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Chapter 4 

Conclusions 

4.1. Concluding Remarks 

In the present work, the structural analysis of smart laminated composite plates resting 

on an elastic foundation is carried out using an interlaminar shear stress continuous non-

polynomial ZZ theory namely, the trigonometric zigzag theory (TZZT). A closed form 

analytical solution based on Navier’s method is presented for the first time to carry out 

the static and dynamic analysis of traditional laminated composites and smart composite 

plate structures. Further, a generalized C
0
 FE formulation is also developed to derive the 

static and dynamic responses of both traditional laminated composites and smart 

composite plate structures. A detailed investigation of the static and dynamic responses 

of traditional laminated composites and smart composite plates are presented in this 

research by exploiting the various geometrical and material features of the plate 

structures. The forced vibration responses are presented under the action of various 

time-dependent loads and various forms of blast loads with parameters like shock pulse 

length factor, decay parameter and positive phase duration of the pulses. The 

counteracting electrical loads that diminish the unwanted mechanical vibrations from 

the system are obtained for various forms of electromechanical loads.  The suppressed 

free and forced vibration responses of smart composite plates are also presented by 

coupling the actuators and sensors with a negative feedback controller. The main 

conclusions of the present investigations are stated below: 

 The present model considers a trigonometric function namely, the secant function in 

the kinematic expansion of the 3 D in-plane displacements as a higher order 

mathematical function of the thickness coordinate. This function is chosen carefully 
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by fulfilling the criteria’s of constructing the shear-strain functions (see Sec. 

1.4.3.4). The present model is a refinement of the CPT by introducing the non-

linearity of the transverse shear stresses/strains across the thickness of the smart 

composite plates. Also, the slope discontinuities of in-plane displacements are 

included in the kinematic model with auxiliary variables defined at the interfaces 

with piecewise linear functions of the thickness coordinate. The present model 

consists of only five variables defined at the midplane namely, the three constant 

deformations in x1, x2 and x3-direction and the two rotations about the x1 and x2-

direction. Thus the computational cost associated with the present model is like that 

of the FSDT. 

 The static and dynamic responses of both traditional laminated composites and 

smart composite plates obtained using the present model is found to be in good 

agreement with the elasticity solutions. The results obtained using FEM are in close 

agreement with the present analytical results. 

 The number of primary variables is also less when the refinements are made on the 

CPT as opposed to the FSDT. When the refinements are made on CPT, then an 

additional higher-order term in conjunction with an antisymmetric shear strain 

function is required along with the local ZZ functions. The various possible 

refinements that  can be made on CPT and FSDT are shown below: 

      Refinement over Poisson-Kirchhoff theory (Model 1) 

 U1 = 𝑢1 - 𝑥3
𝜕𝑢3

𝜕𝑥1
  + ∑ (𝑥3 − 𝑥3

𝑖𝑢)𝐻(𝑥3 − 𝑥3
𝑖𝑢𝑛𝑢−1

𝑖=1 )𝛼1𝑢
𝑖  + ∑ (𝑥3 − 𝑥3

𝑗𝑙)𝐻(−𝑧 + 𝑥3
𝑗𝑙𝑛𝑙−1

𝑗=1 )𝛼1𝑙

𝑗
           

 

 

U3 = 𝑢3                                                                                                                      4.1            

The transverse shear strain calculated from Model 1 is written as 

Primary variables  of 

CPT 

 

Zigzag terms 
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𝛾13 = ∑ (𝑥3 − 𝑥3
𝑖𝑢)𝛿(𝑥3 − 𝑥3

𝑖𝑢)𝑛𝑢−1
𝑖=1 𝛼1𝑢

𝑖  + ∑ 𝐻(𝑥3 − 𝑥3
𝑖𝑢)𝑛𝑢−1

𝑖=1 𝛼1𝑢
𝑖          

          +  ∑ (𝑥3 − 𝑥3
𝑗𝑙)𝛿(𝑥3 − 𝑥3

𝑗𝑙)
𝑛𝑙−1
𝑗=1 𝛼1𝑙

𝑗
+ ∑ 𝐻(𝑥3 − 𝑥3

𝑖𝑢)
𝑛𝑙−1
𝑗=1 𝛼1𝑙

𝑗
                                             4.2 

It can be observed in Eq. 4.2 that the expression of transverse shear strain does not 

have any primary variables of the CPT and has only the auxiliary variables defined 

at the midplane. The auxiliary variables cannot be expressed in terms of the primary 

variables. Thus the refinement is not useful. 

Refinement over Poisson-Kirchhoff theory (Model 2) 

 U1 = 𝑢1 - 𝑥3
𝜕𝑢3

𝜕𝑥1
   + f (𝑥3) 𝛽1 + ∑ (𝑥3 − 𝑥3

𝑖𝑢)𝐻(𝑥3 − 𝑥3
𝑖𝑢𝑛𝑢−1

𝑖=1 )𝛼1𝑢
𝑖   

                                           + ∑ (𝑥3 − 𝑥3
𝑗𝑙)𝐻(−𝑧 + 𝑥3

𝑗𝑙𝑛𝑙−1
𝑗=1 )𝛼1𝑙

𝑗
      

 

 
 

 

 

U3 = 𝑢3                                                                                                                      4.3            

The transverse shear strain calculated from Model 2 is expressed as follows 

𝛾13 = ∑ (𝑥3 − 𝑥3
𝑖𝑢)𝛿(𝑥3 − 𝑥3

𝑖𝑢)𝑛𝑢−1
𝑖=1 𝛼1𝑢

𝑖  + ∑ 𝐻(𝑥3 − 𝑥3
𝑖𝑢)𝑛𝑢−1

𝑖=1 𝛼1𝑢
𝑖   

            +  ∑ (𝑥3 − 𝑥3
𝑗𝑙)𝛿(𝑥3 − 𝑥3

𝑗𝑙)
𝑛𝑙−1
𝑗=1 𝛼1𝑙

𝑗
  + ∑ 𝐻(𝑥3 − 𝑥3

𝑖𝑢)
𝑛𝑙−1
𝑗=1 𝛼1𝑙

𝑗
   + 

𝑑𝑓 (𝑥3) 

𝑑𝑥3
 𝛽1                     4.4                                                    

The last term in Eq. 4.4 is responsible for creating the non-linear profile of the 

transverse shear strains across the thickness of the plate structures while the other 

terms are responsible for creating the discontinuous transverse shear strains at the 

interfaces of the plates.  

Refinement over Reissner-Mindlin theory (Model 3) 

 U1 = 𝑢1 + 𝑥3𝜃1  + ∑ (𝑥3 − 𝑥3
𝑖𝑢)𝐻(𝑥3 − 𝑥3

𝑖𝑢𝑛𝑢−1
𝑖=1 )𝛼1𝑢

𝑖  + ∑ (𝑥3 − 𝑥3
𝑗𝑙)𝐻(−𝑧 + 𝑥3

𝑗𝑙𝑛𝑙−1
𝑗=1 )𝛼1𝑙

𝑗
 

 

 

U3 = 𝑢3                                                                                                                      4.5   

 

The transverse shear strain calculated from Model 3 is presented below 
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with non-linear function of 
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𝛾13 = ∑ (𝑥3 − 𝑥3
𝑖𝑢)𝛿(𝑥3 − 𝑥3

𝑖𝑢)𝑛𝑢−1
𝑖=1 𝛼1𝑢

𝑖  + ∑ 𝐻(𝑥3 − 𝑥3
𝑖𝑢)𝑛𝑢−1

𝑖=1 𝛼1𝑢
𝑖   

           +  ∑ (𝑥3 − 𝑥3
𝑗𝑙)𝛿(𝑥3 − 𝑥3

𝑗𝑙)
𝑛𝑙−1
𝑗=1 𝛼1𝑙

𝑗
  +  ∑ 𝐻(𝑥3 − 𝑥3

𝑖𝑢)
𝑛𝑙−1
𝑗=1 𝛼1𝑙

𝑗  + (𝜃1 +
𝜕𝑢3

𝜕𝑥1
)                     4.6                                                                                

It is observed in Eq. 4.6 that the transverse shear strains are constant across the 

thickness of the smart composite plate. Though the discontinuity of the transverse 

shear strains can be created at the interfaces, however the parabolic nature of the 

transverse shear stresses cannot be attained. 

Refinement over Reissner-Mindlin theory (Model 4) 

 U1 = 𝑢1 + 𝑥3𝜃1 + f (𝑥3) 𝜃1
∗ +  ∑ (𝑥3 − 𝑥3

𝑖𝑢)𝐻(𝑥3 − 𝑥3
𝑖𝑢𝑛𝑢−1

𝑖=1 )𝛼1𝑢
𝑖   

                                            + ∑ (𝑥3 − 𝑥3
𝑗𝑙)𝐻(−𝑧 + 𝑥3

𝑗𝑙𝑛𝑙−1
𝑗=1 )𝛼1𝑙

𝑗
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The transverse shear strains calculated from Model 4 is shown below 

𝛾13 = ∑ (𝑥3 − 𝑥3
𝑖𝑢)𝛿(𝑥3 − 𝑥3

𝑖𝑢)𝑛𝑢−1
𝑖=1 𝛼1𝑢

𝑖  + ∑ 𝐻(𝑥3 − 𝑥3
𝑖𝑢)𝑛𝑢−1

𝑖=1 𝛼1𝑢
𝑖   

            +  ∑ (𝑥3 − 𝑥3
𝑗𝑙)𝛿(𝑥3 − 𝑥3

𝑗𝑙)
𝑛𝑙−1
𝑗=1 𝛼1𝑙

𝑗
 + ∑ 𝐻(𝑥3 − 𝑥3

𝑖𝑢)
𝑛𝑙−1
𝑗=1 𝛼1𝑙

𝑗
 + (𝜃1 +

𝜕𝑢3

𝜕𝑥1
) + 

𝑑𝑓 (𝑥3) 

𝑑𝑥3
 𝜃1

∗    4.8 

                                                                                    
 

 

It is observed in Eq. 4.8 that the non-linear profile of the transverse shear strains along 

with its discontinuity at the interfaces can be attained simultaneously. Therefore, it is 

now evident that Model 2 and Model 4 can model the non-linear through-thickness 

variations of the transverse shear stresses/strains. Additionally, both the models satisfy 

the piecewise continuity requirements of in-plane displacements, which can further 

create discontinuous transverse shear strains and continuous transverse shear stresses at 

the interfaces of the plates. However, we see that the number of primary variables in the 

refined FSDT (Model 4) is seven while the number of primary variables in refined CPT 

Reissner-Mindlin 

terms 
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with non-linear non-polynomial 
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Shear deformation getting refined 
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(Model 2) is five. Therefore, Model 2 is computationally less expensive than Model 4. 

A complexity noticed while developing a FE model with Model 2 is that it requires C
1
 

continuity of the transverse displacement at the element boundaries while Model 4 

requires C
0
 continuity in the FE formulation. 

 The transverse shear stresses are fairly estimated using the constitutive relations 

(CR) of the material in the case of traditional laminated composites and sandwich 

plates. However, the estimations are too poor for the smart composite plate 

structures under the action of electromechanical loads. 

 The accuracy of the transverse shear stresses is enhanced using the equilibrium 

equations (EE) of elasticity. The estimations obtained using EE are found to be in 

excellent agreement with the 3 D solutions for traditional laminated composites, 

soft-core sandwich plates and smart composite plates. 

 A significant change in the through-thickness variation of transverse shear stress 

(𝜏13) is noticed in the smart composite plates under the action of combined 

electrical and mechanical loading. However, the variation is more or less similar to 

the traditional laminated composite plate under the action of only mechanical loads. 

When the combined electromechanical loads are applied, it is observed that the 

maximum value is attained at the interface of the smart composite plate 

(PFRC/0/90/0) while the maximum value is attained at the midplane under the 

action of mechanical load only. 

 The through-thickness variations of 𝜏23 in smart composite plates (PFRC/0/90/0) are 

more or less similar to the traditional laminated composites (0/90/0) subjected to 

both mechanical and electromechanical loadings. The maximum value of 𝜏23 is 

attained at the midplane under the action of both electromechanical loads and purely 

mechanical loads. 
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 The actuation in the static responses is more in case of smart composite plates with 

low span thickness ratio. The actuation in 𝜎11 is much more pronounced than 𝜎22 in 

a PFRC/0/90/0 and PFRC/0/90/90/0 plate due to the placement of the piezoelectric 

fibers in the x1-direction and also due to the large value of the piezoelectric 

coefficient ‘e31’.  

 The in-plane displacements are non-zero at the midplane in PFRC/0/90/0 plate 

under the action of transverse electromechanical and purely mechanical loads as 

there is coupling between the membrane and bending stiffness components due to 

the presence of the PFRC layer. 

 The natural frequencies and the higher-modes of vibration are largely affected by 

the material and the geometrical features of the plates like density, core-thickness, 

aspect-ratio and modular ratio.  

 The foundation stiffness has a significant impact on the static and dynamic 

responses of traditional laminated composites and smart composite plate structures. 

The magnitudes deflection and stresses have significantly reduced due to the 

Winkler and the shear stiffness of the elastic foundations. The fundamental 

frequencies of the plate structures tend to increase due to the stiffness of the 

foundations.  

 The combined Winkler and shear stiffness in the Pasternak’s foundation model has a 

greater impact on the structural responses of plate structures than the Winkler’s 

foundation model as it accounts for the shear interactions among the points in the 

elastic soil in addition to the proportional interaction between the pressure and 

deflection of any point on the surface of the soil. 

 In the case of laminated composite plates, it is found that the effect of enforcing the 

continuity of inter-laminar stresses are not much significant as the difference in the 
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results of the natural frequencies from the present model and the ESL-based theories 

are small. However, in the case of soft-core sandwich systems, the differences in the 

responses are significant. Thus, it is essential to employ an inter-laminar continuous 

plate theory to model the dynamic responses of soft-core-sandwich plate structures. 

 The displacement-time responses obtained in the transient analysis indicate that the 

dynamic responses are largely affected by the shock pulse length factor, decay 

parameter, and the positive phase duration of the pulse in the blast loads. The 

amplitudes of the free vibration responses after a strong blast is dependent on the 

duration of the blast load. The laminated composite plates with a higher aspect ratio 

and lower span thickness ratio have more stiffness and experiences less transverse 

deflection. The non-linear behavior of the transverse shear stresses should be 

carefully accommodated in the mathematical model as improper modeling of the 

transverse shear stress behavior will result in the overestimation/underestimation of 

the stiffness of the plate, resulting in erroneous responses. 

 The dynamic responses obtained using the present model and the ESL-based FSDT 

and HSDTs does not have much difference when the transverse shear modulus ‘G13’ 

and ‘G23’ are same for all the layers in multi-layered structures. This is because 

there are no discontinuities in the material properties at the interfaces when ‘G13’ 

and ‘G23’ are equal. However, the differences in the dynamic responses are evident 

when unequal shear modulus is considered. The unequal shear modulus creates 

discontinuities in the material properties at the interfaces and as a result the present 

ZZ model produces more accurate responses than the ESL-based models. 

 The amplitude of the forced-vibration response is maximum in the case of pulse 

load followed by triangular, exponential and sinusoidal loads. The reason behind 

this is that the time-dependent response of a structure depends on the magnitude of 
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the load at a particular time ‘t’ along with the initial conditions of displacement, 

velocity and acceleration at the previous time ‘t-1’. In the case of pulse loads, the 

amplitude of the load remains constant in time, in triangular and exponential profile 

the amplitude of the load linearly and non-linearly decreases from the peak value at 

t = 0 and in the case of sinusoidal loads, the amplitude  increases from zero load at t 

= 0 to the peak value at some time instant. The initial conditions in the case of pulse, 

triangular and exponential loads are higher than sinusoidal loads as the 

displacement, velocity and acceleration will be higher due to higher magnitude of 

load during the initial time instants. Thus the amplitude of response under the 

sinusoidal load is the smallest. Among the pulse, triangular and exponential loads, 

the initial conditions at any time ‘t-1’ will be maximum for pulse, followed by 

triangular and exponential as the amplitude of load in the pulse loading remains 

constant in time, i.e, at the peak value whereas in the case of the triangular and 

exponential loads, the amplitude decreases linearly and exponentially in time. 

 The amplitude of the dynamic responses is also largely affected by the magnitude 

and polarity of the electrical loadings. The counteracting electrical loads required to 

remove the mechanical vibrations from the system is dependent on the span-

thickness ratio. The amplitude of the electrical loads is found to increase with the 

increase in the span-thickness ratio.  

 The static and dynamic responses of smart composite plates are not significantly 

different from the responses of the traditional laminated composite plates when the 

thickness of the piezoelectric layer is very small in comparison to the thickness of 

the laminated composite plates. 

 The negative feedback controller used in the active vibration analysis creates an 

active damping matrix by which the amplitude of the responses decreases with time. 
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The magnitude of the free-vibration and forced-vibration responses decreases with 

the increase in the gain of the controller. 

4.2. Contribution of the thesis 

New analytical and FE models are derived for the structural responses of traditional 

laminated composites and smart composite plate structures resting on an elastic 

foundation. The developed models can produce accurate responses of multilayered 

laminated composites and smart structures with less computational effort. Both the 

actuator and the sensor responses of the smart composite plates are derived. The 

variation of the transverse shear stresses in smart composites under the action of the 

electromechanical load is significantly different from those of traditional composite 

structures. Thus the constitutive relations fail to predict the accurate variation of 

transverse shear even if an interlaminar shear stress continuous plate theory is used to 

model the responses. Therefore, the accuracy of the results of the transverse shear 

stresses is enhanced by using an efficient post-processing scheme of integrating the 

equilibrium equations (EE) of elasticity. The coupled electromechanical actuator 

responses under the action of both static and dynamic electromechanical loads are 

investigated in detail to check the actuation in the responses of deflection and stresses. 

Multilayered composite plates made up of advanced composites are extensively used in 

subsonic/supersonic flight vehicles and these structures are often subjected to severe 

dynamic excitations like sonic boom pulses and nuclear explosions, etc. It is highly 

important to understand the dynamic behavior of composite structures subjected to blast 

loads. In this research, the forced vibration responses of composite plate structures are 

obtained for various forms of blast loads to understand the behavior of composites 

under extreme conditions. In addition, various forms of time-dependent 

electromechanical loads are considered for evaluating the coupled electro-mechanical 
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dynamic behavior of smart composite plates with various piezoelectric materials like 

polyvinylidene fluoride (PVDF) and piezoelectric-fiber reinforced composites (PFRC). 

The PFRCs are recently developed piezoelectric materials in the literature with greater 

actuating capacity than the PVDF as the piezoelectric coefficient (e31) coupling the in-

plane normal stress and the electric field in the thickness direction is higher in PFRCs. 

The controlling capacity of the piezo patches is verified by deriving the electrical loads 

required to completely diminish the mechanical vibrations from the system. The Active 

Control analysis is also presented by deriving the suppressed free-vibration and forced 

vibration responses of smart composite plates by creating a control strategy using a 

negative feedback controller. Finally, the complex soil-structure interaction problem of 

traditional laminated composites and smart composite plate structures supported by the 

elastic foundation is presented in which both the static and the dynamic behavior of the 

plates are investigated. 

4.3. Scope for the Future Research 

In this section, some of the possible areas of research which can be carried out in the 

future are presented below: 

 The present work may be extended to derive the deformation responses of advanced 

structures like smart FG and smart CNT-reinforced composite plates. 

 Shell structures are more economical than those of plate structures due to their shape 

which helps to transfer the load through axial as well bending stiffness. The present 

work can be extended for determining the static and dynamic responses of 

traditional laminated composite and smart composite shells. 

 Analytical solutions are considered as the best solutions of any problem and are 

often useful to test new numerical methods. However, the analytical solutions based 

on Navier’s scheme are restricted to simply supported boundary conditions. 
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Therefore, solutions for other boundary conditions are required to be obtained 

analytically. 

 The environmental conditions like variation of temperature and moisture often 

degrade the strength of structures. The present work can be extended to study the 

static and dynamic deformation responses of structures subjected to hygro-thermo-

mechanical loads. 

 In many research works the hygro-thermal loads are considered to be linearly 

varying through the thickness of the plate structures. However, more realistic 

approach would be to solve the Fourier’s law of heat conduction and the Fick’s law 

of moisture concentration for deriving the exact variation of the hygro-thermal load 

through the thickness. 

 The present mathematical model can be refined by including the effects of 

transverse normal stresses/strains. Also, the constant axial stretching mode in the 

present model can be improved by considering nonlinear stretching modes.  

 The present formulation is developed in the framework of linear elasticity. The 

incorporation of material and geometrical non-linearity in the formulation is 

essential to study the non-linear effects on the deformation responses of traditional 

composites and smart composite plate structures. 
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