Dedicated To My Family

CERTIFICATE

It is certified that the work contained in the thesis titled **Response of Nuclear Containment Wall Subjected to Impact and Thermal Load** by **Alim Rawsan** has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Supervisor Dr. Pabitra Ranjan Maiti Associate Professor Department of Civil Engineering IIT (BHU) - Varanasi - 221005

DECLARATION BY THE CANDIDATE

I, Alim Rawsan, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of Dr. Pabitra Ranjan Maiti from *July-2016 to February-2021*, at the *Department of Civil Engineering*, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date:

Place:

(Alim Rawsan)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

Supervisor Dr. Pabitra Ranjan Maiti Associate Professor Department of Civil Engineering IIT (BHU) - Varanasi - 221005

Signature of Head of Department

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: <u>Response of Nuclear Containment Wall Subjected to Impact and</u> <u>Thermal Load</u> Name of Student: <u>Alim Rawsan</u>

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Doctor of Philosophy.

Signature of the Student (Alim Rawsan)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Date:

Place:

ACKNOWLEDGEMENT

The work presented in this thesis would not have been possible without my close association with many people. I take this opportunity to extend my sincere gratitude and appreciation to all those who made this Ph.D thesis possible.

First and foremost, I would like to extend my sincere gratitude to my research guide **Dr. Pabitra Ranjan Maiti** for introducing me to this exciting field and for his dedicated help, advice, inspiration, encouragement and continuous support, throughout my Ph.D. His enthusiasm, integral view on research and his mission for providing high-quality work, has made a deep impression on me. During our course of interaction during the last four and half years, I have learned extensively from him, including how to raise new possibilities, how to regard an old question from a new perspective, how to approach a problem by systematic thinking. Every time, I meet him, I can feel "the fire in the belly" which he always talks about. I owe his lots of gratitude for having me shown this way of research. I am really glad to be associated with a person like Dr. Pabitra Ranjan Maiti in my life.

My special words of thanks should also go to **Prof. K. K. Pathak** and **Prof. Santwana Mukhopadhyay** for their continuous support, guidance, cooperation, encouragement.

I owe my deepest gratitude towards my friend for his eternal support and understanding of my goals and aspirations. His infallible love and support have always been my strength. Without his help, I would not have been able to complete much of what I have done and become who I am. It would be ungrateful on my part if I thank **Abhishek Sharma** in these few words.

My heartfelt thanks to my seniors Mr. Arnab, Mr. Rahul and Mr. Suriya for their guidance and moral support. They always helped me out when I got any difficulties or queries.

A special mention of thanks to my friends Bhupendra, Neetish, Tiwari, Saurav, Gaurav and many more for their constant support and cooperation during my stay. Their timely help and friendship shall always be remembered. Their benediction, motivation and inspiration have always provided me formidable mental support. My special regards to my teachers because of whose teaching at different stages of education has made it possible for me to see this day. Because of their kindness I feel, was able to reach a stage where I could write this thesis.

As always it is impossible to mention everybody who had an impact on this work however there are those whose spiritual support is even more important. I feel a deep sense of gratitude for my grandmother, uncles, mother, father, brothers who formed part of my vision and taught me good things that really matter in life. Their infallible love and support have always been my strength. Their patience and sacrifice will remain my inspiration throughout my life. I am also very much grateful to all my family members for their constant inspiration and encouragement.

A special thanks to my village friends Sareware, Jahirul, Pintu, Mojid and Manirul for their love and affection.

I am also thankful to the library staff and administrative staff of IIT (BHU) for cooperation.

Finally, I am thankful to the authorities of Indian Institute of Technology (Banaras Hindu University), Varanasi for providing me all necessary assistance in the form of research and guidance.

TABLE OF CONTENTS

Title page		i
Dedication		ii
Certification		iii
Declaration		iv
Copyright for	m	v
Acknowledg	nent	vi
Table of cont	ents	viii
List of Figure	28	xiii
List of Tables	8	xxxiii
Abstract		xxxiv
Chapter-1	INTRODUCTION	1-14
1.1	General	1
1.2	Nuclear power plants worldwide	3
1.3	Nuclear power plant (NPP) containment	6
1.4	Thesis organization	13
Chapter-2	LITERATURE REVIEW	15-46
2.1	General	15
2.2	Analytical approaches on NPP containment wall	16
2.3	Numerical approaches on NPP containment wall	25
2.4	Concrete and steel behavior under high rate of loading and elevated temperature	32

2.5	Critical observation	44
2.6	Scope of present study	45
Chapter-3	BACKGROUND OF MATERIAL MODELS	47-68
3.1	General	47
3.2	Concrete model under impact loading	48
3.3	Concrete model under fire	59
3.4	Reinforcement model under impact loading and fire	64
3.5	Material properties for aircraft model	67
Chapter-4	GEOMETRIC AND FINITE ELEMENT MODELING OF AIRCRAFT AND NPP CONTAINMENT	69-94
4.1	General	69
4.2	Aircraft Boeing 707-320	70
	4.2.1 Modeling of aircraft Boeing 707-320	71
	4.2.2 Meshing details of Boeing 707-320	72
4.3	Modeling of hypothetical structure	75
	4.3.1 Modeling of PCC plate	75
	4.3.2 Modeling of RCC plate	76
	4.3.3 Modeling of RCC cylindrical wall	77
4.4	Modeling of some real NPP containments	78
4.5	Mesh convergence study	81
4.6	Meshing details of containment wall and reinforcement bar	83

4.7	Interactions and boundary conditions	90
	4.7.1 When the load curve is applied on NPP wall	90
	4.7.2 When geometric model of aircraft is applied on NPP wall	91
4.7	Summary	94
Chapter-5	BEHAVIOR OF CONTAINMENT STRUCTURES AGAINST DIFFERENT AIRCRAFTS	95-178
5.1	General	95
5.2	Analysis of PCC plate	97
	5.2.1 Impact of Boeing 707-320 on PCC plate	97
	5.2.2 Impact of Phantom F4 on PCC plate	103
5.3	Analysis of RCC plate	108
5.4	Analysis of RCC cylindrical wall	113
5.5	Analysis of three-mile island reactor (TMIR) containment wall	122
5.6	Most damaged prone NPP reactor containment	137
5.7	Most damaging aircraft on NPP containment	144
	5.7.1 Most damaging aircraft on BWR containment	144
	5.7.2 Most damaging aircraft on TMIR containment	151
5.8	Critical impact location	160
5.9	Response of containment under different strain rates	167
5.10	Parametric study of containment response	173

5.11	Summary	177
Chapter-6	REACTION FORCE TIME CURVE AND AREA OF IMPACT	179-210
6.1	General	179
6.2	Reaction-time curve	179
	6.2.1 Effect of target curvature	180
	6.2.2 Effect of target deformability	185
	6.2.3 Effect of aircraft impact angle	187
6.3	Calculation of effective area under impact	189
6.4	NPP containment wall under reaction time curve and geometric model	192
6.5	Response of containment against trifurcation approach	202
6.6	Summary	209
Chapter-7	RESPONSE OF NUCLEAR CONTAINMENT UNDER CRASH INDUCED FIRE	211-232
7.1	General	211
7.2	Three-mile island NPP containment geometry	211
7.3	Loading details	213
7.4	Results and Discussions	215
	7.4.1 Heat transfer analysis	215
	7.4.2 Impact analysis	223
	7.4.3 Thermal stress analysis	225

7.5	Summary	230
Chapter-8	CONCLUSIONS	233-238
8.1	General	233
8.2	Concluding remarks	234
8.3	Scope of future study	237
REFERENCES		239-251

LIST OF FIGURES

Figure No.	Figure Caption	Page No.
Fig. 1.1	A typical Block diagram of Nuclear Power Plant	3
Fig. 1.2	Total number of Nuclear Power plant stations in world	4
Fig. 1.3	Country wise nuclear power plants	5
Fig. 1.4	Some actual nuclear power plants	7
Fig. 1.5	Some actual aircraft crashes	8
Fig. 2.1	Riera's aircraft impact model	18
Fig. 2.2	Impact location on NPP containment	19
Fig. 2.3	Different aircraft reaction time response curves	21
Fig. 2.4	The aircraft's view during impact	22
Fig. 2.5	Impact Area for Phantom F4	29
Fig. 2.6	Brittle target subjected to projectile impact (a) Penetration	35
	(b) Scabbing (c) Cone cracking (d) Perforation (e) Spalling	
	(f) Overall target response (g) cracks on (i) front face (ii)	
	rear face	
Fig. 2.7	Different form of surface texture of the concrete at elevated	38

temperatures

Fig. 2.8	High temperature has a detrimental effect on the strength	39
	of concrete	
Fig. 2.9	Decreasing the modulus of elasticity of with increasing	41
	temperature	
Fig. 3.1	concrete Stress-strain curve (a) under tension (b) under	50
	compression	
Fig. 3.2	Cracking strain under tension stiffening.	52
Fig. 3.3	Fracture energy curve after failure	52
Fig. 3.4	Cracking tensile strain in compression hardening	54
Fig. 3.5	Compressive inelastic strain in compression hardening.	54
Fig. 3.6	Concrete bevaviour with cyclic loading	55
Fig. 3.7	Concrete bevaviour with different strain rate under	55
	compression	
Fig. 3.8	Stress-strain curves for concrete for different strain rates	56
	under tensile loading.	
Fig. 3.9	DIF of concrete with different strain rate	57
Fig. 3.10	Normalized concrete tensile strength vs strain rate	57
Fig. 3.11	Variation of fracture energy with strain rate	58

Fig. 3.12	Concrete with varying temperature under compression	59
Fig. 3.13	Stress-strain plot at different temperature	60
Fig. 3.14	Youngs modulus of the concrete with varying temperature	61
Fig. 3.15	Thermal conductivity of concrete with varying temperature	62
Fig. 3.16	Expansion coefficient with varying temperature	63
Fig. 3.17	Specific heat concrete with temperature	63
Fig. 3.18	Stress-strain curve of steel bar at elevated temperatures	67
Fig. 3.19	Stress-strain plots of steel at different temperatures	67
Fig. 4.1	A typical geometrical dimension of Boeing 707-320	71
Fig. 4.2	Real view of Boeing 707-320	73
Fig. 4.3	Segmental view of Boeing 707-320 aircraft model for meshing	73
Fig. 4.4	Meshing detail of Boeing 707-320 in FEM	74
Fig. 4.5	Dimension of PCC plate	76
Fig. 4.6	Dimension of RCC plate and reinforcement details	77
Fig. 4.7	Dimension of RCC cylindical wall and reinforcement details	78

Fig. 4.8	Geometry and dimension of NPPs	80
Fig. 4.9	Dimension of Three Mile Island containment and reinforcement details	81
Fig. 4.10	Nodal temperature profile in plate with different size of element	82
Fig. 4.11	Temperature variation with different size of elements	83
Fig. 4.12	Dimensions, reinforcement, impact location and meshing details	85
Fig. 4.13	Meshing of reinforcement steel bar and inner steel liner	86
Fig. 4.14	Force-time history curves of different aircrafts	88
Fig. 4.15	Discretization of the NPP containment for different approach	89
Fig. 4.16	Penetration of master nodes into slave surface with pure master-slave contact	93
Fig. 4.17	Balanced master-slave contact constraint with kinematic compliance	93
Fig. 5.1	The different path along 40m, 20m, 3m	98
Fig. 5.2	Stress profile in concrete at 0.2084sec and 0.3472sec	99
Fig. 5.3	Deformation profile in concrete at 0.2084sec and	99

0.3472sec

Fig. 5.4	Damages profile in concrete at 0.2257sec	100
Fig. 5.5	Damages profile in concrete at 0.3472sec	100
Fig. 5.6	Deformation in concrete along first path	101
Fig. 5.7	Deformation in concrete along second path	101
Fig. 5.8	Deformation in concrete along third path	101
Fig. 5.9	Stress in concrete along third path	102
Fig. 5.10	Stress in concrete along first path	102
Fig. 5.11	Stress in concrete along second path	102
Fig. 5.12	Stress profile in concrete at 0.032sec and at 0.08sec	104
Fig. 5.13	Deformation profile in concrete at 0.032sec and at 0.08sec	104
Fig. 5.14	Damages profile in concrete at 0.036sec	105
Fig. 5.15	Damages profile in concrete at 0.08sec	105
Fig. 5.16	Deformation in concrete along first path	106
Fig. 5.17	Deformation in concrete along second path	106
Fig. 5.18	Deformation in concrete along third path	106
Fig. 5.19	Stress in concrete along third path	107

Fig. 5.20	Stress in concrete along first path	107
Fig. 5.21	Stress in concrete along second path	107
Fig. 5.22	Deformation profile in concrete at 0.16 sec and at 0.34 sec	109
Fig. 5.23	Deformation in reinforcement steel at 0.16 sec and at 0.34 sec	110
Fig. 5.24	Stress profile in reinforcement steel at 0.34 sec and in concrete at 0.34 sec	110
Fig. 5.25	Tension damage profile in concrete at 0.16 sec and at 0.34 sec	111
Fig. 5.26	Path A in concrete body for plotting results	111
Fig. 5.27	Deformation in concrete body along path A	112
Fig. 5.28	Stress in concrete body along path A	112
Fig. 5.29	Tension damages in concrete body along path A	112
Fig. 5.30	Stress profile in concrete at 0.2344sec	115
Fig. 5.31	Stress profile in steel bar at 0.2517sec	115
Fig. 5.32	Deformation profile in concrete at 0.2517sec	115
Fig. 5.33	Deformation profile in steel at 0.2517sec	116
Fig. 5.34	Deformation profile in concrete at 0.3472sec	116

Fig. 5.35	Deformation profile in steel at 0.3472sec	116
Fig. 5.36	Damages profile in concrete at 0.1736sec	117
Fig. 5.37	Damages profile in concrete at 0.3472sec	117
Fig. 5.38	Four locations for reaction calculation	117
Fig. 5.39	Reactions at base of NPP with different locations	118
Fig. 5.40	The different paths in the cylindrical containment	118
Fig. 5.41	Deformation in concrete along first path (outer face)	119
Fig. 5.42	Deformation in concrete along first path (inner face)	119
Fig. 5.43	Deformation in concrete along second path	119
Fig. 5.44	Stress in concrete along first path (outer face)	120
Fig. 5.45	Stress in concrete along first path (inner face)	120
Fig. 5.46	Stress in concrete along 2 nd path (outer face)	120
Fig. 5.47	Stress in concrete along third path	121
Fig. 5.48	Tension Damage (TD) in concrete along first path (inner	121
	face)	
Fig. 5.49	Plastic strain in concrete along first path (inner face)	121
Fig. 5.50	Path-A and Path-B in concrete body for plotting results	124

Fig. 5.51	Some selective nodes in concrete and steel reinforcement	124
	bar	
Fig. 5.52	Deformation contour in concrete at different time interval	125
Fig. 5.53	Deformation contour in steel reinforcement bar at different	126
	time interval	
Fig. 5.54	Deformation contour in steel liner at different time interval	127
Fig. 5.55	Stress contour in concrete at different time interval	128
Fig. 5.56	Stress contour in steel reinforcement bar at different time	129
	interval	
Fig. 5.57	Stress contour in steel liner at different time interval	130
Fig. 5.58	Deformation profile in concrete body at time 0.27sec	131
Fig. 5.59	The different stress profile in concrete at time 0.27sec	132
Fig. 5.60	Deformation in concrete along Path A (along longitudinal	131
	direction)	
Fig. 5.61	Deformation in concrete along Path B (along	133
	Circumferential direction)	
Fig. 5.62	Stress in concrete along Path A (along longitudinal	133
	direction)	
Fig. 5.63	Stress in concrete along Path B (along Circumferential	134

direction)

Fig. 5.64	Stress variation along the thickness of TMIR wall	134
Fig. 5.65	Deformation in concrete body at some selected nodes	135
Fig. 5.66	Stress in concrete body at some selected nodes	136
Fig. 5.67	Maximum deformation in BWR Mark-III containment (a) concrete (b) inner steel rebars (c) outer steel rebars	138
Fig. 5.68	Maximum deformation in CMR containment (a) concrete (b) steel rebars (c) inner steel liner	139
Fig. 5.69	Maximum deformation in FBR containment (a) concrete (b) steel rebars (c) inner steel liner	139
Fig. 5.70	Maximum deformation in TMIR containment (a) concrete (b) steel rebars (c) inner steel liner	139
Fig. 5.71	Maximum stress in BWR Mark-III containment (a) concrete (b) steel rebars	140
Fig. 5.72	Maximum stress in CMR containment (a) concrete (b) steel rebars (c) inner steel liner	140
Fig. 5.73	Maximum stress in FBR containment (a) concrete (b) steel rebars (c) inner steel liner	140
Fig. 5.74	Maximum stress in TMIR containment (a) concrete (b) steel rebars (c) inner steel liner	141

Fig. 5.75	Tension damages in (a) BWR Mark-III (b) CMR (c) FBR (d) TMIR	141
Fig. 5.76	Global deformation in concrete along path A	141
Fig. 5.77	Global deformation in concrete along path B	142
Fig. 5.78	Stress produced in concrete along path A	142
Fig. 5.79	Deformation of an element at impact location in all NPPs	142
Fig. 5.80	Tension damage of an element at impact location in all NPPs	143
Fig. 5.81	Maximum deformation and tension damages in containment for Boeing 767-400	146
Fig. 5.82	Maximum deformation and tension damages in containment for Phantom F4	146
Fig. 5.83	Maximum deformation and tension damages in containment for Boeing 707-320	147
Fig. 5.84	Maximum deformation and tension damages in containment for Airbus A320	147
Fig. 5.85	Deformation of an element at impact location for different aircrafts	148
Fig. 5.86	Stress of an element at impact location for different aircrafts	148

xxii

Fig. 5.87	Reaction force at the base of containment produced by	148
Fig. 5.88	Plastic strain of an element at impact location for different aircrafts	149
Fig. 5.89	Global deformation in concrete along path A	149
Fig. 5.90	Global deformation in concrete along path B	149
Fig. 5.91	Stress produced in concrete along path A	150
Fig. 5.92	Maximum deformation in concrete, Steel rebars and steel liner for Boeing 767-400	153
Fig. 5.93	Maximum deformation in concrete, Steel rebars and steel liner for Phantom F4	153
Fig. 5.94	Maximum deformation in concrete, Steel rebars and steel liner for Boeing 707-320	153
Fig. 5.95	Maximum deformation in concrete, Steel rebars and steel liner for Airbus A320	154
Fig. 5.96	Maximum stress in concrete, Steel rebars and steel liner for Boeing 767-400	154
Fig. 5.97	Maximum stress in concrete, Steel rebars and steel liner for Phantom F4	154
Fig. 5.98	Maximum stress in concrete, Steel rebars and steel liner for	155

Boeing 707-320

Fig. 5.99	Maximum stress in concrete, Steel rebars and steel liner for Airbus A320	155
Fig. 5.100	Tension damages in concrete of containment for (a) Boeing 767-400 (b) Phantom F4 (c) Boeing 707-320 and Airbus A320	155
Fig. 5.101	Global deformation in concrete along path A	156
Fig. 5.102	Global deformation in concrete along path B	156
Fig. 5.103	Stress produced in concrete along path A	156
Fig. 5.104	Stress produced in concrete along path B	157
Fig. 5.105	Deformation of an element at impact location for different aircraft	157
Fig. 5.106	Stress of an element at impact location for different aircraft	157
Fig. 5.107	Tension damage of an element at impact location for different aircraft	158
Fig. 5.108	NPP containment with different impact location	160
Fig. 5.109	Deformation and tension damages for location A	162
Fig. 5.110	Deformation and tension damages for location B	162
Fig. 5.111	Deformation and tension damages for location C	163

Fig. 5.112	Deformation and tension damages for location D	163
Fig. 5.113	Deformation and tension damages for location E	164
Fig. 5.114	Deformation and tension damages for location F	164
Fig. 5.115	Deformation and tension damages for location G	165
Fig. 5.116	Reaction force at the <i>base</i> of containment for different impact location	165
Fig. 5.117	Deformation of an element at impact location for different impact case	166
Fig. 5.118	Stress of an element at impact location for different impact case	166
Fig. 5.119	Plastic strain of an element at impact location for different impact case	166
Fig. 5.120	BWR containment with path A and path B	169
Fig. 5.121	The selective nodes in concrete body at inner face	169
Fig. 5.122	Deformation variation along path A with different strain rates	170
Fig. 5.123	Deformation variation along path B with different strain rates	170
Fig. 5.124	Stress variation in selective elements with different strain	171

rate

Fig. 5.125	Tension damages in selective elements with different strain	172
	rate	
Fig. 5.126	Aircraft impact on NPP containment with various angles	174
Fig. 5.127	Deformation of an element at impact location with different impact angles	174
Fig. 5.128	Aircraft impact on NPP containment with various velocities	174
Fig. 5.129	Deformation of an element at impact location with different impact velocities	175
Fig. 5.130	Reinforcement ratio in NPP wall section	175
Fig. 5.131	Deformation of an element at impact location with different reinforcement ratio	175
Fig. 5.132	Different NPP wall thicknesses	176
Fig. 5.133	Deformation of an element at impact location with different NPP containment thickness	176
Fig. 5.134	Different radius of curvatures of NPP wall	176
Fig. 5.135	Deformation of an element at impact location with different NPP containment curvatures	177

Fig. 6.1	Impact of Boeing 707-320 aircraft on target with different radius.	182
Fig. 6.2	Transverse mass distribution of Boeing 707-320 aircraft.	183
Fig. 6.3	Plan view of Boeing 707-320 aircraft with different target	184
Fig. 6.4	Impact force-time response of target with different radius.	184
Fig. 6.5	Impulse-time response of target with different radius.	185
Fig. 6.6	Boeing 707-320 model on rigid target and non-rigid target.	186
Fig. 6.7	Reaction force-time response of rigid and non-rigid target.	187
Fig. 6.8	Boeing 707-320 model on rigid target with different impact angle.	188
Fig. 6.9	Impact force-time response of target with different impact angle	189
Fig. 6.10	Crushing behaviour of Boeing 707-320 at different time interval	191
Fig. 6.11	Contact area of Boeing 707-320 aircraft through different methods	192
Fig. 6.12	Three-mile island containment subjected to Riera force time history curve and geometric model of Boeing 707-320 aircraft	195

Fig. 6.13	Tension damage profile in concrete using (a) Riera curve	195
	(b) Geometric model	
Fig. 6.14	Deformation profile in concrete using (a) Riera curve (b)	196
	Geometric model	
Fig. 6.15	Deformation profile in steel reinforcement using (a) Riera	196
	curve (b) Geometric model	
Fig. 6.16	Deformation profile in inner steel liner using (a) Riera	197
	curve (b) Geometric model	
Fig. 6.17	Stress profile in concrete using (a) Riera curve (b)	197
	Geometric model	
Fig. 6.18	Stress profile in steel reinforcement using (a) Riera curve	198
	(b) Geometric model	
Fig. 6.19	Stress profile in inner steel liner using (a) Riera curve (b)	198
	Geometric model	
Fig. 6.20	Three-mile island containment with different paths for	199
	plotting results	
Fig. 6.21	Deformation in concrete along path-B using different	199
	method	
Fig. 6.22	Deformation in concrete along path-A using different	200
	method	

Fig. 6.23	Stress in concrete along path-B using different method	200
Fig. 6.24	Stress in concrete along path-A using different method	201
Fig. 6.25	Deformation in single element at impact location of concrete body using different method	201
Fig. 6.26	Stress in single element at impact location of concrete body using different method	201
Fig. 6.27	Three-mile island containment with partition for trifurcation approach	203
Fig. 6.28	Proposed area in trifurcation scheme	204
Fig. 6.29	Reaction force-time response curve with rigid target at three different zone	205
Fig. 6.30	Deformation and stress profile in concrete under trifurcation approach	205
Fig. 6.31	Deformation and stress profile in steel reinforcement under trifurcation approach	206
Fig. 6.32	Deformation and stress profile in inner steel liner under trifurcation approach	206
Fig. 6.33	Deformation in concrete element at zone A_1 , A_2 and A_3 using trifurcation approach	207
Fig. 6.34	Stress in concrete element at zone A ₁ , A ₂ and A ₃ using	207

trifurcation approach

Fig. 6.35	Deformation in concrete along path-B using three different method	208
Fig. 6.36	Stress in concrete along path-B using three different method	208
Fig. 7.1	Dimensions, reinforcement, impact location and meshing details	212
Fig. 7.2	Force-time history curve of 707-320	214
Fig. 7.3	NPP containment with different fire intensity	216
Fig. 7.4	Jet fuel curves for different fire zone (a) Severely (b) moderately (c) low exposed region	217
Fig. 7.5	NPP containment with Path-A, Path-B, Path-C and Path-D	218
Fig. 7.6	Temperature gradient along (a) Path-A (b) Path-B (c) Path-C	219
Fig. 7.7	Temperature profile at 50 sec. (a) concrete (b) reinforcement (c) inner steel liner	220
Fig. 7.8	Temperature profile at 1000 sec. (a) concrete (b) reinforcement (c) inner steel liner	220
Fig. 7.9	Maximum temperature profile (a) concrete at 2490 sec. (b) reinforcement at 3640 sec. (c) inner steel liner at 5140 sec	220

Fig. 7.10 Temperature profile at 7200 sec. (a) concrete (b) 221 reinforcement (c) inner steel liner

Fig. 7.11	Selective nodes in concrete, Steel reinforcement and steel liner	221
Fig. 7.12	Nodal temperature in concrete body	222
Fig. 7.13	Nodal temperature in steel reinforcement bar	222
Fig. 7.14	Nodal temperature in inner steel liner	222
Fig. 7.15	Deformation contour at 0.18 sec. (a) concrete (b)	223
	reinforcement (c) inner steel liner	
Fig. 7.16	Stress contour at 0.18 sec. (a) concrete (b) reinforcement	224
	(c) inner steel liner	
Fig. 7.17	Stress variation along the thickness of TMIR wall	224
Fig. 7.18	Deformation profile in concrete body at 50 sec. and 400	226
	sec.	
Fig. 7.19	Deformation profile in concrete body at 50 sec. and 400	226
	sec.	
Fig. 7.20	Deformation profile in concrete body at 50 sec. and 400	226
	sec.	

Fig. 7.21	Deformation profile in Steel rebar at 50 sec. and 400 sec.	227
Fig. 7.22	Stress profile in Steel rebar at 50 sec. and 400 sec.	227
Fig. 7.23	Deformation profile in Steel rebar at 50 sec. and 400 sec.	227
Fig. 7.24	Deformation profile in Steel liner at 50 sec. and 400 sec	228
Fig. 7.25	Deformation profile in Steel liner at 50 sec. and 400 sec	228
Fig. 7.26	Deformation profile in Steel liner at 50 sec. and 400 sec	228
Fig. 7.27	Deformation variation along Path-D of the containment	229
Fig. 7.28	Thermal stress variation against Boeing 707-320 crash along Path-A	229
Fig. 7.29	Thermal stress variation against Boeing 707-320 crash along Path-B	229
Fig. 7.30	Thermal stress variation against Boeing 707-320 crash along Path-C	230

Table No.	Table Caption	Page No.
1.1	Types of Reactor with capacity	6
2.1	Various stages of heating phase	38
3.1	Concrete properties (DPM Parameters)	58
3.2	Concrete Stress-strain behavior at varying temperatures (Euro-code 2)	60
3.3	The parameters used in stress-strain relationships	61
3.4	Properties of reinforcement (Johnson-Cook Parameters)	65
3.5	Mathematical equation for stress-strain curves of steel	66
	rebar at different temperatures	
3.6	The properties for Aluminum alloy Al 7178-T651	68
4.1	Boeing 707-320 Specification	70
4.2	Number and types of element in aircraft model	85
4.3	Total number of elements in different models	87
4.4	Specifications of different aircrafts	87
4.5	Number of elements in containment in different approach	90

Nuclear power is considered as a reasonable, cheapest and effective energy source, however, there is an associated risk of nuclear radiation. There is always a chance that exposure to some amount of ionizing radiation from the nuclear plant that can harm cells or tissues. Leakage of nuclear radiation can cause cancer and other health problems in human being and these effects continue for a long time. The matter of NPP safety and sustainability against aircraft crash is more worried after 9/11 terrorist attack and aircraft crash with Twin Towers in the United States. The aim of the NPP containment structure is to isolate radioactive materials. To avoid the release of radiation in the case of any internal failure, the innermost structure consists of either steel or high-strength RC concrete. To protect the internal containment structure from any external threat, the outer containment is designed as a thick RC concrete structure. Furthermore, it offers a final protective layer to prevent the exposure of radioactive radiation to the atmosphere. The nuclear containment systems are typically designed in two layers, taking into account the associated risk.

In the present study, the impact due to aircraft crash on RCC outer containment wall of nuclear power plants (NPPs) has been studied. The outer most containment of four well-known NPP structures i.e. Creys-Malville Reactor (CMR), Fessenheim and Bugey Reactor (FBR), Boiling Water Reactor (BWR Mark-III) and Three Mile Island Reactor (TMIR) containment have been considered and impacted by fighter and commercial aircrafts to determine the most vulnerable location or most susceptible to damaged prone zone on the outer wall. The dimension of each containment structure is different in size and shape.

Th material of the NPP containment structure is made up of concrete and steel rebar. For the actual behaviour of concrete material, the Concrete Damaged Plasticity (CDP) model is used. CDP model that based on combined fracture mechanics and plasticity mechanics is used to evaluate the failure mechanism of the concrete structure. This model defines the significant features of the concrete failure mechanism subjected to multi-axial loading. The behaviour of material for the aircraft as well as the steel rebar has been taken using the Johnson-Cook (J-C) material model that is capable to predict the fracture and flow nature of the ductile materials. In general, the material strength decreases with increasing in temperature. Therefore, in heat transfer and thermal stress analysis, the parameters of the material properties (steel and concrete) at different temperatures are taken from Euro-code 2.

The numerical analysis of NPP structure has been carried out using explicit and implicit integration scheme available in ABAQUS finite element solver software. Initially, simple PCC, RCC flat plate and RCC cylindrical wall have been analyzed under different impact loads due to aircraft crash. Thereafter, real NPP structures have been analyzed numerically subjected to different aircraft crash. The aircraft Boeing 707-320, Boeing 767-400, Airbus A320, and Phantom F4 have been considered to impact the containment wall. Out of these four, the Phantom F4 is a fighter jet whereas all other three aircrafts are commercial aircrafts. The heaviest aircraft is Boeing 767-400 and high-speed aircraft is Phantom F4 among considered aircrafts.

At first hypothetical PCC and RCC flat plate has been analyzed under the impact

of Boeing 707-320 and Phantom F4. It is observed that the aircraft Boeing 707-320 has less damaging potential than Phantom F4 fighter jet. Thereafter a hypothetical cylindrical RCC wall similar to cylindrical portion of BWR mark-III is impacted under Boeing 707-320 aircraft. In this model both ends are fixed supported whereas BWR containment has one end fixed and upper end is fixed with dome roof. For the case of both end fixed cylindrical wall the most damage prone zone is observed at the mid height of the wall. When the real BWR subjected to same impact load shows the maximum deformation lies above mid height of the wall. It may be due to the different boundary condition (dome roof) at the top of the cylindrical wall in real condition.

TMIR has not been analyzed previously by any researcher. An effort has been made to perform the detail analysis of the outer containment wall subjected to different impact and thermal loads due to different aircraft crash. The minimum tension damages are observed in TMIR due to more thickness of the containment. It is seen that the Boeing 767-400 aircraft has more damaging potential among all considered aircrafts. As the velocity of aircraft impact load is very high, strain rate is an important parameter on the material behavior of the containment. The containment wall is also studied for different strain rate to get the most suitable value of strain rate that gives best results. The parametric study has been carried out for different thickness of NPP wall, % of steel reinforcement in wall, radius of curvature of wall, impact angle of aircraft and velocity of aircraft.

The results showed the most damage prone containment is Creys-Malville and less damage prone is Three Mile Island due to impact load of Boeing 707-320 aircraft. The maximum tension damages are observed at impact location in CMR due to less thickness of the containment. The damage due to aircrafts crash over the containment structure is not a global failure. It was also observed that when the wings of aircraft came in contact with NPP containment, the deformation and stress developed in the structure is maximum.

The aircraft's reaction time curve can be used effectively to reliably predict the response of the containment structure. The current approach is used to determine aircraft reaction-time response curves against a rigid target and non-rigid target. Many authors used the reaction time response curve on rigid target but in real the target is non-rigid. In present study, the target is assumed as flexible. The geometric model of the aircraft Boeing 707-320 is therefore developed and the associated response time curve is achieved assuming non - rigid and rigid targets of varying curvatures. It was found that the curvature and rigidity of the target has a major impact on the aircraft's reaction-time response. With increasing target curvature, a decrease in the peak reaction force has been developed. The reaction magnitude for same curvature given by the deformable target is smaller than the non-deformable target. The reaction-time curves therefore generated are compared with the results obtained by the analytical expressions available in literature.

The influence of the contact area using two separate approaches for the application of the reaction-time curve has been investigated. In the first method, for the application of the curve, an average of the total aircraft contact area is considered. The method of trifurcation is considered in the second technique. It was found that the average area approach for the loading application overestimated the local deformation and stress while the trifurcation approach is more precise.

The reaction-time curves and the subsequent contact area thus obtained are idealised and used to find the containment's response. The aircraft's geometric model developed numerically is used to hit the containment at the most damaging zone. The containment response has been found in terms of local deformation, global deformation, stresses developed in concrete and steel reinforcement and the subsequent material degradation. The results that are obtained are compared and discussed in accordance with the reaction-time curve and the geometric model. It is found that the containment response against the reaction-time curve and the approach of the aircraft geometric model with the trifurcation method are in close agreement.

The influence of fire due to crash of aircraft Boeing 707-320 has been studied. A step-by-step analysis was carried out to evaluate the stresses on the NPP wall due to aircraft crash with induced fire. First, the impact load was applied to the structure using force history curve of Boeing 707-320 aircraft and the angle of impact was considered as normal to the target. After impact the nodal temperatures were applied to the model through heat transfer analysis using jet fuel curves due to fuel burning. Finally, the impact and heat transfer effect has been combined to get thermal stress variation. The time gap between the impact of plane's nose and plane's wing is 0.18sec. So, heat transfer analysis has been performed after that time because fuel is stored in wings. The NPP containment wall along the height is segmented into three heat intensity regions i.e., severe, moderate and low intensity. The most severe region for the effect of fire is upto10 m height from the foundation because the maximum fuel will flow down to the bottom of structure. The analysis of heat transfer has been performed to get the nodal temperature in the steel reinforcement as well as concrete elements. For Boeing 707-320, the fire period has been considered to be 2hrs. Thermal stress analysis is subsequently carried out considering the

deformed geometry of the containment as the initial state due to the impact of the aircraft. From heat transfer analysis, it is observed that the average penetration of heat is approximately 250 mm along the thickness of the wall. The stresses caused by the induced fire have been observed to induce local concrete damage (scabbing). The induced fire due to Boeing 707-320 aircraft crash has no global effect on the TMIR NPP containment structure.

Keywords: Nuclear Containment Structure, Impact loading, Aircraft crash, Boeing 707-320, Water Reactor Mark-III NPP, Three Mile Island NPP, Thermo elastic analysis