TABLE OF CONTENTS

Title page		i
Dedication		ii
Certification		iii
Declaration		iv
Copyright for	m	v
Acknowledg	nent	vi
Table of cont	ents	viii
List of Figure	28	xiii
List of Tables	8	xxxiii
Abstract		xxxiv
Chapter-1	INTRODUCTION	1-14
1.1	General	1
1.2	Nuclear power plants worldwide	3
1.3	Nuclear power plant (NPP) containment	6
1.4	Thesis organization	13
Chapter-2	LITERATURE REVIEW	15-46
2.1	General	15
2.2	Analytical approaches on NPP containment wall	16
2.3	Numerical approaches on NPP containment wall	25
2.4	Concrete and steel behavior under high rate of loading and elevated temperature	32

2.5	Critical observation	44
2.6	Scope of present study	45
Chapter-3	BACKGROUND OF MATERIAL MODELS	47-68
3.1	General	47
3.2	Concrete model under impact loading	48
3.3	Concrete model under fire	59
3.4	Reinforcement model under impact loading and fire	64
3.5	Material properties for aircraft model	67
Chapter-4	GEOMETRIC AND FINITE ELEMENT MODELING OF AIRCRAFT AND NPP CONTAINMENT	69-94
4.1	General	69
4.2	Aircraft Boeing 707-320	70
	4.2.1 Modeling of aircraft Boeing 707-320	71
	4.2.2 Meshing details of Boeing 707-320	72
4.3	Modeling of hypothetical structure	75
	4.3.1 Modeling of PCC plate	75
	4.3.2 Modeling of RCC plate	76
	4.3.3 Modeling of RCC cylindrical wall	77
4.4	Modeling of some real NPP containments	78
4.5	Mesh convergence study	81
4.6	Meshing details of containment wall and reinforcement bar	83

4.7	Interactions and boundary conditions	90
	4.7.1 When the load curve is applied on NPP wall	90
	4.7.2 When geometric model of aircraft is applied on NPP wall	91
4.7	Summary	94
Chapter-5	BEHAVIOR OF CONTAINMENT STRUCTURES AGAINST DIFFERENT AIRCRAFTS	95-178
5.1	General	95
5.2	Analysis of PCC plate	97
	5.2.1 Impact of Boeing 707-320 on PCC plate	97
	5.2.2 Impact of Phantom F4 on PCC plate	103
5.3	Analysis of RCC plate	108
5.4	Analysis of RCC cylindrical wall	113
5.5	Analysis of three-mile island reactor (TMIR) containment wall	122
5.6	Most damaged prone NPP reactor containment	137
5.7	Most damaging aircraft on NPP containment	144
	5.7.1 Most damaging aircraft on BWR containment	144
	5.7.2 Most damaging aircraft on TMIR containment	151
5.8	Critical impact location	160
5.9	Response of containment under different strain rates	167
5.10	Parametric study of containment response	173

5.11	Summary	177
Chapter-6	REACTION FORCE TIME CURVE AND AREA OF IMPACT	179-210
6.1	General	179
6.2	Reaction-time curve	179
	6.2.1 Effect of target curvature	180
	6.2.2 Effect of target deformability	185
	6.2.3 Effect of aircraft impact angle	187
6.3	Calculation of effective area under impact	189
6.4	NPP containment wall under reaction time curve and geometric model	192
6.5	Response of containment against trifurcation approach	202
6.6	Summary	209
Chapter-7	RESPONSE OF NUCLEAR CONTAINMENT UNDER CRASH INDUCED FIRE	211-232
7.1	General	211
7.2	Three-mile island NPP containment geometry	211
7.3	Loading details	213
7.4	Results and Discussions	215
	7.4.1 Heat transfer analysis	215
	7.4.2 Impact analysis	223
	7.4.3 Thermal stress analysis	225

7.5	Summary	230
Chapter-8	CONCLUSIONS	233-238
8.1	General	233
8.2	Concluding remarks	234
8.3	Scope of future study	237
REFERENCES		239-251

LIST OF FIGURES

Figure No.	Figure Caption	Page No.
Fig. 1.1	A typical Block diagram of Nuclear Power Plant	3
Fig. 1.2	Total number of Nuclear Power plant stations in world	4
Fig. 1.3	Country wise nuclear power plants	5
Fig. 1.4	Some actual nuclear power plants	7
Fig. 1.5	Some actual aircraft crashes	8
Fig. 2.1	Riera's aircraft impact model	18
Fig. 2.2	Impact location on NPP containment	19
Fig. 2.3	Different aircraft reaction time response curves	21
Fig. 2.4	The aircraft's view during impact	22
Fig. 2.5	Impact Area for Phantom F4	29
Fig. 2.6	Brittle target subjected to projectile impact (a) Penetration	35
	(b) Scabbing (c) Cone cracking (d) Perforation (e) Spalling	
	(f) Overall target response (g) cracks on (i) front face (ii)	
	rear face	
Fig. 2.7	Different form of surface texture of the concrete at elevated	38

temperatures

Fig. 2.8	High temperature has a detrimental effect on the strength	39
	of concrete	
Fig. 2.9	Decreasing the modulus of elasticity of with increasing	41
	temperature	
Fig. 3.1	concrete Stress-strain curve (a) under tension (b) under	50
	compression	
Fig. 3.2	Cracking strain under tension stiffening.	52
Fig. 3.3	Fracture energy curve after failure	52
Fig. 3.4	Cracking tensile strain in compression hardening	54
Fig. 3.5	Compressive inelastic strain in compression hardening.	54
Fig. 3.6	Concrete bevaviour with cyclic loading	55
Fig. 3.7	Concrete bevaviour with different strain rate under	55
	compression	
Fig. 3.8	Stress-strain curves for concrete for different strain rates	56
	under tensile loading.	
Fig. 3.9	DIF of concrete with different strain rate	57
Fig. 3.10	Normalized concrete tensile strength vs strain rate	57
Fig. 3.11	Variation of fracture energy with strain rate	58

Fig. 3.12	Concrete with varying temperature under compression	59
Fig. 3.13	Stress-strain plot at different temperature	60
Fig. 3.14	Youngs modulus of the concrete with varying temperature	61
Fig. 3.15	Thermal conductivity of concrete with varying temperature	62
Fig. 3.16	Expansion coefficient with varying temperature	63
Fig. 3.17	Specific heat concrete with temperature	63
Fig. 3.18	Stress-strain curve of steel bar at elevated temperatures	67
Fig. 3.19	Stress-strain plots of steel at different temperatures	67
Fig. 4.1	A typical geometrical dimension of Boeing 707-320	71
Fig. 4.2	Real view of Boeing 707-320	73
Fig. 4.3	Segmental view of Boeing 707-320 aircraft model for meshing	73
Fig. 4.4	Meshing detail of Boeing 707-320 in FEM	74
Fig. 4.5	Dimension of PCC plate	76
Fig. 4.6	Dimension of RCC plate and reinforcement details	77
Fig. 4.7	Dimension of RCC cylindical wall and reinforcement details	78

Fig. 4.8	Geometry and dimension of NPPs	80
Fig. 4.9	Dimension of Three Mile Island containment and reinforcement details	81
Fig. 4.10	Nodal temperature profile in plate with different size of element	82
Fig. 4.11	Temperature variation with different size of elements	83
Fig. 4.12	Dimensions, reinforcement, impact location and meshing details	85
Fig. 4.13	Meshing of reinforcement steel bar and inner steel liner	86
Fig. 4.14	Force-time history curves of different aircrafts	88
Fig. 4.15	Discretization of the NPP containment for different approach	89
Fig. 4.16	Penetration of master nodes into slave surface with pure master-slave contact	93
Fig. 4.17	Balanced master-slave contact constraint with kinematic compliance	93
Fig. 5.1	The different path along 40m, 20m, 3m	98
Fig. 5.2	Stress profile in concrete at 0.2084sec and 0.3472sec	99
Fig. 5.3	Deformation profile in concrete at 0.2084sec and	99

0.3472sec

Fig. 5.4	Damages profile in concrete at 0.2257sec	100
Fig. 5.5	Damages profile in concrete at 0.3472sec	100
Fig. 5.6	Deformation in concrete along first path	101
Fig. 5.7	Deformation in concrete along second path	101
Fig. 5.8	Deformation in concrete along third path	101
Fig. 5.9	Stress in concrete along third path	102
Fig. 5.10	Stress in concrete along first path	102
Fig. 5.11	Stress in concrete along second path	102
Fig. 5.12	Stress profile in concrete at 0.032sec and at 0.08sec	104
Fig. 5.13	Deformation profile in concrete at 0.032sec and at 0.08sec	104
Fig. 5.14	Damages profile in concrete at 0.036sec	105
Fig. 5.15	Damages profile in concrete at 0.08sec	105
Fig. 5.16	Deformation in concrete along first path	106
Fig. 5.17	Deformation in concrete along second path	106
Fig. 5.18	Deformation in concrete along third path	106
Fig. 5.19	Stress in concrete along third path	107

Fig. 5.20	Stress in concrete along first path	107
Fig. 5.21	Stress in concrete along second path	107
Fig. 5.22	Deformation profile in concrete at 0.16 sec and at 0.34 sec	109
Fig. 5.23	Deformation in reinforcement steel at 0.16 sec and at 0.34 sec	110
Fig. 5.24	Stress profile in reinforcement steel at 0.34 sec and in concrete at 0.34 sec	110
Fig. 5.25	Tension damage profile in concrete at 0.16 sec and at 0.34 sec	111
Fig. 5.26	Path A in concrete body for plotting results	111
Fig. 5.27	Deformation in concrete body along path A	112
Fig. 5.28	Stress in concrete body along path A	112
Fig. 5.29	Tension damages in concrete body along path A	112
Fig. 5.30	Stress profile in concrete at 0.2344sec	115
Fig. 5.31	Stress profile in steel bar at 0.2517sec	115
Fig. 5.32	Deformation profile in concrete at 0.2517sec	115
Fig. 5.33	Deformation profile in steel at 0.2517sec	116
Fig. 5.34	Deformation profile in concrete at 0.3472sec	116

Fig. 5.35	Deformation profile in steel at 0.3472sec	116
Fig. 5.36	Damages profile in concrete at 0.1736sec	117
Fig. 5.37	Damages profile in concrete at 0.3472sec	117
Fig. 5.38	Four locations for reaction calculation	117
Fig. 5.39	Reactions at base of NPP with different locations	118
Fig. 5.40	The different paths in the cylindrical containment	118
Fig. 5.41	Deformation in concrete along first path (outer face)	119
Fig. 5.42	Deformation in concrete along first path (inner face)	119
Fig. 5.43	Deformation in concrete along second path	119
Fig. 5.44	Stress in concrete along first path (outer face)	120
Fig. 5.45	Stress in concrete along first path (inner face)	120
Fig. 5.46	Stress in concrete along 2 nd path (outer face)	120
Fig. 5.47	Stress in concrete along third path	121
Fig. 5.48	Tension Damage (TD) in concrete along first path (inner	121
	face)	
Fig. 5.49	Plastic strain in concrete along first path (inner face)	121
Fig. 5.50	Path-A and Path-B in concrete body for plotting results	124

Fig. 5.51	Some selective nodes in concrete and steel reinforcement	124
	bar	
Fig. 5.52	Deformation contour in concrete at different time interval	125
Fig. 5.53	Deformation contour in steel reinforcement bar at different	126
	time interval	
Fig. 5.54	Deformation contour in steel liner at different time interval	127
Fig. 5.55	Stress contour in concrete at different time interval	128
Fig. 5.56	Stress contour in steel reinforcement bar at different time	129
	interval	
Fig. 5.57	Stress contour in steel liner at different time interval	130
Fig. 5.58	Deformation profile in concrete body at time 0.27sec	131
Fig. 5.59	The different stress profile in concrete at time 0.27sec	132
Fig. 5.60	Deformation in concrete along Path A (along longitudinal	131
	direction)	
Fig. 5.61	Deformation in concrete along Path B (along	133
	Circumferential direction)	
Fig. 5.62	Stress in concrete along Path A (along longitudinal	133
	direction)	
Fig. 5.63	Stress in concrete along Path B (along Circumferential	134

direction)

Fig. 5.64	Stress variation along the thickness of TMIR wall	134
Fig. 5.65	Deformation in concrete body at some selected nodes	135
Fig. 5.66	Stress in concrete body at some selected nodes	136
Fig. 5.67	Maximum deformation in BWR Mark-III containment (a) concrete (b) inner steel rebars (c) outer steel rebars	138
Fig. 5.68	Maximum deformation in CMR containment (a) concrete (b) steel rebars (c) inner steel liner	139
Fig. 5.69	Maximum deformation in FBR containment (a) concrete (b) steel rebars (c) inner steel liner	139
Fig. 5.70	Maximum deformation in TMIR containment (a) concrete (b) steel rebars (c) inner steel liner	139
Fig. 5.71	Maximum stress in BWR Mark-III containment (a) concrete (b) steel rebars	140
Fig. 5.72	Maximum stress in CMR containment (a) concrete (b) steel rebars (c) inner steel liner	140
Fig. 5.73	Maximum stress in FBR containment (a) concrete (b) steel rebars (c) inner steel liner	140
Fig. 5.74	Maximum stress in TMIR containment (a) concrete (b) steel rebars (c) inner steel liner	141

Fig. 5.75	Tension damages in (a) BWR Mark-III (b) CMR (c) FBR (d) TMIR	141
Fig. 5.76	Global deformation in concrete along path A	141
Fig. 5.77	Global deformation in concrete along path B	142
Fig. 5.78	Stress produced in concrete along path A	142
Fig. 5.79	Deformation of an element at impact location in all NPPs	142
Fig. 5.80	Tension damage of an element at impact location in all NPPs	143
Fig. 5.81	Maximum deformation and tension damages in containment for Boeing 767-400	146
Fig. 5.82	Maximum deformation and tension damages in containment for Phantom F4	146
Fig. 5.83	Maximum deformation and tension damages in containment for Boeing 707-320	147
Fig. 5.84	Maximum deformation and tension damages in containment for Airbus A320	147
Fig. 5.85	Deformation of an element at impact location for different aircrafts	148
Fig. 5.86	Stress of an element at impact location for different aircrafts	148

xxii

Fig. 5.87	Reaction force at the base of containment produced by	148
Fig. 5.88	Plastic strain of an element at impact location for different aircrafts	149
Fig. 5.89	Global deformation in concrete along path A	149
Fig. 5.90	Global deformation in concrete along path B	149
Fig. 5.91	Stress produced in concrete along path A	150
Fig. 5.92	Maximum deformation in concrete, Steel rebars and steel liner for Boeing 767-400	153
Fig. 5.93	Maximum deformation in concrete, Steel rebars and steel liner for Phantom F4	153
Fig. 5.94	Maximum deformation in concrete, Steel rebars and steel liner for Boeing 707-320	153
Fig. 5.95	Maximum deformation in concrete, Steel rebars and steel liner for Airbus A320	154
Fig. 5.96	Maximum stress in concrete, Steel rebars and steel liner for Boeing 767-400	154
Fig. 5.97	Maximum stress in concrete, Steel rebars and steel liner for Phantom F4	154
Fig. 5.98	Maximum stress in concrete, Steel rebars and steel liner for	155

Boeing 707-320

Fig. 5.99	Maximum stress in concrete, Steel rebars and steel liner for Airbus A320	155
Fig. 5.100	Tension damages in concrete of containment for (a) Boeing 767-400 (b) Phantom F4 (c) Boeing 707-320 and Airbus A320	155
Fig. 5.101	Global deformation in concrete along path A	156
Fig. 5.102	Global deformation in concrete along path B	156
Fig. 5.103	Stress produced in concrete along path A	156
Fig. 5.104	Stress produced in concrete along path B	157
Fig. 5.105	Deformation of an element at impact location for different aircraft	157
Fig. 5.106	Stress of an element at impact location for different aircraft	157
Fig. 5.107	Tension damage of an element at impact location for different aircraft	158
Fig. 5.108	NPP containment with different impact location	160
Fig. 5.109	Deformation and tension damages for location A	162
Fig. 5.110	Deformation and tension damages for location B	162
Fig. 5.111	Deformation and tension damages for location C	163

Fig. 5.112	Deformation and tension damages for location D	163
Fig. 5.113	Deformation and tension damages for location E	164
Fig. 5.114	Deformation and tension damages for location F	164
Fig. 5.115	Deformation and tension damages for location G	165
Fig. 5.116	Reaction force at the <i>base</i> of containment for different impact location	165
Fig. 5.117	Deformation of an element at impact location for different impact case	166
Fig. 5.118	Stress of an element at impact location for different impact case	166
Fig. 5.119	Plastic strain of an element at impact location for different impact case	166
Fig. 5.120	BWR containment with path A and path B	169
Fig. 5.121	The selective nodes in concrete body at inner face	169
Fig. 5.122	Deformation variation along path A with different strain rates	170
Fig. 5.123	Deformation variation along path B with different strain rates	170
Fig. 5.124	Stress variation in selective elements with different strain	171

rate

Fig. 5.125	Tension damages in selective elements with different strain	172
	rate	
Fig. 5.126	Aircraft impact on NPP containment with various angles	174
Fig. 5.127	Deformation of an element at impact location with different impact angles	174
Fig. 5.128	Aircraft impact on NPP containment with various velocities	174
Fig. 5.129	Deformation of an element at impact location with different impact velocities	175
Fig. 5.130	Reinforcement ratio in NPP wall section	175
Fig. 5.131	Deformation of an element at impact location with different reinforcement ratio	175
Fig. 5.132	Different NPP wall thicknesses	176
Fig. 5.133	Deformation of an element at impact location with different NPP containment thickness	176
Fig. 5.134	Different radius of curvatures of NPP wall	176
Fig. 5.135	Deformation of an element at impact location with different NPP containment curvatures	177

Fig. 6.1	Impact of Boeing 707-320 aircraft on target with different radius.	182
Fig. 6.2	Transverse mass distribution of Boeing 707-320 aircraft.	183
Fig. 6.3	Plan view of Boeing 707-320 aircraft with different target	184
Fig. 6.4	Impact force-time response of target with different radius.	184
Fig. 6.5	Impulse-time response of target with different radius.	185
Fig. 6.6	Boeing 707-320 model on rigid target and non-rigid target.	186
Fig. 6.7	Reaction force-time response of rigid and non-rigid target.	187
Fig. 6.8	Boeing 707-320 model on rigid target with different impact angle.	188
Fig. 6.9	Impact force-time response of target with different impact angle	189
Fig. 6.10	Crushing behaviour of Boeing 707-320 at different time interval	191
Fig. 6.11	Contact area of Boeing 707-320 aircraft through different methods	192
Fig. 6.12	Three-mile island containment subjected to Riera force time history curve and geometric model of Boeing 707-320 aircraft	195

Fig. 6.13	Tension damage profile in concrete using (a) Riera curve	195
	(b) Geometric model	
Fig. 6.14	Deformation profile in concrete using (a) Riera curve (b)	196
	Geometric model	
Fig. 6.15	Deformation profile in steel reinforcement using (a) Riera	196
	curve (b) Geometric model	
Fig. 6.16	Deformation profile in inner steel liner using (a) Riera	197
	curve (b) Geometric model	
Fig. 6.17	Stress profile in concrete using (a) Riera curve (b)	197
	Geometric model	
Fig. 6.18	Stress profile in steel reinforcement using (a) Riera curve	198
	(b) Geometric model	
Fig. 6.19	Stress profile in inner steel liner using (a) Riera curve (b)	198
	Geometric model	
Fig. 6.20	Three-mile island containment with different paths for	199
	plotting results	
Fig. 6.21	Deformation in concrete along path-B using different	199
	method	
Fig. 6.22	Deformation in concrete along path-A using different	200
	method	

Fig. 6.23	Stress in concrete along path-B using different method	200
Fig. 6.24	Stress in concrete along path-A using different method	201
Fig. 6.25	Deformation in single element at impact location of concrete body using different method	201
Fig. 6.26	Stress in single element at impact location of concrete body using different method	201
Fig. 6.27	Three-mile island containment with partition for trifurcation approach	203
Fig. 6.28	Proposed area in trifurcation scheme	204
Fig. 6.29	Reaction force-time response curve with rigid target at three different zone	205
Fig. 6.30	Deformation and stress profile in concrete under trifurcation approach	205
Fig. 6.31	Deformation and stress profile in steel reinforcement under trifurcation approach	206
Fig. 6.32	Deformation and stress profile in inner steel liner under trifurcation approach	206
Fig. 6.33	Deformation in concrete element at zone A_1 , A_2 and A_3 using trifurcation approach	207
Fig. 6.34	Stress in concrete element at zone A ₁ , A ₂ and A ₃ using	207

trifurcation approach

Fig. 6.35	Deformation in concrete along path-B using three different method	208
Fig. 6.36	Stress in concrete along path-B using three different method	208
Fig. 7.1	Dimensions, reinforcement, impact location and meshing details	212
Fig. 7.2	Force-time history curve of 707-320	214
Fig. 7.3	NPP containment with different fire intensity	216
Fig. 7.4	Jet fuel curves for different fire zone (a) Severely (b) moderately (c) low exposed region	217
Fig. 7.5	NPP containment with Path-A, Path-B, Path-C and Path-D	218
Fig. 7.6	Temperature gradient along (a) Path-A (b) Path-B (c) Path-C	219
Fig. 7.7	Temperature profile at 50 sec. (a) concrete (b) reinforcement (c) inner steel liner	220
Fig. 7.8	Temperature profile at 1000 sec. (a) concrete (b) reinforcement (c) inner steel liner	220
Fig. 7.9	Maximum temperature profile (a) concrete at 2490 sec. (b) reinforcement at 3640 sec. (c) inner steel liner at 5140 sec	220

Fig. 7.10 Temperature profile at 7200 sec. (a) concrete (b) 221 reinforcement (c) inner steel liner

Fig. 7.11	Selective nodes in concrete, Steel reinforcement and steel liner	221
Fig. 7.12	Nodal temperature in concrete body	222
Fig. 7.13	Nodal temperature in steel reinforcement bar	222
Fig. 7.14	Nodal temperature in inner steel liner	222
Fig. 7.15	Deformation contour at 0.18 sec. (a) concrete (b)	223
	reinforcement (c) inner steel liner	
Fig. 7.16	Stress contour at 0.18 sec. (a) concrete (b) reinforcement	224
	(c) inner steel liner	
Fig. 7.17	Stress variation along the thickness of TMIR wall	224
Fig. 7.18	Deformation profile in concrete body at 50 sec. and 400	226
	sec.	
Fig. 7.19	Deformation profile in concrete body at 50 sec. and 400	226
	sec.	
Fig. 7.20	Deformation profile in concrete body at 50 sec. and 400	226
	sec.	

Fig. 7.21	Deformation profile in Steel rebar at 50 sec. and 400 sec.	227
Fig. 7.22	Stress profile in Steel rebar at 50 sec. and 400 sec.	227
Fig. 7.23	Deformation profile in Steel rebar at 50 sec. and 400 sec.	227
Fig. 7.24	Deformation profile in Steel liner at 50 sec. and 400 sec	228
Fig. 7.25	Deformation profile in Steel liner at 50 sec. and 400 sec	228
Fig. 7.26	Deformation profile in Steel liner at 50 sec. and 400 sec	228
Fig. 7.27	Deformation variation along Path-D of the containment	229
Fig. 7.28	Thermal stress variation against Boeing 707-320 crash along Path-A	229
Fig. 7.29	Thermal stress variation against Boeing 707-320 crash along Path-B	229
Fig. 7.30	Thermal stress variation against Boeing 707-320 crash along Path-C	230

Table No.	Table Caption	Page No.
1.1	Types of Reactor with capacity	6
2.1	Various stages of heating phase	38
3.1	Concrete properties (DPM Parameters)	58
3.2	Concrete Stress-strain behavior at varying temperatures (Euro-code 2)	60
3.3	The parameters used in stress-strain relationships	61
3.4	Properties of reinforcement (Johnson-Cook Parameters)	65
3.5	Mathematical equation for stress-strain curves of steel	66
	rebar at different temperatures	
3.6	The properties for Aluminum alloy Al 7178-T651	68
4.1	Boeing 707-320 Specification	70
4.2	Number and types of element in aircraft model	85
4.3	Total number of elements in different models	87
4.4	Specifications of different aircrafts	87
4.5	Number of elements in containment in different approach	90