result and discussion	181
5.9	Analysis and strengthening of Ratlam-Godhra railway bridge no 54	183
5.9.1	Background of bridge no 54	184
5.9.2	Damage detection in girder of bridge 54	185

5.10	Modelling of Ratlam bridge No 54		186
5.10	0.1 Strengthening Scheme of Ratlam brid	lge No 54	187
5.1	0.2 Testing of Ratlam bridge no 54		188
5.11	Pre and post strengthening results of bridg	je no 54	189
5.1	1.1 Pre-strengthening test results		189
5.12	Post-strengthening test results		192
5.12	2.1 Post-strengthening test results for nat	ural frequency of bridge no 54	193
5.12	2.2 Result and discussion		194
5.13	Summary		196
CHAP	TER 6 CONC	CLUSIONS	199
6.1	General		199
6.2	Concluding remarks		199
6.3	Future Scope of Study		203

REFERENCES

204

List of Figures

Figure 1. 1 Concrete beam strengthen using steel plate	4
Figure 3. 1 Schematic diagram of RC beam retrofitting using FRP	32
Figure 3. 2 Benchmark beam used for verification (Prem pal et. al.)	33
Figure 3. 3 Model of simulated beam	35
Figure 3. 4 Support and load bearing block	35
Figure 3. 5 Analysis of load factor in comparison to node counts	37
Figure 3. 6 Relation between calculation times with respect to reduction in error	37
Figure 3. 7 Relation of reduction of error with respect to finer mesh size	38
Figure 3. 8 Static analysis for total deformation	41
Figure 3. 9 Modal analysis for mode shape and total deformation of Mode 4	41
Figure 3. 10 Variation of non-dimensional deflection with respect to aspect ratio	42
Figure 3. 11 Variation of tensile stress with respect to aspect ratio	43
Figure 3. 12 Variation of total strain energy with respect to aspect ratio	43
Figure 3. 13 Variation of mode 1 frequency with respect to aspect ratio	44
Figure 3. 14 Variation of mode 2 frequency with respect to aspect ratio	44
Figure 3. 15 Variation of mode 3 frequency with respect to aspect ratio	45
Figure 3. 16 Variation of mode 4 frequency with respect to aspect ratio	45
Figure 3. 17 Variation of mode 5 frequencies with aspect ratio	45
Figure 3. 18 Variation of Mode I deflection with aspect ratio	46
Figure 3. 19 Variation of Mode 2 deflection with aspect ratio	46
Figure 3. 20 Variation of Mode 3 deflection with aspect ratio	47
Figure 3. 21 Variation of Mode 4 deflection with aspect ratio	47
Figure 3. 22 Variation of Mode 5 deflections with aspect ratio	47
Figure 3. 23 Variation of non-dimensional deflection w.r.t. % of steel	48
Figure 3. 24 Variation of tensile stress with respect to % of steel	49
Figure 3. 25 Variation of total strain energy with respect to percentage of steel	49
Figure 3. 26 Variation of mode 1 frequency w.r.t. percentage of steel	50
Figure 3. 27 Variation of Mode 2frequency w.r.t. percentage of steel	50
Figure 3. 28 Variation of mode 3 frequency w.r.t. percentage of steel	51
Figure 3. 29 Variation of mode 4 frequency w.r.t. percentage of steel	51
Figure 3. 30 Variation of Mode 5 frequency w.r.t. percentage of steel	51
Figure 3. 31 Variation of mode 1 deflection w.r.t. percentage of steel	52
Figure 3. 32 Variation of mode 2 deflection w.r.t. Percentage of steel	52

Figure 3. 33 Variation of mode 3 deflection w.r.t. percentage of steel	53
Figure 3. 34 Variation of mode 4 deflection w.r.t. percentage of steel	53
Figure 3. 35 Variation of mode 5 deflection w.r.t. percentage of steel	53
Figure 3. 36 Variation of deflection w.r.t loading intensity	55
Figure 3. 37 Variation of Tensile w.r.t loading intensity	55
Figure 3. 38 Variation of total strain energy with respect to loading intensity	55
Figure 3. 39 Variation of Mode 1 frequency w.r.t. loading intensity	56
Figure 3. 40 Variation of mode 2 frequency w.r.t. loading intensity	56
Figure 3. 41 Variation of mode 3 frequency w.r.t. loading intensity	57
Figure 3. 42 Variation of mode 4 frequency w.r.t. loading intensity	57
Figure 3. 43 Variation of mode 5 frequency w.r.t. loading intensity	57
Figure 3. 44 Variation of mode 1 deflection w.r.t. loading intensity	58
Figure 3. 45 Variation of mode 2 deflection w.r.t. loading intensity	59
Figure 3. 46 Variation of mode 3 deflection w.r.t. loading intensity	59
Figure 3. 47 Variation of mode 4 deflection w.r.t. loading intensity	60
Figure 3. 48 Variation of mode 5 deflection w.r.t. loading intensity	60
Figure 3. 49 Maximum deformation vs span length in composite laminate girder	62
Figure 3. 50 Maximum deformation vs no of layer of carbon laminate girder	62
Figure 3. 51 Maximum Von Mises strain vs span length in composite laminate girder	63
Figure 3. 52 Maximum Von Mises strain vs no of layer of carbon laminate girder	64
Figure 3. 53 Maximum compressive stress vs span length in composite laminate girder	65
Figure 3. 54 Maximum compressive stress vs no of layer of carbon laminate girder	65
Figure 3. 55 Maximum tensile stress vs span length in composite laminate girder	66
Figure 3. 56 Maximum tensile stress vs no of layer of carbon laminate girder	67
Figure 3. 57 Maximum Von-Mises stress vs span length in composite laminate girder	68
Figure 3. 58 Maximum Von-Mises stress vs no of layer of in carbon laminate girder	68
Figure 3. 59 Strain energy vs span length in composite laminate girder	69
Figure 3. 60 Strain energy vs no of layer of carbon laminate girder	70
Figure 3. 61 Frequency in mode 1 vs span length in composite laminate girder	71
Figure 3. 62 Frequency of girder in mode 1 with carbon laminated fibre	72
Figure 3. 63 Frequency in mode 2 vs span length in composite laminate girder	73
Figure 3. 64 Frequency of girder in mode 2 with carbon laminated fibre	73
Figure 3. 65 Frequency in mode 3 vs span length in composite laminate girder	74
Figure 3. 66 Frequency in mode 3 vs span length in carbon laminate girder	75
Figure 3. 67 Frequency in mode 4 vs span length in composite laminate girder	76
Figure 3. 68 Frequency in mode 4 vs span length in carbon laminate girder	76
Figure 3. 69 Frequency in mode 5 vs span length in composite laminate girder	77

Figure 3. 70 Frequency in mode 5 vs span length in carbon laminate girder	78
Figure 3. 71 Section diagram of I-girder	79
Figure 3. 72 loading plan of I-girder	80
Figure 3. 73 Maximum deformation vs span length in composite laminate girder	81
Figure 3. 74 Maximum deformation vs no of layer of carbon laminate girder	82
Figure 3. 75 Maximum Von Mises strain vs span length in composite laminate girder	83
Figure 3. 76 Maximum Von Mises strain vs no of layer of carbon laminate I girder	83
Figure 3. 77 Maximum compressive stress vs span length in composite laminate girder	84
Figure 3. 78 Maximum compressive stress vs no of layer of carbon laminate I girder	85
Figure 3. 79 Maximum tensile stress vs span length in composite laminate I girder	86
Figure 3. 80 Maximum tensile stress vs no of layer of carbon laminate I girder	86
Figure 3. 81 Maximum Von-Mises stress vs span length in composite laminate I girder	87
Figure 3. 82 Maximum Von-Mises stress vs no of layer of in carbon laminate I girder	88
Figure 3. 83 Strain energy vs span length in composite laminate I girder	89
Figure 3. 84 Strain energy vs no of layer of carbon laminate I girder	89
Figure 3. 85 Frequency in mode 1 vs span length in composite laminate I girder	91
Figure 3. 86 Frequency of girder in Mode 1 with carbon laminated I girder	91
Figure 3. 87 Frequency in mode 2 vs span length in composite laminate girder	92
Figure 3. 88 Frequency of girder in Mode 2 with carbon laminated fibre	93
Figure 3. 89 Frequency in mode 3 vs span length in composite laminate girder	94
Figure 3. 90 Frequency in mode 3 vs span length in carbon laminate girder	94
Figure 3. 91 Frequency in mode 4 vs span length in composite laminate girder	95
Figure 3. 92 Frequency in mode 4 vs span length in carbon laminate girder	96
Figure 3. 93 Frequency in mode 5 vs span length in composite laminate girder	97
Figure 3. 94 Frequency in mode 5 vs span length in carbon laminate girder	97
Figure 4.1 View of Pusa-Muzaffarpur bridge	105
Figure 4. 2 Cross section of Pusa bridge and its girder	106
Figure 4. 3 Wide flexural crack in full depth of RC girder	108
Figure 4. 4 deterioration in bridge girder	108
Figure 4. 5 Exposed reinforcement of girder	109
Figure 4. 6 Stifling of bearing	109
Figure 4. 7 Loading scheme of the deck slab	110
Figure 4. 8 FEM model of loading of bridge's deck slab	111
Figure 4.9 Typical deformed girder under static load	111
Figure 4. 10 Typical deformed girder under modal loading	112
Figure 4. 11 Max deformation vs fibre layer for varying length of girder	113
Figure 4. 12 Max deformation vs span length different fibre layer	113

Figure 4. 13 Max Von Mises stress vs span length for different fibre layer combination	115
Figure 4. 14 Max Von Mises stress vs fibre layer with varying length of girder	116
Figure 4. 15 Strain Energy vs span length for different fibre layer combination	117
Figure 4. 16 length of girder vs strain Energy with varying fibre layer	117
Figure 4. 17 Compressive stress vs span length for different composite layer combination	118
Figure 4. 18 Compresive stress vs span length for different CFRP combination	119
Figure 4. 19 Deformed model of Pusa bridge in mode 1	120
Figure 4. 20 Frequency vs span length for different composite layer combination	121
Figure 4. 21 Frequency vs span length for different CFRP layer combination	121
Figure 4. 22 Deformed model of deck slab in mode 2	122
Figure 4. 23 frequency vs nos of fibre layer in mode 2 for different span length	123
Figure 4. 24 Frequency (mode 2) vs no of fibre layer for different span length	123
Figure 4. 25 Deformed model of deck in mode shape 3	124
Figure 4. 26 frequency vs nos. of fibre layer in mode 3 for different span length	124
Figure 4. 27 Frequency (mode 3) vs span length for different CFRP layer combination	125
Figure 4. 28 Deformed model of Pusa bridge in mode 4	126
Figure 4. 29 Frequency vs Nos of fibre layer in mode 4 for different span length	126
Figure 4. 30 Frequency (Mode 4) vs span length for different CFRP layer combination	127
Figure 4. 31 Deformed model of Pusa bridge in mode 5	128
Figure 4. 32 frequency vs nos. of fibre layer in mode 5 for different span length	128
Figure 4. 33 Frequency vs span length in mode 5 for different CFRP layer combination	129
Figure 4. 34 Max. Von-Mises strain vs span length for different composite layer	130
Figure 4. 35 Max von misses strain vs span length for different composite layer	130
Figure 4. 36 Max tensile stress vs no of fibre layer for different span length	131
Figure 4. 37 Max tensile stress vs span length for different CFRP layer combination	132
Figure 4. 38 cross section of strengthening scheme of Girder	133
Figure 4. 39 Side view of strengthening scheme of Girder	134
Figure 4. 40 Treatment of exposed reinforcement and Anti-corrosive paint	134
Figure 4. 41 Girders strengthened by fibre reinforced polymer	134
Figure 4. 42 Arrangement of sensors (LVDTs) at the center of each girder	136
Figure 4. 43 Arrangement and axle load of two trucks for center (top view)	136
Figure 4. 44 Arrangement and axle load of two truck for left lane	137
Figure 4. 45 Arrangement and axle load of two truck for right lane	137
Figure 4. 46 Arrangement and axle load of four truck for case ii static load testing	138
Figure 4. 47 Loaded trucks placed for static load testing	138
Figure 5. 1 Site view of bridge no 114	144
Figure 5. 2 Schematic diagram of bridge model	145

Figure 5. 3: Typical cross section of the bridge	145
Figure 5. 4 Severe cracks observed in girder	146
Figure 5. 5 Deterioration in bottom deck slab	147
Figure 5. 6 Cracks and delamination at bearings	147
Figure 5. 7 Loading plan of Indian locomotive Wagon 7 whel axle	148
Figure 5.8 Model of bridge deck slab with girders	149
Figure 5. 9 Typical deformed shape of girder at frequency at time 1 second	149
Figure 5. 10 Max deformation vs no of layer with varying length of girder	151
Figure 5. 11 Max deformation vs length of girder with varying fibre layer	151
Figure 5. 12 Maximum von misses strain vs span length for composite girder	152
Figure 5. 13 Maximum von misses strain vs span length for carbon fibre	153
Figure 5. 14 Maximum compressive stress vs fibre layers	154
Figure 5. 15 Maximum compressive stress vs span length	154
Figure 5. 16 Maximum vs fibre layers for varying girder	156
Figure 5. 17 Maximum vs fibre layers for varying girder	156
Figure 5. 18 Max Von Mises stress vs length of girder with varying fibre layer	157
Figure 5. 19 Max Von Mises stress vs fibre layer with varying length of girder	158
Figure 5. 20 Strain energy vs length of girder with varying fibre layer	159
Figure 5. 21 length of girder vs strain Energy with varying fibre layer	159
Figure 5. 22 Frequency vs no of fibre layers mode shape 1	161
Figure 5. 23 Frequency vs span length in mode shape 1	161
Figure 5. 24 Frequency vs span length in mode shape 2	162
Figure 5. 25 Frequency vs span length in mode shape 2	163
Figure 5. 26 Deformed imaged of girder in mode shape 3	163
Figure 5. 27 Frequency vs span length in mode shape 2	164
Figure 5. 28 Frequency vs span length mode shape 3	165
Figure 5. 29 Deformed imaged of girder in mode shape 4	165
Figure 5. 30 Frequency vs span length in mode shape 4	166
Figure 5. 31 Frequency vs span length in mode shape 4	167
Figure 5. 32 Deformed imaged of girder in mode shape 5	168
Figure 5. 33 Frequency vs span length in mode shape 5	168
Figure 5. 34 Frequency vs span length in mode shape 5	169
Figure 5. 35 Section view of strengthening plan	170
Figure 5. 36 Side view of strengthening plan of girder	171
Figure 5. 37 strengthening using fibre at site of bridge no 114	171
Figure 5. 38 Load applied on the bridge using wagon 7	171
Figure 5. 39. TIPO PM 25 5K MR	172

Figure 5. 40 B& K accelerometer	173
Figure 5. 41 Arrangement of deflection sensor and accelerometer	174
Figure 5. 42 Displacement vs Time under dynamic loading static load	175
Figure 5. 43 Displacement vs time under dynamic loading dynamic load	176
Figure 5. 44 Amplitude Vs frequency under dynamic loading	177
Figure 5. 45 Amplitude vs time for static load after strengthening	178
Figure 5. 46 Displacement vs time under dynamic loading	179
Figure 5. 47 Amplitude Vs frequency variation of girder of 114	179
Figure 5. 48 Reduction in deflection in different loading	182
Figure 5. 49 Change in natural frequency at different fibre layer	183
Figure 5. 50 View of bridge no 54 at site	184
Figure 5. 51 Cross section details of bridge no 54	185
Figure 5. 52 Severe cracks in girder	186
Figure 5. 53 Spalling in diaphragm and girder	186
Figure 5. 54 Section view of strengthening plan	187
Figure 5. 55 Side view of strengthening plan of girder	188
Figure 5. 56 Lamination of bridge no 54 at site	188
Figure 5. 57 Load applied on the bridge using wagon 7 and sensors at site	189
Figure 5. 58 Displacement vs time under static loading	190
Figure 5. 59 Displacement vs time under dynamic loading	190
Figure 5. 60 Amplitude vs. frequency under dynamic load	191
Figure 5. 61 Displacement vs time under dynamic loading	192
Figure 5. 62 Displacement vs time under static loading	192
Figure 5. 63 Displacement vs time under dynamic loading	193
Figure 5. 64 Degression in deflection at different fibre layer	195
Figure 5. 65 Increment in frequency at different fibre layer	196

List of Tables

Table 1.1 Properties of Glass fibre Laminates	9
Table 1. 2 Properties of Carbon Fibre Laminates	10
Table 3.1 Properties of carbon fibre laminates used	38
Table 3. 2 Properties of glass fibre laminates used (S Glass)	39
Table 3. 3 Loading details of Indian locomotive WAGON 7	79
Table 4.1 Deflection readings for static load for two truck	139
Table 4. 2 Deflection readings for static load test for four truck	139
Table 4. 3 Deflection readings for dynamic load test for two truck	140
Table 5.1 Details of girders and substructure of bridge	145
Table 5. 2 Meshing details	147
Table 5. 3 Major parameter of loading train (Source: RDSO)	148
Table 5. 4 Pre-strengthening test results of Bridge no. 114	177
Table 5. 5 Post strengthening result of bridge no 114	180
Table 5. 6 Pre-strengthening test results of deflection and natural frequency	191
Table 5. 7 Post strengthening test results	193

Preface

Fibre-reinforced polymer has eventually become a popular choice for retrofitting and strengthening structural elements. Hence, a need arises to know the quantitative and qualitative effect of these techniques on the original integrity of the concerned structural entity. In India, most of the bridges made in the middle of the twentieth century are classified as structurally deficient or functionally obsolete. To alleviate this problem, a great deal of work is being proposed to be conducted to develop the strengthening of the existing bridge by using fibre-reinforced polymers (FRP) composites. Fibre-reinforced polymer composite materials have shown great potential as alternative bridge retrofitting materials to conventional ones. The acceptance of FRP composites in the bridge industry is mainly due to their superior properties, such as their high strength, long-term durability, and good corrosion and fatigue resistance. However, several technical issues remain and must be addressed before the civil engineering community can develop confidence in structural design with FRP composite members. These issues include the prediction of the dynamic responses of FRP bridges under static and dynamic loading. The present investigation attempted to focus on the performance of FRP retrofitted bridges.

In the present study, initially simple RC beam is analysed using ANSYS Workbench 18.1 software to obtain the maximum deflection, stress, strain energy, natural frequencies and deflections at various modes of free vibration for different design parameter such as width to depth ratio of beam, percentage of steel and loading intensity. Thereafter, the same beams were analysed after retrofitting with one layer, two layer and three layers of carbon fibre reinforced polymer (CFRP) and glass fibre reinforced polymer (GFRP) sheets. CFRP sheets were applied in the tension zone (bottom face) while GFRP was in the shear zone (side face).

xix

At first, a RC beam was simulated for two-point loads, and the results obtained for maximum deflections were compared with manual calculation to ascertain the most appropriate settings of the simulation in the three-dimensional analysis environment of the software. After that, a number of beams were analyzed by altering the width to depth ratio, the percentage of tension steel and the loading intensity over the beam and the variation of deflections, stresses, strains, strain energies, natural frequencies of the first five modes of free vibrations are obtained without retrofitment. Then, two types prismatic and I-girder beam of different size were retrofitted with layers of FRP sheets, and the parametric analysis was carried out, and the results were observed. These results are compared, and multivariate regression analysis is performed to obtain equations to testify the observations and trends. This whole process concludes that the effect of retrofitting is insignificant for single layer FRPs while the most effective results were obtained for the case of triple-layer FRPs in the longer spans and two-layer composite FRPs in shorter spans. Deflections, stress, and strain energy with their relative change across various cases are accurately related to varying parameters through regression analysis. The equations are developed for retrofitted girders, and it may be used for the design of FRP retrofitted girders.

The concept of retrofitment of the girder was then applied for the rehabilitation of two types of bridges, one road bridge and another rail bridge of two different spans. Numerical study on beam further continues for parametric analysis of two different type of bridge girder; simple rectangular girder for a road bridge and prestressed I type girder for rail bridge using ANSYS software. For prismatic girder, three prismatic girders of spans 16.5 meter, 22.5 meter and 28.5 meter has been picked for analysis using ANSYS applying IRC vehicle loading For I-girder, the three different span 13.67 meter, 19.67 meter and 25.67 meter are analysed using RDSO train load. These spans are specifically chosen to simulate the field test of the real bridge. All the girders are retrofitted with different FRP layers of a different combination of carbon and glass fibre and analysed for the best combination of fibre polymer. It is found that

the single-layer FRP and the smallest girder in each group unwavering the least efficient while triple layer fibres and largest girder established the most efficient one.

In this study, one road bridge near Pusa Muzzafarpur, Bihar, has been analysed. The bridge girder was reported severely damaged. All the damaged girders were retrofitted using the designed thickness of fibre polymer and tested for static and dynamic loading using loaded trucks in different combinations and speeds. The finite element model of a rectangle RC girder of span 16.5m, 22.5m, and 28.5m has been addressed on various parameters with and without fibre wrapping. This study covers the potency of different layers of fibre wrapping analysed with ANSYS, and other results were discussed before and after strengthening the girder. Finally, the strengthening of the delaminated bridge girder using prescribed fibre wrapping with varying layers has been performed. Deflection, the natural frequency produced at different loading conditions using the loaded truck is being discussed. The bridge girder's plasticity has been calculated in terms of deflection recovered when the load was removed. The data of static and dynamic testing were compared before and after the strengthening of the girder. The bridge is now in-service conditions.

Two well-known rail bridge, no 114 and 54, at Ratlam, Madhya Pradesh, India was restricted for the high-speed train due to deterioration of the girder. Due to this deterioration, speed of the trains over the bridge was restricted up to 20 km/h. The first rail bridge at Ratlam was constructed on Nakdi River in the year 1958-60. The bridge is a composite PSC I-girders and supported on neoprene bearing. The primary reason for retrofitting the PSC I- girders on the bridges was to arrest the cracks on the girders. As the cracks were propagating with time, these girders' strengthening is required immediately to stop further deterioration. The prestrengthening test was carried out using rail locomotive WAGON 7. The static and dynamic strength of the out-serviced bridge girder has been investigated numerically, and one additional hypothetical girder is also analysed numerically to correlate the results. The strengthening

scheme was designed according to the numerical result of FRP composites analysis. The girders of this bridge no 114 were retrofitted using three-layer composite fibre in the bottom and side faces. After strengthening the girder were tested using same rail locomotive WAGON 7 under static and dynamic loading condition at 20 KMPH, 75 KMPH and 100 KMPH for one layer, two layers and three layers of retrofitting. Deflections and natural frequencies of girder before strengthening and after strengthening were analysed.

Another rail bridge at Ratlam-Godhra of single-span on the Hadap River in India was studied. The dilapidation was reported in several parts of the girder of the bridge. To strengthen the girder of the bridge, fibre plates were designed and glued in the shear and tension zone of the girder. After strengthening the girder, the deflection and natural frequencies were measured by running Wagon 7 of the Indian railway after one layer, two layers of retrofitting for static and dynamic loading conditions. Again comparison of pre and post retrofitting strength in terms of deflection and natural frequency has been discussed. The results show a significant improvement in deflection and natural frequency after strengthening. As the considerable decrement in deflection was noted, by observed results, the speed limit of the train on both the bridges is recommended to increase up to 100 km/h. Now it is open for high-speed trains.

Keywords: Girder, Retrofitment, Strengthening, Pusa Road Bridge, Ratlam Rail Bridge