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ABSTRACT 

 

Nuclear power is considered as a reasonable, cheapest and effective energy 

source, however, there is an associated risk of nuclear radiation. There is always a chance 

that exposure to some amount of ionizing radiation from the nuclear plant that can harm 

cells or tissues. Leakage of nuclear radiation can cause cancer and other health problems 

in human being and these effects continue for a long time. The matter of NPP safety and 

sustainability against aircraft crash is more worried after 9/11 terrorist attack and aircraft 

crash with Twin Towers in the United States.  The aim of the NPP containment structure 

is to isolate radioactive materials. To avoid the release of radiation in the case of any 

internal failure, the innermost structure consists of either steel or high-strength RC 

concrete. To protect the internal containment structure from any external threat, the outer 

containment is designed as a thick RC concrete structure. Furthermore, it offers a final 

protective layer to prevent the exposure of radioactive radiation to the atmosphere. The 

nuclear containment systems are typically designed in two layers, taking into account the 

associated risk.  

 

In the present study, the impact due to aircraft crash on RCC outer containment 

wall of nuclear power plants (NPPs) has been studied.  The outer most containment of 

four well-known NPP structures i.e.  Creys-Malville Reactor (CMR), Fessenheim and 

Bugey Reactor (FBR), Boiling Water Reactor (BWR Mark-III) and Three Mile Island 

Reactor (TMIR) containment have been considered and impacted by fighter and 

commercial aircrafts to determine the most vulnerable location or most susceptible to 

damaged prone zone on the outer wall. The dimension of each containment structure is 
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different in size and shape.  

 

Th material of the NPP containment structure is made up of concrete and steel 

rebar. For the actual behaviour of concrete material, the Concrete Damaged Plasticity 

(CDP) model is used. CDP model that based on combined fracture mechanics and 

plasticity mechanics is used to evaluate the failure mechanism of the concrete structure. 

This model defines the significant features of the concrete failure mechanism subjected 

to multi-axial loading. The behaviour of material for the aircraft as well as the steel rebar 

has been taken using the Johnson-Cook (J-C) material model that is capable to predict 

the fracture and flow nature of the ductile materials. In general, the material strength 

decreases with increasing in temperature. Therefore, in heat transfer and thermal stress 

analysis, the parameters of the material properties (steel and concrete) at different 

temperatures are taken from Euro-code 2.  

 

The numerical analysis of NPP structure has been carried out using explicit and 

implicit integration scheme available in ABAQUS finite element solver software. 

Initially, simple PCC, RCC flat plate and RCC cylindrical wall have been analyzed under 

different impact loads due to aircraft crash. Thereafter, real NPP structures have been 

analyzed numerically subjected to different aircraft crash. The aircraft Boeing 707-320, 

Boeing 767-400, Airbus A320, and Phantom F4 have been considered to impact the 

containment wall. Out of these four, the Phantom F4 is a fighter jet whereas all other 

three aircrafts are commercial aircrafts. The heaviest aircraft is Boeing 767-400 and high-

speed aircraft is Phantom F4 among considered aircrafts. 

 

At first hypothetical PCC and RCC flat plate has been analyzed under the impact 
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of Boeing 707-320 and Phantom F4. It is observed that the aircraft Boeing 707-320 has 

less damaging potential than Phantom F4 fighter jet. Thereafter a hypothetical cylindrical 

RCC wall similar to cylindrical portion of BWR mark-III is impacted under Boeing 707-

320 aircraft. In this model both ends are fixed supported whereas BWR containment has 

one end fixed and upper end is fixed with dome roof. For the case of both end fixed 

cylindrical wall the most damage prone zone is observed at the mid height of the wall. 

When the real BWR subjected to same impact load shows the maximum deformation lies 

above mid height of the wall. It may be due to the different boundary condition (dome 

roof) at the top of the cylindrical wall in real condition.  

 

TMIR has not been analyzed previously by any researcher. An effort has been 

made to perform the detail analysis of the outer containment wall subjected to different 

impact and thermal loads due to different aircraft crash. The minimum tension damages 

are observed in TMIR due to more thickness of the containment. It is seen that the Boeing 

767-400 aircraft has more damaging potential among all considered aircrafts. As the 

velocity of aircraft impact load is very high, strain rate is an important parameter on the 

material behavior of the containment. The containment wall is also studied for different 

strain rate to get the most suitable value of strain rate that gives best results. The 

parametric study has been carried out for different thickness of NPP wall, % of steel 

reinforcement in wall, radius of curvature of wall, impact angle of aircraft and velocity 

of aircraft. 

 

The results showed the most damage prone containment is Creys-Malville and 

less damage prone is Three Mile Island due to impact load of Boeing 707-320 aircraft. 

The maximum tension damages are observed at impact location in CMR due to less 
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thickness of the containment. The damage due to aircrafts crash over the containment 

structure is not a global failure. It was also observed that when the wings of aircraft came 

in contact with NPP containment, the deformation and stress developed in the structure 

is maximum. 

 

The aircraft’s reaction time curve can be used effectively to reliably predict the 

response of the containment structure. The current approach is used to determine aircraft 

reaction-time response curves against a rigid target and non-rigid target. Many authors 

used the reaction time response curve on rigid target but in real the target is non-rigid. In 

present study, the target is assumed as flexible. The geometric model of the aircraft 

Boeing 707-320 is therefore developed and the associated response time curve is 

achieved assuming non - rigid and rigid targets of varying curvatures. It was found that 

the curvature and rigidity of the target has a major impact on the aircraft's reaction-time 

response. With increasing target curvature, a decrease in the peak reaction force has been 

developed. The reaction magnitude for same curvature given by the deformable target is 

smaller than the non-deformable target. The reaction-time curves therefore generated are 

compared with the results obtained by the analytical expressions available in literature. 

 

The influence of the contact area using two separate approaches for the 

application of the reaction-time curve has been investigated. In the first method, for the 

application of the curve, an average of the total aircraft contact area is considered. The 

method of trifurcation is considered in the second technique. It was found that the average 

area approach for the loading application overestimated the local deformation and stress 

while the trifurcation approach is more precise. 

 



xxxviii 
 

The reaction-time curves and the subsequent contact area thus obtained are 

idealised and used to find the containment's response. The aircraft's geometric model 

developed numerically is used to hit the containment at the most damaging zone. The 

containment response has been found in terms of local deformation, global deformation, 

stresses developed in concrete and steel reinforcement and the subsequent material 

degradation. The results that are obtained are compared and discussed in accordance with 

the reaction-time curve and the geometric model. It is found that the containment 

response against the reaction-time curve and the approach of the aircraft geometric model 

with the trifurcation method are in close agreement.  

 

The influence of fire due to crash of aircraft Boeing 707-320 has been studied. A 

step-by-step analysis was carried out to evaluate the stresses on the NPP wall due to 

aircraft crash with induced fire. First, the impact load was applied to the structure using 

force history curve of Boeing 707-320 aircraft and the angle of impact was considered as 

normal to the target. After impact the nodal temperatures were applied to the model 

through heat transfer analysis using jet fuel curves due to fuel burning. Finally, the impact 

and heat transfer effect has been combined to get thermal stress variation. The time gap 

between the impact of plane’s nose and plane’s wing is 0.18sec. So, heat transfer analysis 

has been performed after that time because fuel is stored in wings. The NPP containment 

wall along the height is segmented into three heat intensity regions i.e., severe, moderate 

and low intensity. The most severe region for the effect of fire is upto10 m height from 

the foundation because the maximum fuel will flow down to the bottom of structure. The 

analysis of heat transfer has been performed to get the nodal temperature in the steel 

reinforcement as well as concrete elements. For Boeing 707-320, the fire period has been 

considered to be 2hrs. Thermal stress analysis is subsequently carried out considering the 
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deformed geometry of the containment as the initial state due to the impact of the aircraft. 

From heat transfer analysis, it is observed that the average penetration of heat is 

approximately 250 mm along the thickness of the wall. The stresses caused by the 

induced fire have been observed to induce local concrete damage (scabbing). The induced 

fire due to Boeing 707-320 aircraft crash has no global effect on the TMIR NPP 

containment structure. 

 

Keywords: Nuclear Containment Structure, Impact loading, Aircraft crash, Boeing 707-

320, Water Reactor Mark-III NPP, Three Mile Island NPP, Thermo elastic analysis 


